The Intel Microprocessors

8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium 4, and Core2 with 64-bit Extensions

Architecture, Programming, and Interfacing

Chapter 9: 8086/8088 Hardware Specifications

Introduction

- In this chapter, the pin functions of the 8086 microprocessor are detailed and information is provided on the following hardware topics: clock generation, bus buffering, bus latching, timing, wait states, and minimum mode operation versus maximum mode operation.
- These simple microprocessors are explained as an introduction to the Intel microprocessor family.

PIN-OUTS AND THE PIN FUNCTIONS

- In this section, we explain the function and the multiple functions of each of the microprocessor's pins.
- In addition, we discuss the DC characteristics to provide a basis for understanding the later sections on buffering and latching.

The Pin-Out

- Figure 1 illustrates pin-outs of 8086.
 - packaged in 40-pin **dual in-line** package (DIP)
- 8086 is a 16-bit microprocessor with a 16-bit data bus;

-8086 has pin connections AD₀-AD₁₅

Figure 1 (a) The pin-out of the 8086 in maximum mode;(b) the pin-out of the 8086 in minimum mode.

Power Supply Requirements

- Both microprocessors require +5.0 V with a supply voltage tolerance of ± 10 percent.
 - 8086 uses a maximum supply current of 360 mA
- Both microprocessors operate in ambient temperatures of between 0°C and 80°C.
- 80C86 is a CMOS version that requires only 10 mA of power supply current.
 - and function in temperature extremes of –40°C
 through +200° C

Pin Connections AD₁₅ - AD₈

- 8086 address/data bus lines compose upper multiplexed address/data bus on the 8086.
- These lines contain address bits A₁₅– A₈ whenever ALE is a logic 1, and data bus connections D₁₅–D₈ when ALE is a logic 0.
- These pins enter a high-impedance state when a hold acknowledge occurs.

Pin Connections A₁₉/S₆ - A₁₆/S₃

- Address/status bus bits are multiplexed to provide address signals A_{19} - A_{16} and status bits S_6 - S_3 .
 - high-impedance state during hold acknowledge
 - status bit S₆ is always logic 0,
 - bit S_5 indicates the condition of the IF flag bit
- S₄ and S₃ show which segment is accessed during the current bus cycle.
 - these status bits can address four separate 1M
 byte memory banks by decoding as A₂₁ and A₂₀

Pin Connections RD

- When **read signal** is logic 0, the data bus is receptive to data from memory or I/O devices
 - pin floats high-impedance state during a hold acknowledge

Ready

- Inserts wait states into the timing.
 - if placed at a logic 0, the microprocessor enters into wait states and remains idle
 - if logic 1, no effect on the operation

Pin Connections INTR

- Interrupt request is used to request a hardware interrupt.
 - If INTR is held high when IF = 1, 8086 enters an interrupt acknowledge cycle after the current instruction has completed execution

NMI

- The **non-maskable interrupt** input is similar to INTR.
 - does not check IF flag bit for logic 1
 - if activated, uses interrupt vector 2

Pin Connections **TEST**

- The **Test** pin is an input that is tested by the WAIT instruction.
- If **TEST** is a logic 0, the WAIT instruction functions as an NOP.
- If TEST is a logic 1, the WAIT instruction waits for TEST to become a logic 0.
- The **TEST** pin is most often connected to the 8087 numeric coprocessor.

Pin Connections RESET

- Causes the microprocessor to reset itself if held high a minimum of four clocking periods.
 - when 8086 is reset, it executes instructions at memory location FFF0H
- also disables future interrupts by clearing IF flag
 CLK
- The **clock** pin provides the **basic timing signal**.
 - must have a duty cycle of 33 % (high for one third of clocking period, low for two thirds) to provide proper internal timing

Pin Connections VCC

This power supply input provides a +5.0 V,
 ± 10 % signal to the microprocessor.

GND

- The **ground** connection is the return for the power supply.
 - 8086 microprocessors have two pins labeled GND—both must be connected to ground for proper operation

Pin Connections MN/MX

• **Minimum/maximum** mode pin selects either minimum or maximum mode operation.

 if minimum mode selected, the MN/MX pin must be connected directly to +5.0 V

BHE S₇

- The **bus high enable** pin is used in 8086 to enable the most-significant data bus bits $(D_{15}-D_8)$ during a read or a write operation.
- The state of S_7 is always a logic 1.

