
USENIX Association

Proceedings of the
5th Annual Linux

Showcase & Conference

Oakland, California, USA
November 5–10, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



User-mode Linux
�

Je� Dike

jdike@karaya.com

Abstract

User-mode Linux [2](UML) is the port of the Linux1 kernel to Linux. It implements a Linux virtual
machine running on a Linux host. Its hardware is virtual, being constructed from resources provided
by the host. UML can run essentially any application that can run on the host.

The design and implementation of UML has been previously described[1]. This paper will describe
the work that has taken place during the last year, including changes to what was described in the
previous paper. This paper will also discuss new applications of UML involving integration of the virtual
and host environments, along with other possibilties such as using UML as a clustering platform.

1 Overview

User-mode Linux is a port of the Linux kernel to
Linux. A rationale for doing this can follow from
viewing a computer running Linux to be a �hard-
ware platform� in the sense of considering whether
it is capable of running a full-featured operating sys-
tem. From this point of view, the special capabilities
that would normally be provided by the processor,
such as privileged instructions, special registers, and
special memory regions, are instead provided by the
Linux system call interface. The question that is im-
mediately raised is whether that interface provides
everything needed to implement Linux.

UML proves that the answer is �yes�. It is a full-
�edged port of the Linux kernel. It occupies a lo-
cation in the kernel source tree2 alongside the other
ports, it implements the same interface as the other
ports, and the generic (architecture-independent) k-
ernel can't tell that there's anything di�erent about
this one. UML makes almost no changes in the
generic kernel, and the changes that it does make
are invisible to the other ports.

1.1 Functional overview

UML implements a virtual Linux machine running
(currently) on a Linux host. All of its devices are
virtual, being constructed from software resources
provided by the host. These include every type of
device that would be expected to be present on a
typical physical machine:

� Consoles and serial lines may be attached
to a variety of devices on the host, includ-
ing pseudo-terminals, virtual consoles, �le de-
scriptors, and xterms.

� Block devices can be associated with anything
on the host that resembles a normal �le, in-
cluding �les and device nodes such as CD-
ROMs, �oppies, disk partitions, and whole
disks. These normally contain a �lesystem im-
age or a swap signature and are mounted or
used as swap by the virtual machine, but they
could contain arbitrary data, which could be
read from the raw device with a program such
as dd.

� Network devices can be attached to most type-
s of software network interfaces on the host,

�This paper is to be published in the Proceedings of the 5th Annual Linux Showcase & Conference, Oakland CA
1Linux is a trademark of Linus Torvalds
2UML is currently in Alan Cox's kernel tree, having been merged in the middle of April 2001. I am planning on submitting

it for inclusion into Linus' tree when it has reached a level of stability and functionality that warrants calling it version 1.0.



such as TUN/TAP, Ethertap, and slip devices.
There are also two mechanisms for exchanging
Ethernet frames directly between virtual ma-
chines without going through the host's net-
working system - one involving a central dae-
mon acting as an Ethernet switch and the oth-
er using a multicast network.

UML runs the same binary executables as the host -
normal userspace code runs natively on the proces-
sor just as it does on the host; there is no instruction
emulation. It can run essentially everything that the
host can. The few exceptions include applications
such as emulators, which are hardware-dependent,
and use privileged instructions which UML doesn't
emulate, and a few other things, such as installa-
tion procedures, which expect to use speci�c devices
which don't exist in UML.

1.2 Design and implementation
overview

The other virtual machine technologies available on
the PC platform, VMWare[5] and Plex86[4], create
a platform (the emulated machine) which is authen-
tic enough to boot an existing operating system. In
contrast, UML takes Linux itself as the platform
and modi�es the Linux kernel to run on it. Since
the usual method of making Linux run on a new
platform is to port it, UML does exactly that, and
ports the Linux kernel to its own system call inter-
face.

The task of porting Linux to itself amounted to �nd-
ing ways of virtualizing all of the required hard-
ware capabilities in terms of Linux system calls.
The most important of these is a distinction be-
tween a privileged kernel mode and an unprivileged
user mode. A native kernel running on hardware
must have a privileged mode in which only trusted
code (i.e. the kernel) can run so that it can reliably
and securely arbitrate access to the hardware. UM-
L must have an equivalent distinction which allows
the kernel to have access to the host's system calls
while its processes must request that access by call-
ing into the system. This distinction is implemented
using the Linux system call interception mechanism
provided by ptrace.

