
8086 Microprocessor

Microprocessor

Program controlled semiconductor device (IC) which fetches
(from memory), decodes and executes instructions.

It is used as CPU (Central Processing Unit) in computers.

2

Microprocessor

First Generation
Between 1971 – 1973

PMOS technology, non compatible with TTL
4 bit processors Þ 16 pins

8 and 16 bit processors Þ 40 pins
Due to limitations of pins, signals are

multiplexed

Second Generation
During 1973
NMOS technology Þ Faster speed, Higher
density, Compatible with TTL
4 / 8/ 16 bit processors Þ 40 pins
Ability to address large memory spaces
and I/O ports
Greater number of levels of subroutine
nesting
Better interrupt handling capabilities

Intel 8085 (8 bit processor)

Third Generation
During 1978

HMOS technology Þ Faster speed, Higher
packing density

16 bit processors Þ 40/ 48/ 64 pins
Easier to program

Dynamically relatable programs
Processor has multiply/ divide arithmetic

hardware
More powerful interrupt handling

capabilities
Flexible I/O port addressing

Intel 8086 (16 bit processor)

Fourth Generation
During 1980s
Low power version of HMOS technology
(HCMOS)
32 bit processors
Physical memory space 224 bytes = 16 Mb
Virtual memory space 240 bytes = 1 Tb
Floating point hardware
Supports increased number of addressing
modes

Intel 80386

Fifth Generation Pentium

3

Functional blocksMicroprocessor

Flag
Register

Timing and
control unit

Register array or
internal memory

Instruction
decoding unit

PC/ IP

ALU

Control Bus Address Bus

Data Bus

4

Computational Unit;
performs arithmetic and
logic operations

Various conditions of the
results are stored as

status bits called flags in
flag register

Internal storage of data

Generates the
address of the
instructions to be
fetched from the
memory and send
through address
bus to the
memory

Decodes instructions; sends
information to the timing and
control unit

Generates control signals for
internal and external
operations of the
microprocessor

8086 - Overview

First 16- bit processor released by
INTEL in the year 1978

Originally HMOS, now manufactured
using HMOS III technique

Approximately 29,000 transistors, 40
pin DIP, 5V supply

Does not have internal clock; external
asymmetric clock source with 33%
duty cycle

20-bit address to access memory Þ can
address up to 220 = 1 megabytes of
memory space.

Addressable memory space is
organized in to two banks of 512 kb
each; Even (or lower) bank and Odd (or
higher) bank. Address line A0 is used to
select even bank and control signal 𝐁𝐇𝐄
is used to access odd bank

Uses a separate 16 bit address for I/O
mapped devices Þ can generate 216 =
64 k addresses.

Operates in two modes: minimum mode
and maximum mode, decided by the
signal at MN and 𝐌𝐗 pins.

5

Pins and signals

Pins and Signals

7

Common signals

AD0-AD15 (Bidirectional)

Address/Data bus

Low order address bus; these are
multiplexed with data.

When AD lines are used to transmit
memory address the symbol A is used
instead of AD, for example A0-A15.

When data are transmitted over AD lines
the symbol D is used in place of AD, for
example D0-D7, D8-D15 or D0-D15.

A16/S3, A17/S4, A18/S5, A19/S6

High order address bus. These are
multiplexed with status signals

Pins and Signals

8

Common signals

BHE (Active Low)/S7 (Output)

Bus High Enable/Status

It is used to enable data onto the most
significant half of data bus, D8-D15. 8-bit
device connected to upper half of the
data bus use BHE (Active Low) signal. It
is multiplexed with status signal S7.

MN/ MX

MINIMUM / MAXIMUM

This pin signal indicates what mode the
processor is to operate in.

RD (Read) (Active Low)

The signal is used for read operation.
It is an output signal.
It is active when low.

Pins and Signals

9

Common signals

TEST

𝐓𝐄𝐒𝐓 input is tested by the ‘WAIT’
instruction.

8086 will enter a wait state after
execution of the WAIT instruction and
will resume execution only when the
𝐓𝐄𝐒𝐓 is made low by an active hardware.

This is used to synchronize an external
activity to the processor internal
operation.

READY

This is the acknowledgement from the
slow device or memory that they have
completed the data transfer.

The signal made available by the devices
is synchronized by the 8284A clock
generator to provide ready input to the
8086.

