
PROIECTAREA CU MICROPROCESOARE

Facultatea de Automatică și Calculatoare
Universitatea Politehnica București

ARHITECTURA X86

Contents

¨ Overview
¨ Hardware architecture
¨ Software architecture

Overview

¨ The name x86 refers to instruction set which is used
in Intel’s 8086 CPU

¨ This name is used in processors from Intel, AMD,
VIA, and other processors that compatible with the
instruction set

¨ Modern processors have many addition to the
original x86 but still fully backward compatible with
it.

Chronology (only Intel)
¨ 1978: 8086, 8088

¤ 16-bit CPU with 20-bit address
¨ 1982: 80186, 80188
¨ 1982: 80286

¤ 16-bit CPU with 24-bit address
¨ 1985: i386 (80386)

¤ 32-bit CPU with 32-bit address, renamed to IA-32
¨ 1989: i486

¤ Pipelining with integrated FPU(floating point unit)

Chronology (cont.)
¨ 1993: Pentium, Pentium MMX

¤ 64-bit data bus, superscalar (2 ALUs)
¨ 1995: Pentium Pro

¤ 36-bit address bus (Physical Address Extension, PAE), RISC core
¨ 1997: Pentium II, Pentium III

¤ SSE
¨ 2000: Pentium IV

¤ Deeply pipelining, SSE2, Hyperthreading
¨ 2003: Pentium M

Chronology (cont.)
¨ 2003: Athlon64 (from AMD)

¤ First 64-bit CPU in x86 family
¨ 2004: Pentium 4 Prescott

¤ Very deep pipeline (20 stages), SSE3, 64-bit
¨ 2006: Core 2

¤ Multicore, SSE4
¨ 2008: Atom

¤ Deep pipeline, very low power

Chronology (cont.)

¨ 2008: Core i7
¨ 2009: Core i5
¨ 2010: Core i3
¨ 2017: Core i9

Basic properties

¨ CISC design
¨ Primarily two-address with limitation
¨ Little endian
¨ Allow unaligned memory-address access for 16 and

32 bits
¨ Instruction set is mostly inherited from the previous

generation Intel’s CPU (8085)

Current implementation

¨ Since Pentium Pro, the core unit is RISC
¨ An extra decoding unit asynchronously splits most

x86 instructions into smaller pieces, which then are
executed by many execution units

¨ The extra decoding unit operates like an emulator

Operation mode

¨ Many extensions have been introduced since the
first generation of x86

¨ The original x86 architecture has many limitations
and cannot support modern architecture such as
protection and virtual memory

¨ How to support new requirements while maintain
backward compatibility?

Operation mode

¨ x86 CPUs have many operation modes
¤ Real mode
¤ 16-bit Protected mode
¤ 32-bit Protected mode

n Virtual-8086 mode
¤ Long mode (64-bit Protected mode)

¨ Different modes have different limitations
¨ After power up, CPU operates in Real mode.
¨ Switching between modes occurs by software (OS)

Real mode

¨ Addressing is fully compatible with the original x86
CPU

¨ Can access memory up to 1MB
¨ Uses segmentation
¨ Although the memory reference is limited to the

original 16-bit CPU, data processing can utilize 32-
bit instructions

Segmentation in Real mode
¨ The original x86 is 16 bits which has 16-bit registers.
¨ 64 kB memory was nearly not enough
¨ To extend memory size, Intel decided to use two 16-

bit number to point to a physical address
¨ That two 16-bit number is referred to in the form of
Segment:Offset

¨ The combination of segment and offset generates 20-
bit address (1 MB)

Calculating address from Segment:Offset

¨ The segment must be stored in one of the “segment”
registers
¤ CS, DS, SS, ES

¨ Given a 16-bit selector and a 16-bit offset, the 20-bit address
is computed as follows
¤ Multiply the selector by 16

n This simply transforms XXXX into XXXX0 (in base-16)
¤ Add the offset

Example

¨ Given the segment and offset as 10DE:12A3, what is
the physical address?
¤ Physical = Segment * 1610 + offset
¤ = 10DE0 + 12A3
¤ Physical = 12083

Example

¨ Consider the byte at address 13DFE with the
segment value 10DE. What is its offset?