Minimum Mode Pins

- Minimum mode ope<u>ration</u> is obtained by connecting the MN/MX pin directly to +5.0 V.
 - do not connect to +5.0 V through a pull-up register; it will not function correctly

M/ĪŌ

- The M/IO (8086) pin selects memory or I/O.
 - indicates the address bus contains either
 a memory address or an I/O port address.
 - high-impedance state during hold acknowledge

Minimum Mode Pins WR

- Write line indicates 8086 is outputting data to a memory or I/O device.
 - during the time WR is a logic 0, the data bus contains valid data for memory or I/O
 - high-impedance during a hold acknowledge

INTA

- The interrupt acknowledge signal is a response to the INTR input pin.
 - normally used to gate the interrupt vector number onto the data bus in response to an interrupt

Minimum Mode Pins ALE

- Address latch enable shows the 8086 address/data bus contains an address.
 - can be a memory address or an I/O port number
 - ALE signal doesn't float during hold acknowledge

DT/R

• The data transmit/receive signal shows that the microprocessor data bus is transmitting (DT/R = 1) or receiving (DT/R = 0) data.

used to enable external data bus buffers

Minimum Mode Pins DEN

• Data bus enable activates external data bus buffers.

HOLD

- Hold input requests a direct memory access (DMA).
 - if HOLD signal is a logic 1, the microprocessor stops executing software and places address, data, and control bus at high-impedance
 - if a logic 0, software executes normally

Minimum Mode Pins HLDA

 Hold acknowledge indicates the 8086 has entered the hold state.

SS0

- The $\overline{SS0}$ status line is equivalent to the S_0 pin in maximum mode operation.
- Signal is combined with IO/M and DT/R to decode the function of the current bus cycle.

Maximum Mode Pins

 In order to achieve maximum mode for use with external coprocessors, connect the MN/MX pin to ground.

S2, **S1**, and **S0**

- Status bits indicate function of the current bus cycle.
 - normally decoded by the 8288 bus controller

Maximum Mode Pins RQ/GT1

- The **request/grant** pins request direct memory accesses (DMA) during maximum mode operation.
 - bidirectional; used to request and grant a DMA operation

LOCK

 The lock output is used to lock peripherals off the system. This pin is activated by using the LOCK: prefix on any instruction.

Maximum Mode Pins QS₁ and QS₀

- The **queue status** bits show the status of the internal instruction queue.
 - provided for access by the 8087 coprocessor

Queue status		
QS ₁	QS ₀	Queue operation
0	0	No operation
0	1	First byte of an opcode from queue
1	0	Empty the queue
1	1	Subsequent byte from queue

BUS BUFFERING AND LATCHING

- Before 8086 can be used with memory or I/O interfaces, their multiplexed buses must be demultiplexed.
- This section provides detail required to demultiplex the buses and illustrates how the buses are buffered for very large systems.
 - because the maximum fan-out is 10, the system must be buffered if it contains more than 10 other components

Demultiplexing the Buses

- The address/data bus of the 8086 is multiplexed (shared) to reduce the number of pins required for the integrated circuit
 - the hardware designer must extract or demultiplex information from these pins
- Memory & I/O require the address remain valid and stable throughout a read/write cycle.
- If buses are multiplexed, the address changes at the memory and I/O, causing them to read or write data in the wrong locations

- All computer systems have three buses:
 - an address bus that provides memory and I/O with the memory address or the I/O port number
 - a data bus that transfers data between the microprocessor and the memory and I/O
 - a control bus that provides control signals to the memory and I/O
- These buses must be present in order to interface to memory and I/O.

Demultiplexing the 8086

- Figure 2 illustrates components required to demultiplex 8086 buses.
 - three 74LS373 or 74LS573 transparent latches are used to demultiplex the address/data bus connections AD_{15} – AD_0
 - and address/status connections A_{19}/S_6 – A_{16}/S_3
- The latches, which are like wires whenever the Address Latch Enable pin (ALE) becomes a logic 1, pass the inputs to the outputs.

- After a short time, ALE returns to logic 0 causing the latches to remember inputs at the time of the change to a logic 0.
- This yields a separate address bus with connections A_{19} - A_0 .
 - these allow 8086 to address 1Mb of memory
- The separate data bus allows it to be connected to any 8-bit peripheral device or memory component.