The signal is active high.

Pins and Signals

10

Common signals

RESET (Input)

Causes the processor to immediately
terminate its present activity.

The signal must be active HIGH for at
least four clock cycles.

CLK

The clock input provides the basic timing
for processor operation and bus control
activity. Its an asymmetric square wave
with 33% duty cycle.

INTR Interrupt Request

This is a triggered input. This is sampled
during the last clock cycles of each
instruction to determine the availability
of the request. If any interrupt request is
pending, the processor enters the
interrupt acknowledge cycle.

This signal is active high and internally
synchronized.

Pins and Signals

11

Min/ Max Pins

The 8086 microprocessor can work in two
modes of operations : Minimum mode and
Maximum mode.

In the minimum mode of operation the
microprocessor do not associate with any
co-processors and can not be used for
multiprocessor systems.

In the maximum mode the 8086 can work
in multi-processor or co-processor
configuration.

Minimum or maximum mode operations
are decided by the pin MN/ MX(Active low).

When this pin is high 8086 operates in
minimum mode otherwise it operates in
Maximum mode.

Pins and Signals

Pins 24 -31

For minimum mode operation, the MN/ 𝐌𝐗 is tied
to VCC (logic high)

8086 itself generates all the bus control signals

DT/!𝐑 (Data Transmit/ Receive) Output signal from the
processor to control the direction of data flow
through the data transceivers

𝐃𝐄𝐍 (Data Enable) Output signal from the processor
used as out put enable for the transceivers

ALE (Address Latch Enable) Used to demultiplex the
address and data lines using external latches

M/𝐈𝐎 Used to differentiate memory access and I/O
access. For memory reference instructions, it is
high. For IN and OUT instructions, it is low.

𝐖𝐑 Write control signal; asserted low Whenever
processor writes data to memory or I/O port

𝐈𝐍𝐓𝐀 (Interrupt Acknowledge) When the interrupt
request is accepted by the processor, the output is
low on this line.

12

Minimum mode signals

Pins and Signals

HOLD Input signal to the processor form the bus masters
as a request to grant the control of the bus.

Usually used by the DMA controller to get the
control of the bus.

HLDA (Hold Acknowledge) Acknowledge signal by the
processor to the bus master requesting the control
of the bus through HOLD.

The acknowledge is asserted high, when the
processor accepts HOLD.

13

Minimum mode signals

Pins 24 -31

For minimum mode operation, the MN/ 𝐌𝐗 is tied
to VCC (logic high)

8086 itself generates all the bus control signals

Pins and Signals

During maximum mode operation, the MN/ 𝐌𝐗 is
grounded (logic low)

Pins 24 -31 are reassigned

𝑺𝟎, 𝑺𝟏, 𝑺𝟐 Status signals; used by the 8086 bus controller to
generate bus timing and control signals. These are
decoded as shown.

14

Maximum mode signals

Pins and Signals

During maximum mode operation, the MN/ 𝐌𝐗 is
grounded (logic low)

Pins 24 -31 are reassigned

𝑸𝑺𝟎, 𝑸𝑺𝟏 (Queue Status) The processor provides the status
of queue in these lines.

The queue status can be used by external device to
track the internal status of the queue in 8086.

The output on QS0 and QS1 can be interpreted as
shown in the table.

15

Maximum mode signals

Pins and Signals

During maximum mode operation, the MN/ 𝐌𝐗 is
grounded (logic low)

Pins 24 -31 are reassigned

𝐑𝐐/𝐆𝐓𝟎,
𝐑𝐐/𝐆𝐓𝟏

(Bus Request/ Bus Grant) These requests are used
by other local bus masters to force the processor
to release the local bus at the end of the
processor’s current bus cycle.

These pins are bidirectional.

The request on𝐆𝐓𝟎 will have higher priority than𝐆𝐓𝟏

16

𝐋𝐎𝐂𝐊 An output signal activated by the LOCK prefix
instruction.

Remains active until the completion of the
instruction prefixed by LOCK.

The 8086 output low on the 𝐋𝐎𝐂𝐊 pin while
executing an instruction prefixed by LOCK to
prevent other bus masters from gaining control of
the system bus.

Maximum mode signals

8086 Architecture

Architecture

18

Execution Unit (EU)

EU executes instructions that have
already been fetched by the BIU.