¤ 13DDE = 10DE * 1610 + offset
¤ offset = 13DFE - 10DE0
¤ offset = 301E (a 16-bit quantity)

Code, Data, Stack

¨ Although we’ll discuss these at length later, let’s just say
right for now that the address space has three regions

¨ A program constantly references all three regions
¨ Therefore, the program constantly references bytes in three

different segments
¤ For now let’s assume that each region is fully contained

in a single segment, which is in fact not always the case
¨ CS: points to the beginning of the code segment
¨ DS: points to the beginning of the data segment
¨ SS: points to the beginning of the stack segment

code

data

stack

address space

The trouble with segments

¨ It is well-known that programming with segmented architectures is
really a pain
¤ You constantly have to make sure segment registers are set up correctly

¨ What happens if you have data/code that’s more than 64K?
¤ You must then switch back and forth between selector values, which

can be really awkward
¨ Something that can cause complexity also is that two different

(selector, offset) pairs can reference the same address
¤ Example: (a,b) and (a-1, b+16)
¤ Concrete example: A000:5677 and A111:4567

Protected mode
¨ Introducing the term “logical address space” to x86
¨ Each position of memory has two address types:

¤ Logical address – seen and used by program (also
programmer)

¤ Physical address – The actual address generated by memory
management unit (embedded within the CPU) from a given
virtual address

¨ Size of logical space can be different from those of
physical space

Logical -> Physical address

Difference of 286 and 386 address translation

¨ 286
Logical
Address Segmentation Physical

Address

Logical
Address Segmentation Paging Physical

Address

Linear
Address

¨ 386

Virtual memory

¨ Paging in i386 introducing the world of virtual
memory to x86

¨ A memory page can be absent from the physical
memory

¨ If program refers to an absent page, paging unit
generates a special interrupt (page fault) then OS can
manage to fill the page with the required data

Virtual and physical space

Process privilege

¨ In protected mode, a process (or a task) has
privilege (aka. Priority) level.

¨ There are 4 privilege levels (or rings) numbers from
0 to 3 (ring 0 is the highest privilege and ring 3 is the
lowest)

¨ Usually, OS runs in ring 0 and all user applications
operate in ring 3

Privileged ring

User applications cannot:
¨ Segment arithmetic
¨ Privileged instructions
¨ Direct hardware access
¨ Writing to a code segment
¨ Executing data
¨ Overlapping segments
¨ Use of BIOS functions, due to the BIOS interrupts being

reserved
¨ However, most legacy programs violate these rules!!!! To

solve this problem, Virtual-8086 was introduced in i386

Virtual 8086 mode

¨ As the segmentation in protected mode is far different
from that in real mode, all legacy applications cannot run
in protected mode.

¨ At the time of designing 80386, these old programs were
still popular though the protected mode in 80286 had
been around for sometime.

¨ Virtual-8086 mode is actually a sub-operation in 32-bit
protected mode

Difference between protected and virtual-8086 modes

¨ Virtual-8086 mode is activated per process not for the
whole system. Therefore, CPU is still in 32-bit protected
mode and Virtual-8086 application is running in ring 3.

¨ In Virtual-8086, CPU uses real-mode segmentation instead
of normal protected-mode segmentation

¨ Paging is still active so virtual memory and protection still
exist.

¨ I/O operation is controlled by I/O permission map to
allow/disallow the I/O change

Long mode
¨ Normally, applications cannot use 64-bit features such as 64-bit

registers. Long mode enables these features.
¨ There is no virtual-8086 and segmentation in Long mode.