A special thread is used to intercept the system calls
made by all the UML process threads. This trac-
ing thread annuls these system calls in the host and

redirects the processes into the kernel, where tracing
is turned o�. Thus, while in user mode, processes
have their system calls intercepted and virtualized,
in kernel mode, they are released from tracing and
their system calls run directly in the host kernel.
This is the exact analog to the privileged access to
hardware enjoyed by the kernel on a physical ma-
chine.

Virtual memory posed the next most signi�cant
challenge. The Linux kernel expects the hardware to
provide access to a pool of physical memory which
may be allocated for kernel data structures or al-
located for virtual memory and mapped arbitrari-
ly in either a process or the kernel virtual memory
area. This is done by creating a �le on the host
which is the size of the physical memory declared
on the UML command line. This �le is mapped as
a contiguous block into a region of the UML process
address space set aside as �physical memory�. The
pages of memory in this region are released to the
kernel memory allocator which is then able to allo-
cate them to whatever subsystems need it. When a
page is mapped into virtual memory, the low-level
mapping code maps that page from the underlying
�le into the appropriate spot in the virtual address
space. Thus, each page is mapped into the physi-
cal memory region, and arbitrarily many times into
process or kernel virtual address spaces.

With this mechanism in place, providing multiple,
independent, mutually inaccessible address spaces
is straightforward. Each UML process has a sepa-
rate address space on the host, so a context switch
from one process to another automatically causes
an address space switch. However, this is compli-
cated by the fact that a process address space may
be modi�ed while it's out of context. The system
may swap out some of its memory. Therefore, when
a process comes back into context, the state of its
address space may need to be updated since it may
still map pages which have been freed and reallocat-
ed for some other purpose. So, a scan of the process
page tables occur on a context switch, during which
any pages which have had their protections or map-
pings change are updated to re�ect the current state
of the address space.

Those were the most signi�cant challenges involved
in the port. With those solved, the rest of the
port is comparatively simple, with the remaining re-
quired mechanisms having obvious implementations
in terms of Linux system calls.



Hardware faults are implemented in terms of Lin-
ux system calls - I/O device interrupts are provided
by SIGIO, page faults by SIGSEGV, and timer inter-
rupts by SIGALRM and SIGVTALRM. A normal Linux
signal handler layer receives all signals, determines
what the cause is, and calls into the kernel appro-
priately, either by calling the IRQ system for device
interrupts, the page fault handler for SIGSEGV, or
the signal subsystem for signals, such as SIGILL,
SIGBUS, and SIGTRAP, that are simply passed along
to the process.

Delivering signals to processes is apparently simple,
but there are a number of ways of fouling up the
implementation. In general, this is done by con-
structing a special frame on the process stack which
contains the process register state at the time of the
signal, some other process context, and a procedure
context which will cause the process to call its han-
dler for that signal when it returns to userspace.
UML makes the host kernel construct the signal
frame by sending a signal to the process, which is
handled by a UML handler. This handler then in-
vokes the process signal handler. The cleanup after
the handler returns is triggered by the interception
of the host's sigreturn. The old process state is
restored and the process returns to userspace at the
point at which it received the signal.

2 Changes during the last year

2.1 The COW block driver

The major enhancement to the UML block driver
has been the contribution by Greg Lonnon of a copy-
on-write (COW) layering capability. This allows
UML to layer a private writable �le over a shared
read-only �le to form a single read-write block de-
vice. The writable �le contains only the blocks that
have been modi�ed. This provides the ability for
multiple UMLs to share a single �lesystem image
and to write to it. This is important for root �lesys-
tems, since they tend to be large, and Linux doesn't
deal well with read-only roots.

When the block driver is using a COW device, it
writes modi�ed blocks to the COW layer, and reads
from either the COW layer or the backing layer, de-
pending on whether or not the requested block has
been modi�ed.

The COW �le contains a header which contains the
following

� a magic number to distinguish a COW �le
from a normal �lesystem image

� a version number

� the path of the read-only backing �le

� the last modi�cation time and last size of the
backing �le, which are used to check that the
backing �le hasn't been modi�ed

� the sector size used by this �le

Following the header is a bitmap describing which
blocks have been modi�ed and are valid in the COW
layer. This is loaded into memory and used to de-
cide where blocks should be read from.

Following the modi�ed block bitmap is the actu-
al block data. This is sparse, meaning that valid
blocks are located in the same location relative to
the start of the �lesystem as their equivalents in the
backing �le and that only those blocks which have
been modi�ed have been allocated disk space.