BIU and EU functions separately.

Bus Interface Unit (BIU)

BIU fetches instructions, reads data
from memory and I/O ports, writes

data to memory and I/ O ports.

Architecture

19

Bus Interface Unit (BIU)

Dedicated Adder to generate
20 bit address

Four 16-bit segment
registers

Code Segment (CS)
Data Segment (DS)
Stack Segment (SS)
Extra Segment (ES)

Architecture

20

Bus Interface Unit (BIU)

Segment
Registers

8086’s 1-megabyte
memory is divided
into segments of up
to 64K bytes each.

Programs obtain access
to code and data in the
segments by changing
the segment register
content to point to the
desired segments.

The 8086 can directly
address four segments
(256 K bytes within the 1
M byte of memory) at a
particular time.

Architecture

21

Bus Interface Unit (BIU)

Segment
Registers

Code Segment Register

16-bit

CS contains the base or start of the current code segment;
IP contains the distance or offset from this address to the
next instruction byte to be fetched.

BIU computes the 20-bit physical address by logically
shifting the contents of CS 4-bits to the left and then
adding the 16-bit contents of IP.

That is, all instructions of a program are relative to the
contents of the CS register multiplied by 16 and then offset
is added provided by the IP.

Architecture

22

Bus Interface Unit (BIU)

Segment
Registers

Data Segment Register

16-bit

Points to the current data segment; operands for most
instructions are fetched from this segment.

The 16-bit contents of the Source Index (SI) or
Destination Index (DI) or a 16-bit displacement are used
as offset for computing the 20-bit physical address.

Architecture

23

Bus Interface Unit (BIU)

Segment
Registers

Stack Segment Register

16-bit

Points to the current stack.

The 20-bit physical stack address is calculated from the
Stack Segment (SS) and the Stack Pointer (SP) for stack
instructions such as PUSH and POP.

In based addressing mode, the 20-bit physical stack
address is calculated from the Stack segment (SS) and the
Base Pointer (BP).

Architecture

24

Bus Interface Unit (BIU)

Segment
Registers

Extra Segment Register

16-bit

Points to the extra segment in which data (in excess of
64K pointed to by the DS) is stored.

String instructions use the ES and DI to determine the 20-
bit physical address for the destination.

Architecture

25

Bus Interface Unit (BIU)

Segment
Registers

Instruction Pointer

16-bit

Always points to the next instruction to be executed within
the currently executing code segment.

So, this register contains the 16-bit offset address pointing
to the next instruction code within the 64Kb of the code
segment area.

Its content is automatically incremented as the execution
of the next instruction takes place.

Architecture

26

Bus Interface Unit (BIU)

A group of First-In-First-
Out (FIFO) in which up to
6 bytes of instruction
code are pre fetched
from the memory ahead
of time.

This is done in order to
speed up the execution
by overlapping
instruction fetch with
execution.

This mechanism is known
as pipelining.

Instruction queue

Architecture

27

Some of the 16 bit registers can be
used as two 8 bit registers as :

AX can be used as AH and AL
BX can be used as BH and BL
CX can be used as CH and CL
DX can be used as DH and DL

Execution Unit (EU)

EU decodes and
executes instructions.

A decoder in the EU
control system

translates instructions.

16-bit ALU for
performing arithmetic
and logic operation

Four general purpose
registers(AX, BX, CX, DX);

Pointer registers (Stack
Pointer, Base Pointer);

and

Index registers (Source
Index, Destination Index)
each of 16-bits

Architecture

28

EU
Registers

Accumulator Register (AX)

Consists of two 8-bit registers AL and AH, which can be
combined together and used as a 16-bit register AX.

AL in this case contains the low order byte of the word,
and AH contains the high-order byte.

The I/O instructions use the AX or AL for inputting /
outputting 16 or 8 bit data to or from an I/O port.

Multiplication and Division instructions also use the AX or
AL.

Execution Unit (EU)

Architecture

29

EU
Registers

Base Register (BX)

Consists of two 8-bit registers BL and BH, which can be
combined together and used as a 16-bit register BX.

BL in this case contains the low-order byte of the word,
and BH contains the high-order byte.

This is the only general purpose register whose contents
can be used for addressing the 8086 memory.