Demultiplexing the 8086

- Fig 2 illustrates a demultiplexed 8086 with all three buses:
- address (A₁₉–A₀ and BHE)
- data $(D_{15}-D_0)$,
- control (M/ \overline{IO} , \overline{RD} , and \overline{WR})
- Here, the memory and I/O system see the 8086 as a device with:
 - a 20-bit address bus;16-bit data bus
 - and a three-line control bus

Figure 2 The 8086 microprocessor shown with a demultiplexed address bus. This is the model used to build many 8086-based systems.

+5V

The Buffered System

- If more than 10 unit loads are attached to any bus pin, the entire system must be buffered.
- Buffer output currents have been increased so that more TTL unit loads may be driven.
- A fully buffered signal will introduce a timing delay to the system.
- No difficulty unless memory or I/O devices are used which function at near maximum bus speed.

The Fully Buffered 8086

- Figure 3 illustrates a fully buffered 8086.
 - a fully buffered 8086 system requires one 74LS244, two 74LS245s, and three 74LS373s
- Direction of the 74LS245 is controlled by the DT/R signal.
 enabled and disabled by the DEN signal
- It also has a BHE signal that is buffered for memory-bank selection.

Figure 3 A fully buffered 8086 microprocessor.

BUS TIMING

- It is essential to understand system bus timing before choosing memory or I/O devices for interfacing to 8086 microprocessors.
- This section provides insight into operation of the bus signals and the basic read/write timing of the 8086.

Basic Bus Operation

- The three buses of 8086 function the same way as any other microprocessor.
- If data are written to memory the processor:
 - outputs the memory address on the address bus
 - outputs the data to be written on the data bus
 - issues a write (WR) to memory
 - and $\overline{IO}/M = 0$ for peripheral and $\overline{IO}/M = 1$ for writing in a memory
- See simplified timing for write in Fig 4.

Figure 4 Simplified 8086 write bus cycle.

- If data are read from the memory the microprocessor:
 - outputs the memory address on the address bus
 - issues a read memory signal (\overline{RD})
 - and accepts the data via the data bus
- See simplified timing for read in Fig 5.
Figure 5 Simplified 8086 read bus cycle.

CLOCK GENERATOR (8284A)

- This section describes the 8484A clock generator and the RESET signal.
 - also introduces the READY signal for 8086
- With no clock generator, many circuits would be required to generate the clock (CLK).
- 8284A provides the following basic functions:
 - clock generation; RESET & READY synch;
 - TTL-level peripheral clock signal
- Figure 6 shows pin-outs of the 8284A

Figure 6 The pin-out of the 8284A clock generator.

8284A

8284A Pin Functions

 8284A is an 18-pin integrated circuit designed specifically for use 8086.

AEN1 and AEN2

- The address enable pins are provided to qualify bus ready signals, RDY1 and RDY2.
 - used to cause wait states
- Wait states are generated by the READY pin of 8086 controlled by these two inputs.

Pin Functions RDY₁ and **RDY**₂

• The **bus** ready inputs are provided, in conjunction with the AEN1 & AEN2 pins, to cause wait states in 8086.

ASYNC

 The ready synchronization selection input selects either one or two stages of synchronization for the RDY₁ and RDY₂ inputs.

Pin Functions READY

- 8284 Ready is an output pin that connects to the 8086 READY input.
 - synchronized with the RDY_1 and RDY_2 inputs

X_1 and X_2

 The crystal oscillator pins connect to an external crystal used as the timing source for the clock generator and all its functions

Pin Functions F/C

- The **frequency/crystal** select input chooses the clocking source for the 8284A.
 - if held high, an external clock is provided to the EFI input pin
 - if held low, the internal crystal oscillator provides the timing signal
- The external frequency input is used when the F/C pin is pulled high.
- EFI supplies timing when the **F/C** pin is high.

Pin Functions CLK

- The **clock output** pin provides the CLK input signal to 8086 and other components.
 - output signal is one third of the crystal or EFI input frequency
 - 33% duty cycle required by the 8086

PCLK

- The peripheral clock signal is one sixth the crystal or EFI input frequency.
 - PCLK output provides a clock signal to the peripheral equipment in the system

Pin Functions OSC

- Oscillator output is a TTL-level signal at the same frequency as crystal or EFI input.
 - OSC output provides EFI input to other 8284A clock generators in multiple-processor systems

RES

• **Reset input** is an active-low input to 8284A.

- often connected to an RC network that provides power-on resetting

Pin Functions RESET

• **Reset output** is connected to the 8086 RESET input pin.

CSYNCH

- The **clock synchronization** pin is used when the EFI input provides synchronization in systems with multiple processors.
 - if internal crystal oscillator is used, this pin must be grounded

Pin Functions

GND

• The ground pin connects to ground.

