
PROIECTAREA CU MICROPROCESOARE

Facultatea de Automatică și Calculatoare
Universitatea Politehnica București

ARHITECTURA X86

Organization of 8086
AH AL
BH BL
CH CL
DH DL

SP
BP
SI
DI

ALU

Flag register

Execution Unit
(EU)

EU
control

S

CS
DS
SS
ES

ALU Data bus
(16 bits)

Address bus (20 bits)

Instruction Queue

Bus
control

External bus

IP

Data bus
(16 bits)

Bus Interface Unit (BIU)

General purpose
register

Segment
register

General Purpose Registers
15 8 7 0

AX

BX

CX

DX

AH AL

BH BL

CH CL

DH DL

Accumulator

Base

Counter

Data

SP

BP

SI

DI

Data Group

Pointer and
Index Group

Stack Pointer

Base Pointer

Source Index

Destination Index

3-4

Arithmetic Logic Unit (ALU)

n bits n bits
A B

Y

F
Carry

Y= 0 ?
A > B ?

F Y

0 0 0 A + B
0 0 1 A - B
0 1 0 A - 1
0 1 1 A and B
1 0 0 A or B
1 0 1 notA
• • • • • •

Ø Signal F controls which function will be conducted by ALU.
Ø Signal F is generated according to the current instruction.
Ø Basic arithmetic operations: addition, subtraction, etc.
Ø Basic logic operations: and, or, xor, shifting, etc.

3-5

Flag Register

¾ NT IOPL OF DF IF TF ZFSF ¾ AF PF CF¾ ¾

015

Ø Control Flags Ø Status Flags
IF: Interrupt enable flag
DF: Direction flag
TF: Trap flag

CF: Carry flag
PF: Parity flag
AF: Auxiliary carry flag
ZF: Zero flag
SF: Sign flag
OF: Overflow flag
NT: Nested task flag
IOPL: Input/output privilege level

q Flag register contains information reflecting the current status of a
microprocessor. It also contains information which controls the operation of the
microprocessor.

Instruction Machine Codes
q Instruction machine codes are binary numbers

Ø For Example:
1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 MOV AL, BL

MOV

q Machine code structure
Opcode Operand1

Ø Opcode tells what operation is to be performed.
(EU control logic generates ALU control signals according to Opcode)

Ø Some instructions do not have operands, or have only one operand

Ø Operands tell what data should be used in the operation. Operands can
be addresses telling where to get data (or where to store results)

Register
mode

Mode Operand2

Ø Mode indicates the type of a instruction: Register type, or Memory type

3-7

EU Operation

ALU Data bus
(16 bits)

AH AL
BH BL
CH CL
DH DL

SP
BP
SI
DI

General purpose
register

ALU

Flag register
EU
control instruction

1011000101001010

1. Fetch an instruction from instruction
queue

2. According to the instruction, EU control
logic generates control signals.
(This process is also referred to as instruction
decoding)

3. Depending on the control signal,
EU performs one of the following
operations:
Ø An arithmetic operation
Ø A logic operation
Ø Storing data into a register
Ø Moving data from a register
Ø Changing flag register

Pointers and Index Registers:

µproc
8086

20 bits (A0-A19)

16 bits (D0- D15)

Address Bus

Data Bus

Control Bus

µProc
8086

8086-based Systems can access 220= 1M memory locations at most

Generating Memory Addresses

q How can a 16-bit microprocessor generate 20-bit memory addresses?

Segment
(64K)

0000

+
16-bit register

16-bit register

20-bit memory address

00000

FFFFFLeft shift 4 bits

Intel 80x86 memory address generation 1M memory space

Offset

Segment
address

Offset
Addr1

Addr1 + 0FFFF

Memory Segmentation
q A segment is a 64KB block of memory starting from any 16-byte

boundary
Ø For example: 00000, 00010, 00020, 20000, 8CE90, and E0840 are all valid

segment addresses
Ø The requirement of starting from 16-byte boundary is due to the 4-bit

left shifting
q Segment registers in BIU

CS

SS

DS

ES

Code Segment

Data Segment
Stack Segment

Extra Segment

015

CS = 1000H
DS = 2000H
SS = 3000H
What will be the actual
addresses in memory?

Data Segment and Code
Segment can have a
complete overlapping. In
addition Stack Segment
and Extra Segment can
have an overlapping.