All memory references utilizing this register content for
addressing use DS as the default segment register.

Execution Unit (EU)

Architecture

30

EU
Registers

Counter Register (CX)

Consists of two 8-bit registers CL and CH, which can be
combined together and used as a 16-bit register CX.

When combined, CL register contains the low order byte of
the word, and CH contains the high-order byte.

Instructions such as SHIFT, ROTATE and LOOP use the
contents of CX as a counter.

Execution Unit (EU)

Example:

The instruction LOOP START automatically decrements
CX by 1 without affecting flags and will check if [CX] =
0.

If it is zero, 8086 executes the next instruction;
otherwise the 8086 branches to the label START.

Architecture

31

EU
Registers

Data Register (DX)

Consists of two 8-bit registers DL and DH, which can be
combined together and used as a 16-bit register DX.

When combined, DL register contains the low order byte of
the word, and DH contains the high-order byte.

Used to hold the high 16-bit result (data) in 16 X 16
multiplication or the high 16-bit dividend (data) before a
32 ÷ 16 division and the 16-bit reminder after division.

Execution Unit (EU)

Architecture

32

EU
Registers

Stack Pointer (SP) and Base Pointer (BP)

SP and BP are used to access data in the stack segment.

SP is used as an offset from the current SS during
execution of instructions that involve the stack segment in
the external memory.

SP contents are automatically updated (incremented/
decremented) due to execution of a POP or PUSH
instruction.

BP contains an offset address in the current SS, which is
used by instructions utilizing the based addressing mode.

Execution Unit (EU)

Architecture

33

EU
Registers

Source Index (SI) and Destination Index (DI)

Used in indexed addressing.

Instructions that process data strings use the SI and DI
registers together with DS and ES respectively in order to
distinguish between the source and destination addresses.

Execution Unit (EU)

Architecture

34

EU
Registers

Source Index (SI) and Destination Index (DI)

Used in indexed addressing.

Instructions that process data strings use the SI and DI
registers together with DS and ES respectively in order to
distinguish between the source and destination addresses.

Execution Unit (EU)

Architecture

35

Flag Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OF DF IF TF SF ZF AF PF CF

Carry Flag

This flag is set, when there is
a carry out of MSB in case of
addition or a borrow in case
of subtraction.

Parity Flag

This flag is set to 1, if the lower
byte of the result contains even
number of 1’s ; for odd number
of 1’s set to zero.

Auxiliary Carry Flag

This is set, if there is a carry from the
lowest nibble, i.e, bit three during
addition, or borrow for the lowest
nibble, i.e, bit three, during
subtraction.

Zero Flag

This flag is set, if the result of
the computation or comparison
performed by an instruction is
zero

Sign Flag

This flag is set, when the
result of any computation

is negative

Trap Flag
If this flag is set, the processor
enters the single step execution
mode by generating internal
interrupts after the execution of
each instruction

Interrupt Flag

Causes the 8086 to recognize
external mask interrupts; clearing IF

disables these interrupts.

Direction Flag
This is used by string manipulation instructions. If this flag bit
is ‘0’, the string is processed beginning from the lowest
address to the highest address, i.e., auto incrementing mode.
Otherwise, the string is processed from the highest address
towards the lowest address, i.e., auto incrementing mode.

Over flow Flag
This flag is set, if an overflow occurs, i.e, if the result of a signed

operation is large enough to accommodate in a destination
register. The result is of more than 7-bits in size in case of 8-bit
signed operation and more than 15-bits in size in case of 16-bit

sign operations, then the overflow will be set.

Execution Unit (EU)

36

Architecture

Sl.No. Type Register width Name of register

1 General purpose register 16 bit AX, BX, CX, DX

8 bit AL, AH, BL, BH, CL, CH, DL, DH

2 Pointer register 16 bit SP, BP

3 Index register 16 bit SI, DI

4 Instruction Pointer 16 bit IP

5 Segment register 16 bit CS, DS, SS, ES

6 Flag (PSW) 16 bit Flag register

8086 registers
categorized

into 4 groups
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OF DF IF TF SF ZF AF PF CF

37

Architecture

Register Name of the Register Special Function

AX 16-bit Accumulator Stores the 16-bit results of arithmetic and logic
operations

AL 8-bit Accumulator Stores the 8-bit results of arithmetic and logic
operations

BX Base register Used to hold base value in base addressing mode
to access memory data

CX Count Register Used to hold the count value in SHIFT, ROTATE
and LOOP instructions

DX Data Register Used to hold data for multiplication and division
operations

SP Stack Pointer Used to hold the offset address of top stack
memory

BP Base Pointer Used to hold the base value in base addressing
using SS register to access data from stack
memory

SI Source Index Used to hold index value of source operand (data)
for string instructions

DI Data Index Used to hold the index value of destination
operand (data) for string operations

Registers and Special Functions

Addressing Modes & Instruction set

Introduction

39

Program
A set of instructions written to solve

a problem.