VCC

• This **power supply** pin connects to +5.0 V with a tolerance of $\pm 10\%$.

Operation of the 8284A

- The 8284A is a relatively easy component to understand.
- Figure 7 illustrates the internal timing diagram of the 8284A clock generator.
- The top half of the logic diagram represents the clock and synchronization section of the 8284A clock generator.

Figure 7 The internal block diagram of the 8284A clock generator.

Operation of the Clock Section

- Crystal oscillator has two inputs: X₁ and X₂.
 - if a crystal is attached to X_1 and X_2 , the oscillator generates a square-wave signal at the same frequency as the crystal
- The square-wave is fed to an AND gate & an inverting buffer to provide an OSC output.
- The OSC signal is sometimes used as an EFI input to other 8284A circuits in a system.
- Figure 8 shows how an 8284A is connected to the 8086/8088.

Figure 8 The clock generator (8284A) and the 8086 microprocessor illustrating the connection for the clock and reset signals. A 15 MHz crystal provides the 5 MHz clock for the microprocessor.

Operation of the Reset Section

- The reset section of 8284A consists of a Schmitt trigger buffer and a D-type flip-flop.
 - the D-type flip-flop ensures timing requirements of 8086/8088 RESET input are met
- This circuit applies the RESET signal on the negative edge (1to-0 transition) of each clock.
- 8086 microprocessors sample RESET at the positive edge (0to-1 transition) clocks.
 - thus, this circuit meets 8086 timing requirements

RDY and the 8284A

- RDY is the synchronized ready input to the 8284A clock generator.
- Internal 8284A circuitry guarantees the accuracy of the READY synchronization.

Figure 9 8284A RDY input timing.

- Fig 7 depicts internal structure of 8284A.
 - the bottom half is the READY synch circuitry
- Fig 10 shows a circuit to introduce almost any number of wait states to 8086/8088.
- An 8-bit serial shift register (74LS164) shifts a logic 0 for one or more clock periods from one of its Q outputs through to the RDY1 input of the 8284A.
- With appropriate strapping, this circuit can provide various numbers of wait states.

Figure 10 A circuit that will cause between 0 and 7 wait states.

- Note in Fig 10 that this circuit is enabled only for devices that need insertion of waits.
 - if the selection signal is a logic 0, the device is selected and this circuit generates a wait state
- Figure 11 shows timing of this shift register wait state generator when wired to insert one wait state.
- The timing diagram also illustrates the internal contents of the shift register's flip-flops

- to present a more detailed view of its operation

• In this example, one wait state is generated.

Figure 11 Wait state generation timing of the circuit of Figure 10

MINIMUM VS MAXIMUM MODE

- Minimum mode is obtained by connecting the mode selection MN/MX pin to +5.0 V,
 - maximum mode selected by grounding the pin
- The mode of operation provided by minimum mode is similar to that of the 8085A
 - the most recent Intel 8-bit microprocessor
- Maximum mode is designed to be used whenever a coprocessor exists in a system.

- maximum mode was dropped with 80286

Minimum Mode Operation

- Least expensive way to operate 8086.
 - because all control signals for the memory & I/O are generated by the microprocessor
- Control signals are identical to Intel 8085A.
- The minimum mode allows 8085A 8-bit peripherals to be used with the 8086 without any special considerations.

Time in µP

- \bullet T-state is the smallest unit of time in a μp
- $\underline{1}$ clock cycle = $\underline{1}$ T-state
- In 8086, <u>1</u> machine cycle = <u>4</u> T-states
- •1 machine cycle (or bus cycle) is the time required to
 - T1 send out an address on address bus
 - T2 send out a signal (read/ write) on control bus
 - T3 read/ write data on that location on data bus
 - T4 release all buses
- <u>1</u> instruction cycle = <u>n</u> machine cycles (depends on the instruction)

Timing in General

- 8086 use memory and I/O in periods called bus cycles.
- Each cycle equals four system-clocking periods (T states).
 - newer microprocessors divide the bus cycle into as few as two clocking periods
- If the clock is operated at 5 MHz, one 8086 bus cycle is complete in 800 ns.
 - basic operating frequency for these processors

- During the first clocking period in a bus cycle, called T1, many things happen:
 - the address of the memory or I/O location is sent out via the address bus and the address/data bus connections.
- During T1, control signals are also output.
 - indicating whether the address bus contains a memory address or an I/O device (port) number
- <u>During T2</u>, the processor issues the RD or WR signal, DEN, and in the case of a write, the data to be written appears on the data bus.