Code Segment: 20-bit start address = CS x10h +0000H
= 10000h

20-bit end address = CS x10H +FFFFH
= 1FFFFH

Data Segment : 20-bit start address = DS x10h +0000H
= 20000H

20-bit end address = DS x10H +FFFFH
= 2FFFFH

Stack Segment : 20-bit start address = SS x10h +0000H
= 30000H

20-bit end address = SS x10H +FFFFH
= 3FFFFH

Segmentation

It is well-known that programming with segmented architectures is
really a pain
• In the 8086 you constantly have to make sure segment registers are set up

correctly
• What happens if you have data/code that’s more than 64KiB?
• You must then switch back and forth between selector values, which can be

really awkward
• Something that can cause complexity also is that two different (selector, offset)

pairs can reference the same address
• Example: (a,b) and (a-1, b+16)
There is an interesting on-line article on the topic:
http://world.std.com/~swmcd/steven/rants/pc.html

The trouble with segments

http://world.std.com/~swmcd/steven/rants/pc.html

If you code and your data are <64KiB, segments are great
• Otherwise, they are a pain
• Given the horror of segmented programming, one may wonder how come it

stuck?
• From the linked article: “Under normal circumstances, a design so twisted and

flawed as the 8086 would have simply been ignored by the market and faded
away.”

But in 1980, Intel was lucky that IBM picked it for the PC!
• Not to criticize IBM or anything, but they were also the reason why we got stuck

with FORTRAN for so many years :/
• Big companies making “wrong” decisions has impact

Why did segmentation survive?

Lower byte of word is stored at lower address
The word ABC2H stored in the memory starting at 20-bit address 50000H

The double word 452ABDFF
address 60000H

stored in the memory starting at 20-bit

50000H
50001H

60000H
60001H
60002H
60003H

C2
AB

FF
BD
2A
45

Memory storage

Memory Address Calculation
q Segment addresses must be stored

in segment registers
q Offset is derived from the combination

of pointer registers, the Instruction
Pointer (IP), and immediate values

0000

+
Segment address

Offset

Memory address

q Examples
3 4 8 A 0

4 2 1 4
8 A B 43

CS
IP +

Instruction address

5 0 0 0 0
F F E 0
F F E 05

SS
SP +

Stack address

1 2 3 4 0
0 0 2 2
2 3 6 21

DS
DI +

Data address

FFFFFH

The Instruction Pointer register (IP) contains the
offset address of the next sequential instruction to
be executed. Thus, the IP register cannot be
directly modified.

These register descriptions have slowly been
introducing us to a new way of addressing
memory, called:
segment-offset addressing.

The segment register is used to point to the
beginning of any one of the 64K sixteen-byte
boundaries

00000H

7000H
Segment address

0000H

FFFFH

…
.

PhysicalAddressThe IP Register

64 K

Fetching Instructions
q Where to fetch the next instruction?

CS
IP

1 2 3 4
0 0 1 2

1 2 3 5 2

12352 MOV AL, 0

8086 Memory

q Update IP
— After an instruction is fetched, Register IP is updated as follows:

IP = IP + Length of the fetched instruction
— For Example: the length of MOV AL, 0 is 2 bytes. After fetching this instruction,

the IP is updated to 0014

Accessing Data Memory
q There is a number of methods to generate the memory address when

accessing data memory. These methods are referred to as
Addressing Modes

q Examples:
— Direct addressing: MOV AL, [0300H]

1 2 3 4 0
0 3 0 0
2 6 4 01

DS

Memory address

(assume DS=1234H)

— Register indirect addressing: MOV AL, [SI]
1 2 3 4 0

0 3 1 0
2 6 5 01

DS

Memory address

(assume DS=1234H)
(assume SI=0310H)

Reserved Memory Locations

FFFFF
FFFF0

003FF

00000

Reset
instruction
area

Interrupt
pointer
table

Ø Locations from 00000H to 003FFH
are used for the interrupt pointer table

Ø Locations from FFFF0H to FFFFFH
are used for system reset code

q Some memory locations are reserved for special purposes.
Programs should not be loaded in these areas

¾ It has 256 table entries
¾ Each table entry is 4 bytes

256 ´ 4 = 1024 = memory addressing space
From 00000H to 003FFH

Interrupts
q An interrupt is an event that occurs while the processor is executing a program
q The interrupt temporarily suspends execution of the program and switch the

processor to executing a special routine (interrupt service routine)
q When the execution of interrupt service routine is complete, the processor

resumes the execution of the original program

Hardware Interrupts Software Interrupts

¾ Caused by activating the processor’s
interrupt control signals (NMI,
INTR)

¾ Caused by the execution of an INT
instruction

¾ Caused by an event which is generated
by the execution of a program, such
as division by zero

q Interrupt classification

q 8088 can have 256 interrupts

Minimum and Maximum Operation modes
q Intel 8088 (8086) has two operation modes:

Minimum Mode Maximum Mode
¾ 8088 generates control signals

for memory and I/O operations
¾ It needs 8288 bus controller to generate

control signals for memory and I/O
operations

¾ Some functions are not available
in minimum mode

¾ It allows the use of 8087 coprocessor;
it also provides other functions

¾ Compatible with 8085-based
systems