Instruction
Directions which a microprocessor

follows to execute a task or part of a
task.

Computer language

High Level Low Level

Machine Language Assembly Language

¾Binary bits ¾ English Alphabets
¾ ‘Mnemonics’
¾ Assembler

Mnemonics ® Machine
Language

8086 Addressing Modes

Group I : Addressing modes for
register and immediate data

Group IV : Relative Addressing mode

Group V : Implied Addressing mode

Group III : Addressing modes for
I/O ports

Group II : Addressing modes for
memory data

Addressing Modes

42

Every instruction of a program has to operate on a data.
The different ways in which a source operand is denoted
in an instruction are known as addressing modes.

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

Addressing Modes

43

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

The instruction will specify the name of the
register which holds the data to be operated by
the instruction.

Example:

MOV CL, DH

The content of 8-bit register DH is moved to
another 8-bit register CL

(CL) ¬ (DH)

Group I : Addressing modes for
register and immediate data

Addressing Modes

44

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

In immediate addressing mode, an 8-bit or 16-bit
data is specified as part of the instruction

Example:

MOV DL, 08H

The 8-bit data (08H) given in the instruction is
moved to DL

(DL) ¬ 08H

MOV AX, 0A9FH

The 16-bit data (0A9FH) given in the instruction is
moved to AX register

(AX) ¬ 0A9FH

Group I : Addressing modes for
register and immediate data

Addressing Modes : Memory Access

45

Physical Address (20 Bits)

Adder

Segment Register (16 bits) 0 0 0 0

Offset Value (16 bits)

Addressing Modes : Memory Access

46

20 Address lines Þ 8086 can address up to
220 = 1M bytes of memory

However, the largest register is only 16 bits

Physical Address will have to be calculated
Physical Address : Actual address of a byte in
memory. i.e. the value which goes out onto the
address bus.

Memory Address represented in the form –
Seg : Offset (Eg - 89AB:F012)

Each time the processor wants to access
memory, it takes the contents of a segment
register, shifts it one hexadecimal place to the
left (same as multiplying by 1610), then add the
required offset to form the 20- bit address

89AB : F012 ® 89AB ® 89AB0 (Paragraph to byte ® 89AB x 10 = 89AB0)
F012 ® 0F012 (Offset is already in byte unit)

+ -------
98AC2 (The absolute address)

16 bytes of
contiguous memory

Addressing Modes

48

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

Here, the effective address of the memory
location at which the data operand is stored is
given in the instruction.

The effective address is just a 16-bit number
written directly in the instruction.

Example:

MOV BX, [1354H]
MOV BL, [0400H]

The square brackets around the 1354H denotes
the contents of the memory location. When
executed, this instruction will copy the contents of
the memory location into BX register.

This addressing mode is called direct because the
displacement of the operand from the segment
base is specified directly in the instruction.

Group II : Addressing modes
for memory data

Addressing Modes

49

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

In Register indirect addressing, name of the
register which holds the effective address (EA)
will be specified in the instruction.

Registers used to hold EA are any of the following
registers:

BX, BP, DI and SI.

Content of the DS register is used for base
address calculation.

Example:

MOV CX, [BX]

Operations:

EA = (BX)
BA = (DS) x 1610
MA = BA + EA

(CX) ¬ (MA) or,

(CL) ¬ (MA)
(CH) ¬ (MA +1)

Group II : Addressing modes
for memory data

Note : Register/ memory
enclosed in brackets refer
to content of register/
memory

Addressing Modes

50

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

In Based Addressing, BX or BP is used to hold the
base value for effective address and a signed 8-bit
or unsigned 16-bit displacement will be specified
in the instruction.