However, paging is still active.
¨ Processor should enter 32-bit protected mode before starting

Long mode.
¨ In Long mode, a task can be classified to either of two sub-

mode:
¤ 64-bit mode – For new 64-bit applications (old applications require re-

compilation)
¤ Compatibility mode – For 32-bit applications

x86 Registers
¨ The original 8086 has 14 registers. All of them are 16-bit

wide.
¤ 4 General purpose register (GPR): AX, BX, CX, DX
¤ 2 Index register: SI, DI
¤ 2 Pointer register: BP, SP
¤ 4 Segment register: CS, DS, SS, ES
¤ Flag
¤ Instruction Pointer

¨ Each GPR can be accessed as two separate bytes (i.e., BX’s
high byte can be accessed as BH and low byte as BL)

x86 Registers (cont.)
¨ In 32-bit platforms, all GPR, flag, index, and pointer

registers are expanded to 32-bit. (Except the
segment registers)

¨ All 32-bit registers are represented by prefixing “E”
to the 16-bit register name (e.g., to access 32-bit
AX, we use EAX)

¨ Two new segment registers (FS and GS) were added
(They are still 16-bit)

x86 Registers (cont.)

¨ In 64-bit platforms (also in 64-bit Long mode), all
32-bit registers are expanded to 64-bit in a similar
way that 32-bit expansion did before but with the
prefix “R” (e.g., AX become RAX)

¨ 8 additional general registers were added (R8, R9, ..,
R15)

Floating-point Registers

¨ Floating-point unit has its own register groups
separate from all operation of the other units
¤ 8 80-bit floating-point registers: all are named ST
¤ 3 16-bit word registers: Control word, Status word, Tag word

¨ Operation on these registers as well as the floating
point functions require another set of instructions
because this unit was originally a separate processor

Special registers

¨ Apart from all registers mentioned before, x86 also
has various special/miscellaneous registers. They are
mainly used by the OS
¤ 5 Control registers: CR0 through 4
¤ 6 Debug registers: DR0 through 3, plus 6 and 7
¤ 4 Test registers: TR7 through 7
¤ Descriptor registers: GDTR, LDTR, IDTR
¤ Test register: TR

x86 Registers

MMX
¨ MMX is a SIMD instruction set
¨ MMX adds 8 new “registers” named MM0 to MM7. They are

not actual registers. The are just aliases to the existing floating-
point registers
¤ Change MMx also change ST

¨ Each of MM registers is 64-bit. Therefore, the highest 16-bit in
80-bit floating point register is unused and filled with all 1.

¨ Each MM register can contain one 64-bit integer, two 32-bit
integer, four 16-bit integer, or eight 8-bit integer.

¨ A MMX instruction calculates the results of these packed data
simultaneously

3DNow

¨ Introduced by AMD in 1997
¨ Very similar architecture as MMX
¨ Each 64-bit register, can contain two single-precision

floating point data. Hence, the operations can be
performed only with real numbers

Streaming SIMD Extensions (SSE)

¨ SSE discarded all legacy connections to the FPU registers
¨ 8 new actual registers were added named XMM0 – XMM7

(in AMD64 the number of register has been increased from
8 to 16)

¨ Like 3DNow, SSE supports only floating-point operations
¨ Each XMM has 128 bits.

¤ SSE1 each register can pack four single-precision floating-point data
¤ SSE2 and later each register can pack four single-precision or two

double-precision floating-point data
¨ SSE3 and SSE4 have same register structure with additional

instructions

Physical Address Extension (PAE)

¨ Valid only in 32-bit protected mode
¨ The size of physical address is extended by 4 bit.

Therefore, we can have maximum 64GB of physical
memory

¨ The extension occurs in paging unit; hence, logical
address still has 32 bits
¤ Means that the size of memory that a program can

access at a time is still 4GB

Intel processor roadmap

Tick-Tock Model (now defunct)

41

Knights
Ferry

Knights
Corner

Knights
Landing

Nehalem Sandy Bridge Haswell

45nm 32nm 22nm

Scalable Performance
Energy Efficient
Microarchitecture

Highly Parallel
Energy Efficient
Architecture

14nm

NetBurst
¨ First released in 2000
¨ Hyper Pipelined Technology

¤ 20-stage pipeline (compared to 10 in PIII) except for Prescott
¤ Prescott has 31 stages!!!
¤ Introducing of Hyper threading
¤ Deep pipeline has high penalty in branching