The sparseness of the COW �le greatly simpli�es
the driver by allowing it to read and write the same
locations relative to the �lesystem start, regardless
of whether the I/O is happening on the COW �le
or the backing �le.

With many UMLs booting from the same �lesys-
tem through COW devices, the disk space required
is greatly reduced. In the situation where a number
of virtual machines are booted from the same �lesys-
tem and they have made few changes to the data,
the disk space consumption for the entire group is
not much more than that of a single UML. This re-
duction in disk space can greatly increase the num-
ber of virtual machines that the host machine can
run. It can also increase the e�ciency with which
it can run them. Since the vast majority of the da-
ta used by the virtual machines is shared, only one
copy of it will exist in the host's caches. This e�ec-
tively increases the size of the host's memory, since,
previously, di�erent virtual machines would have en-
tire private �lesystems, which would be cached sep-
arately by the host despite the fact that they are
largely identical.



It is also an administrative convenience. Creating a
new COW �le is done automatically by UML when
it is requested on the command line. This is far more
convenient than copying a large �lesystem image,
which can take several minutes for a large �lesys-
tem.

Another advantage is that it provides a simple
checkpointing facility. If the virtual machine crashes
or something important was deleted, and there was
no important data in the COW �le, then the old
�lesystem state can be restored by simply deleting
it and starting over with another one.

It is sometimes desirable to be able to merge the
COW �le changes into the backing �le. This is done
with the uml_moo utility. uml_moo simply travers-
es both the COW �le and backing �le, writing the
current version of each block out to a third �le.

2.2 The mconsole

The management console (mconsole) driver is a new
low-level interface into the kernel. It provides the
following capabilities:

Halting and rebooting the kernel This allows
the mconsole user to perform a kernel shut-
down. The system is not shut down cleanly,
so the �lesystems are not unmounted cleanly
and init has no opportunity to shut down the
system's services.

Plugging and unplugging devices This is the
ability to insert and remove devices from the
running system, which is discussed in detail
in section 2.5. Not all UML drivers current-
ly support devices being inserted and removed
- this is intended to be �xed in the medium-
term future.

Providing access to the SysRq driver The m-
console has a sysrq command which allows
the user to execute the commands provided
by the SysRq driver in the generic kernel.

Enabling and disabling the kernel debugger

The kernel debugger is considered to be a de-
vice, so it can be 'plugged' and 'unplugged'
like the other devices. This is also described
in more detail in section 2.5.

These capabilities are accessed through a client
which sends requests to the mconsole driver and re-
ceives replies from it through a Unix domain socket.
The existing client is a simple text-mode command-
line client that can communicate with a single UML.

2.2.1 Future mconsole development

The current mconsole client is the simplest possi-
ble one - it has a command-line interface, controls a
single UML instance, and implements only the com-
mands supported by the mconsole driver.

Future mconsole clients will have a number of client-
side enhancements:

� the ability to communicate with and control
multiple UMLs

� di�erent interfaces, such as GUIs and HTML,
and possibly more specialized interfaces such
as emacs, Linuxconf, and IRC

� built-in scripting or programming to allow au-
tomated management of UMLs

In addition, there are a number of mconsole proto-
col enhancements planned in order to provide clients
with greater abilities to control and monitor virtual
machines.

Noti�cation of UML events The ability to reg-
ister for events such as panics and console out-
put and to retrieve con�guration information
from the virtual machine is intended to sup-
port applications which con�gure, launch, and
manage many UMLs. Receiving panic infor-
mation and console output will allow such an
application to monitor the status of the vir-
tual machines under its care and to provide a
central point for the administrator to monitor
them or for the application itself to �lter the
console output looking for unusual events.

Ability to retrieve con�guration information

The ability to get con�guration information
will simplify these applications by not requir-
ing them to maintain its own record of how
the virtual machines are con�gured. It also
makes it possible to manage a virtual machine
which it didn't con�gure or launch.