In case of 8-bit displacement, it is sign extended
to 16-bit before adding to the base value.

When BX holds the base value of EA, 20-bit
physical address is calculated from BX and DS.

When BP holds the base value of EA, BP and SS is
used.

Example:

MOV AX, [BX + 08H]

Operations:

0008H ¬ 08H (Sign extended)
EA = (BX) + 0008H
BA = (DS) x 1610
MA = BA + EA

(AX) ¬ (MA) or,

(AL) ¬ (MA)
(AH) ¬ (MA + 1)

Group II : Addressing modes
for memory data

Addressing Modes

51

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

SI or DI register is used to hold an index value for
memory data and a signed 8-bit or unsigned 16-
bit displacement will be specified in the
instruction.

Displacement is added to the index value in SI or
DI register to obtain the EA.

In case of 8-bit displacement, it is sign extended
to 16-bit before adding to the base value.

Example:

MOV CX, [SI + 0A2H]

Operations:

FFA2H ¬ A2H (Sign extended)

EA = (SI) + FFA2H
BA = (DS) x 1610
MA = BA + EA

(CX) ¬ (MA) or,

(CL) ¬ (MA)
(CH) ¬ (MA + 1)

Group II : Addressing modes
for memory data

Addressing Modes

52

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

In Based Index Addressing, the effective address
is computed from the sum of a base register (BX
or BP), an index register (SI or DI) and a
displacement.

Example:

MOV DX, [BX + SI + 0AH]

Operations:

000AH ¬ 0AH (Sign extended)

EA = (BX) + (SI) + 000AH
BA = (DS) x 1610
MA = BA + EA

(DX) ¬ (MA) or,

(DL) ¬ (MA)
(DH) ¬ (MA + 1)

Group II : Addressing modes
for memory data

Addressing Modes

53

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

Employed in string operations to operate on string
data.

The effective address (EA) of source data is stored
in SI register and the EA of destination is stored in
DI register.

Segment register for calculating base address of
source data is DS and that of the destination data
is ES

Example: MOVS BYTE

Operations:

Calculation of source memory location:
EA = (SI) BA = (DS) x 1610 MA = BA + EA

Calculation of destination memory location:
EAE = (DI) BAE = (ES) x 1610 MAE = BAE + EAE

(MAE) ¬ (MA)

If DF = 1, then (SI) ¬ (SI) – 1 and (DI) = (DI) - 1
If DF = 0, then (SI) ¬ (SI) +1 and (DI) = (DI) + 1

Group II : Addressing modes
for memory data

Note : Effective address of
the Extra segment register

Addressing Modes

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

These addressing modes are used to access data
from standard I/O mapped devices or ports.

In direct port addressing mode, an 8-bit port
address is directly specified in the instruction.

Example: IN AL, [09H]

Operations: PORTaddr = 09H
(AL) ¬ (PORT)

Content of port with address 09H is
moved to AL register

In indirect port addressing mode, the instruction
will specify the name of the register which holds
the port address. In 8086, the 16-bit port address
is stored in the DX register.

Example: OUT [DX], AX

Operations: PORTaddr = (DX)
(PORT) ¬ (AX)

Content of AX is moved to port
whose address is specified by DX
register. 54

Group III : Addressing
modes for I/O ports

Addressing Modes

55

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

In this addressing mode, the effective address of
a program instruction is specified relative to
Instruction Pointer (IP) by an 8-bit signed
displacement.

Example: JZ 0AH

Operations:

000AH ¬ 0AH (sign extend)

If ZF = 1, then

EA = (IP) + 000AH
BA = (CS) x 1610
MA = BA + EA

If ZF = 1, then the program control jumps to
new address calculated above.

If ZF = 0, then next instruction of the
program is executed.

Group IV : Relative
Addressing mode

Addressing Modes

56

1. Register Addressing

2. Immediate Addressing

3. Direct Addressing

4. Register Indirect Addressing

5. Based Addressing

6. Indexed Addressing

7. Based Index Addressing

8. String Addressing

9. Direct I/O port Addressing

10. Indirect I/O port Addressing

11. Relative Addressing

12. Implied Addressing

Instructions using this mode have no operands.
The instruction itself will specify the data to be
operated by the instruction.

Example: CLC

This clears the carry flag to zero.

Group IV : Implied
Addressing mode