¨ Rapid Execution Engine
¤ ALU run at twice speed of other units
¤ Speedup integer operations
¤ Difficult to optimize operations among units

¨ Execution Trace Cache
¤ When execute a previously visited instruction, CPU can use the previously decoded micro-

ops instead of fetching and decoding the instruction again

Core Architecture
¨ First released in 2006
¨ Redesigned from ground up with the philosophy of Pentium M
¨ Only 14-stage pipeline but with wider execution unit.
¨ Micro-op Fusion

¤ Combine two x86 instructions together and execute them simultaneously
¨ Multiple core CPUS with linked L1 cache and shared L2 cache
¨ Lower power consumption

¤ 20% more performance for Merom at the same power level (compared to Dual
Core)

¤ 40% more performance for Conroe at 40% less power (compared to Pentium D)
¤ 80% more performance for Woodcrest at 35% less power (compared to the

original dual-core Xeon)

Nehalem
¨ Released 2008
¨ 2, 4, or 8 cores

¤ 731 million transistors for the quad core variant
¨ 45 nm manufacturing process
¨ Integrated memory controller supporting DDR3 RAM and between 1 and 6 memory channels
¨ Integrated graphics processor (IGP) located off-die, but in the same CPU package
¨ A new point-to-point processor interconnect, the Intel QuickPath Interconnect, replacing the

legacy front side bus
¨ Simultaneous multithreading, which enables two threads per core.
¨ Native (monolithic, i.e. all processor cores on a single die) quad and octo (8) core processors
¨ Linked L1 and L2 cache. Shared 8MB L3 cache
¨ 33% more in-flight micro-ops than Conroe
¨ 2nd level branch predictor and 2nd level Translation Lookaside Buffer
¨ Modular blocks of components such as cores that can be added and subtracted for varying

market segments

Sandy Bridge
¨ Released in 2010
¨ 4 GHz clock speed.
¨ 4 to 8 out-of-order cores.
¨ Without SSE: 8 DP GFLOPS/core (2 DP FP/clock), 32-64 DP GFLOPS/processor.
¨ With SSE: 28 DP GFLOPS/core (7 DP FP/clock), 112-224 DP GFLOPS/processor.
¨ 32 KB L1 cache/core, (3 clocks).
¨ 512 KB L2 cache/core, (9 clocks).
¨ 2-3 MB L3 cache/core (8-24 MB total) (33 clocks), most likely pooled and dynamically allocated

among the cores.
¨ 64 bytes cache line width.
¨ 256 bytes/cycle Ring bus bandwidth. The ring bus connects the cores.
¨ 0-512 MB GDDR / fast DRAM.
¨ 64 GB/s GDDR / fast DRAM memory bandwidth.
¨ 17 GB/s memory bandwidth per QuickPath link with 50 ns latency.

Atom

¨ Aims for ultra-low power mobile
devices.

¨ No instruction re-ordering
¨ No instruction fusing
¨ Simpler micro-ops decoding than

Nehalem (Less performance but
smaller unit)

¨ Single core with hyper-threading

Haswell
¨ Introduced 2013
¨ 14 stage pipeline
¨ 4 cores, SMT machine
¨ In order issue, Out of Order execution, In order commit.
¨ Wider data paths and extra Store AGU to provide more bandwidth in AVX2

computations
¨ LLC/Ring is the point of coherence and distributed arbitration of requests.
¨ Intel TSX

¤ Added support for Restricted Transaction Memory
¨ Integrated Graphics and Improved Power Management

¤ Power Efficiency is a huge emphasis

Skylake
¨ 6th generation Core uArch
¨ Released 2015
¨ Improved performance, particularly on mobile
¨ Better graphics support
¨ Power efficiency (4.5W at the low end)
¨ Better OS support (especially Win 10)