Communication over IP sockets Currently,
the mconsole driver communicates through
a Unix domain socket. Possibly, this will be
extended to allow it to use a Internet domain
socket as well. This would allow the mconsole
client to transparently manage virtual ma-
chines regardless of whether or not they are
running on the same host as the client.
The issue that makes this uncertain is authen-
tication. There needs to be some security so
that random users can't shut down or recon-
�gure virtual machines that don't belong to
them. Currently, this is handled by passing a
set of credentials over the Unix socket. Access
is allowed if the user id and group id in the
credentials match the UML's user and group
ids. This is not possible across Internet sock-
ets, so some other scheme would be necessary.
What would probably be done is that a name
of a �le containing a secret would be passed in
on the UML command line or con�gured later
with a local mconsole client. A remote mcon-
sole client would need to present this secret
to the virtual machine before being allowed
access to it.
However, the secret would not be protected
from snooping without the connection being
encrypted. So, this would probably involve
ssh somehow, and there is already a perfectly
good way of using ssh to access a UML's m-
console without adding any extra mechanisms
to either UML or the client. That is to run the
mconsole client locally with the virtual ma-
chine and to have the central administration
application communicate with it over ssh. So,
unless there turns out to be some good rea-
son not to, my intention is to recommend this
scheme for anyone wanting to communicate
remotely with UML's mconsole driver.

2.3 hostfs

The host �lesystem (hostfs) is a virtual UML �lesys-
tem which provides access to the host �lesystem.
Mounting a hostfs �lesystem is done in the same
way as any other virtual �lesystem -

mount -t hostfs none /home/jdike -o

/home/jdike

mounts the host /home/jdike directory on the same
location inside UML. The -o switch speci�es the

host directory to mount. If none is given, the de-
fault is the host's /.

There is currently no ability to restrict a UML's
hostfs to a given directory on the host. This is need-
ed if hostfs is to be secure against hostile UML users.
With this in place, a user inside UML would only
be able to mount host directories that are within
the directory speci�ed on the command line. Ef-
fectively, this would provide a hostfs equivalent of
chroot.

Use of hostfs in an environment which is supposed
to be secure against hostile UML root users is some-
what problematic. It can be done, but care needs to
be taken. To start with, hostfs should be restricted
as just described. If restricted to an appropriate hi-
erarchy on the host, UML users will not be able to
access �les that don't belong to them.

There is still the possibility of using hostfs to launch
a Denial Of Service (DOS) attack against the host's
disk space. This can be countered by putting disk
quotas on the user id of the virtual machine. This
will stop any DOS attacks against the host as a
whole, but leaves open the possibility of a attack
against the quota itself, depriving other virtual ma-
chines which share that user id of the ability to use
hostfs. This problem can be solved by providing
each UML with its own uid. This may be accept-
able for a hosting service which is providing virtual
machines for paying customers, but is less workable
for a public access UML service. In that situation,
it likely would be best to not provide hostfs at all.

2.3.1 hostfs design and future work

hostfs is split into a kernelspace piece and a
userspace piece. The kernel portion implements
the VFS interface and converts it into calls to the
userspace portion, which makes libc calls on the
host. The interface between them provides a set
of simple �le access operations.

This interface enables a number of possibilities be-
sides simple access to the host's �le systems. Exter-
nal resources that can be made to look like �les and
�lesystems can be plugged into the interface, with
the result that UML processes can access them as
�les. For example, with a suitable implementation
of this interface, a database on the host could be



mounted inside UML as a �lesystem, with individ-
ual records possibly being represented as �les.

This would allow processes such as shell scripts to
browse and manipulate a database without requir-
ing any database programming. Obviously, this is
not the way to write a real database application, but
it may be useful for writing a simple database brows-
er. It would also be possible to create a special di-
rectory hierarchy within this �lesystem that allows
database queries to be made and which would pro-
vide access to the results. For example, if a MySQL
database is mounted on /mysql, the command

% cd /mysql/query/'select * from cars where color =

�red�'

would change the current directory to a location
where ls would show the records that matched the
query.

Another possible use of a mountable database is to
mount it jointly with a normal host �lesystem. If
the database and the �lesystem initially contain the
same information, then the userspace layer of hostfs
can keep them in sync with each other by updating
both whenever something is written out. The ben-
e�t of this is that searches on the �lesystem can be
performed by querying the database rather than do-
ing a full search of the host �lesystem. The standard
Linux utilities have no ability to perform specialized
database queries like this, so this would require that
applications which have a particular need for this
have knowledge of hostfs added. A good example
would be a mail reader which knows that the user's
mail directory is a joint hostfs mount of a normal
directory and a database. It could implement its
search capability by making a query to the database
rather than the equivalent of grepping the directory.

2.4 IO memory emulation

UML has a new IO memory interface. This allows
a �le on the host to be mapped into UML as a sep-
arate, named region of memory. A driver would re-
quest the region and then provide some appropriate
userspace access to it.

The demo driver provided with UML allows a pro-
cess to mmap the region into its own address space.
The process can then read and write the �le through
memory accesses in its own address space.