- These events cause the memory or I/O device to begin to perform a read or a write.
- **READY** is sampled at the end of T_2 .
 - if low at this time, T_3 becomes a wait state (T_w)
 - this clocking period is provided to allow the memory time to access data
- If a read bus cycle, the data bus is sampled at the end of T_3 .
- Illustrated in Figure 12.

Figure 12 operation.

Minimum mode 8086 bus timing for a read

 In T₄, all bus signals are deactivated in preparation for the next bus cycle

 Data bus connections are sampled for data read from memory or I/O

Read Timing

- Figure 12 depicts 8086 read timing.
- Important item in the read timing diagram is time allowed for memory & I/O to read data.
- Memory is chosen by its access time.
 - the fixed amount of time the microprocessor allows it to access data for the read operation
- It is extremely important that memory chosen complies with the limitations of the system.

Write Timing

- Figure 13 illustrates 8086 write-timing.
- The \overline{RD} strobe is replaced by the \overline{WR} strobe,
 - the data bus contains information *for* the memory rather than information *from* the memory,
 - DT/R remains a logic 1 instead of a logic 0 throughout the bus cycle
- When interfacing some devices, timing may be critical between when WR becomes logic 1 and the data are removed from the data bus.

READY AND THE WAIT STATE

- The READY input causes wait states for slower memory and I/O components.
 - a wait state (T_w) is an extra clocking period between T_2 and T_3 to lengthen bus cycle
 - on one wait state, memory access time of 460 ns, is lengthened by one clocking period (200 ns) to 660 ns, based on a 5 MHz clock

The READY Input

- The READY input is sampled at the end of T_2 and again, if applicable, in the middle of T_w .
- The READY input to 8086 has stringent timing requirements.
- Fig 14 shows READY causing one wait state (T_w) , with the required setup and hold times from the system clock.

Figure 14 8086 READY input timing.

- If READY is logic 0 at the end of T_2 , T_3 is delayed and T_w inserted between T_2 and T_3 .
- READY is next sampled at the middle of T_w to determine if the next state is T_w or T_3 .

- The 8086 ALU sets the pins A0 A19 to match the 20-bit address of the location it wants to access
- This value is not stored on these pins for a long time
- This value gets rewritten as D0 D15 and status lines within the next fraction of a second
- Where is A0 A19 after that?
- In the address bus!
- How to get pure address from AD0 AD15? (Demultiplex)
- By using a LATCH
- to save only the address from these pins, and remain cut-off when data is on them.

8086 in Minimum Mode!

Maximum Mode Operation

- Differs from minimum mode in that some control signals must be externally generated.
 - requires addition of the 8288 bus controller
- There are not enough pins on the 8086 for bus control during maximum mode
 - new pins and features replaced some of them
- Maximum mode used only when the system contains external coprocessors such as 8087.

Typical Maximum Mode Configuration

The 8288 Bus Controller

• Provides the signals eliminated from the 8086/8088 by the maximum mode operation.

Figure 15 The 8288 bus controller; (a) block diagram and (b) pin-out.

8288 Bus Controller Pin Functions S_2 , S_1 , and S_0

- Status inputs are connected to the status output pins on 8086/8088.
 - three signals decoded to generate timing signals

CLK

- The **clock** input provides internal timing.
 - must be connected to the CLK output pin of the 8284A clock generator

8288 Bus Controller *Pin Functions* ALE

• The address latch enable output is used to demultiplex the address/data bus.

DEN

• The data bus enable pin controls the bidirectional data bus buffers in the system.

DT/R

• Data transmit/receive signal output to control direction of the bidirectional data bus buffers.

8288 Bus Controller *Pin Functions* AEN

• The address enable input causes the 8288 to enable the memory control signals.

CEN

• The **control enable** input enables the command output pins on the 8288.

IOB

• The I/O bus mode input selects either I/O bus mode or system bus mode operation.

8288 Bus Controller *Pin Functions* AIOWC

• Advanced I/O write is a command output to an advanced I/O write control signal.

IORC

 The I/O read command output provides I/O with its read control signal.

IOWC

• The I/O write command output provides I/O with its main write signal.

8288 *Pin Functions* AMWT

• Advanced memory write control pin provides memory with an early/advanced write signal.

MWTC

• The **memory write** control pin provides memory with its normal write control signal.

MRDC

• The **memory read** control pin provides memory with a read control signal.