The purpose of this interface is to allow UML to
access simulated hardware. So, on the host, there
would be a process emulating a device which might
be treating the �le as a set of device registers, watch-
ing for changes, interpreting them as command-
s, simulating those commands, and writing results
back into the �le for the UML driver to see.

2.5 Pluggable drivers

The management console provides the ability to in-
sert and remove devices from a running virtual ma-
chine. For example, the command

(mconsole) config eth0=ethertap,tap0�192.168.0.254

adds the eth0 device to the virtual machine that the
mconsole is attached to. New devices are speci�ed
to the mconsole in exactly the same way that they
are speci�ed on the command line. So, in both cas-
es, the same code in the driver parses and interprets
the speci�cation, and creates the new device.

Similarly,

(mconsole) remove eth0

removes the eth0 device from the system.

Only devices that don't already exist may be
plugged in at run-time. An attempt to create an
eth0 device on a system that already had an eth0

would fail. Also, a device that is to be removed must
be �idle� according to the driver. The de�nition of
�idle� necessarily di�ers from device to device. The
network driver requires that the interface be down,
while the block driver requires that the device not
be open in any way, either by being mounted or by
being directly opened by a process such as dd.

The kernel debugger is considered a �device� in this
context and can be started and stopped at run-time
in a similar manner. At the time of writing, these
three devices are the ones that can be plugged and
unplugged.

The remainder of the device drivers will have this
capability added in the medium future. It is a goal
for version 1.0 of UML to have everything pluggable
that can be.

The obvious exceptions are the console and serial
line drivers. There are also some less-obvious ex-



ceptions. Memory should at least be pluggable. It's
fairly straightforward to add memory to a machine
at runtime. Less obvious is how to remove it. If the
new memory region contains kernel data when it is
to be removed, then it can't be, since kernel mem-
ory is not movable or swappable. Changing this is
a problem for the generic kernel. Possibly, the new
memory could be declared as being reserved for only
process data or a mechanism for moving kernel data
structures could be introduced.

I/O memory regions will also be pluggable. These
are far easier than regular memory regions. They
are owned by a single driver, and would only need to
be released by that driver in order to be unplugged.

Another possibility is pluggable processors. Linux
already has support for adding and removing pro-
cessors, so once UML has SMP support, this will
come for free. So, the mconsole will use the existing
code to allow plugging and unplugging processors.

2.6 UML/ppc

There is now a second Linux port of UML. Chris E-
merson ported it to Linux/ppc. As of this writing,
it is nearly completely functional, except for a bug
in its signal delivery which prevents it from booting
up to multi-user mode. However, as long as UML
stays in single-user mode, pretty much everything
else seems to work �ne. UML/ppc is completely
merged into the UML pool, so it's completely up-
to-date as far as UML features are concerned.

This has special signi�cance as the �rst architecture
port of UML. It has provided the information need-
ed to cleanly separate the architecture-dependent
code from the architecture-independent code. There
turns out to be not very much of it. Most of the
di�erences are due to machine details which show
through the ptrace interface. These include register
names and the storage of system call numbers, argu-
ments, and return values in the register set. There
are also a variety of small di�erences between archi-
tectures which need to be accommodated:

� there are di�erences in the layout and alloca-
tion of sigcontext structures

� ELF executables have di�erent requirements
on register and stack initialization on di�er-
ent platforms

� process address space layout is di�erent, re-
quiring adjustments of where UML loads itself

� some architectures don't implement
PTRACE_GETREGS and PTRACE_SETREGS, re-
quiring UML on that platform to emulate
them with a loop of PTRACE_GETREG or
PTRACE_SETREG.

The information gathered from this e�ort has been
used to write a guide to future architecture ports of
UML[3], which should make them largely a matter
of �lling in the blanks.

3 Future work

3.1 Address space reorganization

Currently, UML locates its text, data, and physical
and kernel virtual memory areas in the middle of
its process' address spaces. This causes some vir-
tual address space fragmentation which could break
some applications which need large contiguous areas
of virtual memory.

This will be �xed by relocating all of UML's data
above TASK_SIZE, allowing the process to use al-
l memory below that. The UML TASK_SIZE will
be lower than the host TASK_SIZE by enough to �t
UML and its data between them.