8288 Bus Controller *Pin Functions* INTA

• The interrupt acknowledge output acknowledges an interrupt request input applied to the INTR pin.

MCE/PDEN

 The master cascade/peripheral data output selects cascade operation for an interrupt controller if IOB is grounded, and enables the I/O bus transceivers if IOB is tied high.

- Y Both 8086 and 8088 require a single +5.0 V power supply with a tolerance of $\pm 10\%$.
 - The 8086/8088 microprocessors are TTLcompatible if the noise immunity is derated to 350 mV from the customary 400 mV.
 - The 8086/8088 microprocessors can drive one 74XX, five 74LSXX, one 74SXX, ten 74ALSXX, and ten 74HCXX unit loads.

- Y The 8284A clock generator provides the system clock (CLK), READY and RESET synchronization.
 - The standard 5 MHz 8086/8088 operating frequency is obtained by attaching a 15 MHz crystal to the 8284A clock generator.
 - The PCLK output contains a TTLcompatible signal at one half the CLK frequency.

- Y Whenever the 8086/8088 microprocessors are reset, they begin executing software at memory location FFFF0H (FFFF:0000) with the interrupt request pin disabled.
 - Because the 8086/8088 buses are multiplexed and most memory and I/O devices aren't, the system must be demultiplexed before interfacing with memory or I/O.

- Y Demultiplexing is accomplished by an 8-bit latch whose clock pulse is obtained from the ALE signal.
- In a large system, the buses must be buffered because the 8086/8088 microprocessors are capable of driving only 10 unit loads, and large systems often have many more.

(cont.)

- Y Bus timing is very important to the remaining chapters in the text. A bus cycle that consists of four clocking periods acts as the basic system timing.
 - Each bus cycle is able to read or write data between the microprocessor and the memory or I/O system.

- Y The 8086/8088 microprocessors allow the memory and I/O 460 ns to access data when they are operated with a 5 MHz clock.
 - Wait states (Tw) stretch the bus cycle by one or more clocking periods to allow the memory and I/O additional access time.
 - Wait states are inserted by control-ling the READY input to the 8086/8088. READY is sampled at the end of T2 and during Tw.

- Y Minimum mode operation is similar to that of the Intel 8085A microprocessor, whereas maximum mode operation is new and specifically designed for the operation of the 8087 arithmetic coprocessor.
 - The 8288 bus controller must be used in the maximum mode to provide the control bus signals to the memory and I/O.

- Y This is because the maximum mode operation of the 8086/8088 removes some of the system's control signal lines in favor of control signals for the coprocessors.
 - The 8288 bus controller reconstructs these removed control signals.

Pin Functions

The following list provides a description of each pin of the 8288 bus controller.

$S_2, S_1, and S_0$	Status inputs are connected to the status output pins on the 8086/8088 microprocessor. These three signals are decoded to generate the timing signals for the system.
CLK	The clock input provides internal timing and must be connected to the CLK output pin of the 8284A clock generator.
ALE	The address latch enable output is used to demultiplex the address/data bus.
DEN	The data bus enable pin controls the bidirectional data bus buffers in the system. Note that this is an active high output pin that is the opposite polarity from the \overline{DEN} signal found on the microprocessor when operated in the minimum mode.
$\mathbf{DT}/\overline{\mathbf{R}}$	The data transmit/receive signal is output by the 8288 to control the direction of the bidirectional data bus buffers.
AEN	The address enable input causes the 8288 to enable the memory control signals.
CEN	The control enable input enables the command output pins on the 8288.
IOB	The I/O bus mode input selects either the I/O bus mode or system bus mode operation.
AIOWC	The advanced I/O write is a command output used to provide I/O with an advanced I/O write control signal.
IORC	The I/O read command output provides I/O with its read control signal.
IOWC	The I/O write command output provides I/O with its main write signal.
AMWT	The advanced memory write control pin provides memory with an early or advanced write signal.
MWTC	The memory write control pin provides memory with its normal write con- trol signal.
MRDC	The memory read control pin provides memory with a read control signal.
INTA	The interrupt acknowledge output acknowledges an interrupt request input applied to the INTR pin.
MCE/PDEN	The master cascade/peripheral data output selects cascade operation for an interrupt controller if IOB is grounded, and enables the I/O bus trans- ceivers if IOB is tied high.

PEARSON The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium

Copyright ©2009 by Pearson Education, Inc. Upper Saddle Biver, New Jersey 07458