However, with the standard TASK_SIZE on the host,
this will break one specialized application of UML
- honeypots. For UML to work as a honeypot, ex-
ploits that work against physical machines also have
to work against virtual machines. For stack smash
attacks, this requires that the stack be in the same
location in the address space as on the host. So, I'm
planning on allowing the process stack to occupy the
very top of the process address space, with UML
just below that, and the process having a large con-
tiguous virtual memory area below that. A cleaner
solution, but one which requires that the host kernel
be rebuilt, is to change the userspace/kernelspace
virtual address space split from the usual 3G/1G to
something like 3.5G/.5G. This would allow the UM-
L TASK_SIZE to be 0xc0000000, which would leave
the process stacks in the same location as they are
on a normally con�gured host.



3.2 Block driver improvements

As mentioned in the previous paper[1], the UML
block driver currently can have only one outstand-
ing I/O request at a time. This severely hurts the
kernel's attempts to do readaheads in order to have
data in memory when a process is going to need it.

The obvious �x to this is to use an asynchronous
I/O (AIO) mechanism to have a larger number of
outstanding requests. There is an AIO mechanism
in the works, and I plan to change the block driver
to use it.

In addition, there is also the possibility of doing I/O
to the host with mmap instead of read and write.
This opens up some interesting possibilities for do-
ing low-overhead I/O. The �les that the driver is
accessing would be mapped into the UML address
space. If it can be arranged that the I/O request
data bu�er is the correct mapped page in that re-
gion, then I/O from UML to the host is essentially
free of overhead. As soon as the data is written into
that bu�er in the upper levels of the kernel's I/O
system, the I/O is done. If the UML process is also
doing mmapped I/O, then it is zero-copy from that
process through UML and into the host kernel.

This would work equally well with COW and non-
COW devices. The shared pages would be mapped
into UML read-only. Reads would work normally.
A write would cause an access fault, which would
be trapped, and the fault handler would unmap the
read-only page and map in its place the appropri-
ate read-write page from the COW layer. The write
would then proceed normally, with the new data
going into the private writable �le.

A further advantage of doing I/O this way is that
the �lesystem data that's shared by multiple vir-
tual machines will not be copied once for each of
them. The mapped �le will occupy memory that's
shared between the UMLs. This is a potentially
large advantage over the current situation, where
data that's used by multiple UMLs is copied sep-
arately into each one. Allowing them to share like
this reduces their memory consumption on the host,
and potentially increases the capacity of the physi-
cal machine to host virtual machines.

3.3 Operating system ports

In principal, UML could be ported to operating sys-
tems other than Linux. In practice, whether this is
possible depends on whether the target OS provides
some of the specialized capabilities, such as Linux
system call interception, that UML requires.

Currently, there are no e�orts underway to do any
UML ports, although there has been sporadic inter-
est in doing a Windows port. Windows appears to
be capable of running UML, although its memory
mapping capabilities are not as general as those of
Linux. Windows processes can only map �les on
64K boundaries, while Linux requires page granu-
larity (4K). This can be worked around by mapping
an entire 64K block of memory on each page fault.
This requires that the entire 64K block be mapped
from a single source and that it be contiguous in
that source. This is the case for almost all process-
es, so this won't impose any major restrictions on
what UML/Windows would be able to run.

There has also been some investigation of a FreeBS-
D port. FreeBSD is interesting because most of the
specialized facilities of Linux that UML uses have
almost exact analogs in FreeBSD. The exception is
system call interception. FreeBSD does have the a-
bility for a process to load a new system call vector,
which would allow UML to use a new vector make
its processes call back out to userspace whenever
they execute a system call.

As far as I know, there has been no investigation
into porting UML to the commercial Unixes or the
major non-Unix operating systems.

3.4 Shared subsystems

Multiple virtual machines running on the same host
are sharing hardware resources, memory in partic-
ular. This opens up opportunities for sharing and
communication between them that are impossible
for physical machines without fairly exotic hard-
ware.

One possibility is for separate UMLs to share a
�lesystem. This would be implemented by con�gur-
ing a UML so that it consists of the �lesystem code,
the block layer, the UML block driver, and what-
ever supporting code that these systems require. It



would not contain a number of things which are nor-
mally considered essential for a kernel, such as pro-
cess support and virtual memory.

It would have its own memory pool, which would
be mapped, together with its code, into the address
spaces of a number of UMLs. This would be seen
by the virtual machines as something very similar
to a kernel module that implements a �lesystem.
They would mount it normally, and accesses to that
�lesystem would be handled by this shared code.

All of the virtual machines would perceive this
�lesystem to be local, even though it's really not
owned by any of them. This would be a high-
performance alternative to �lesystems such as NFS
when a shared read-write �lesystem is required.

The code in the shared subsystem would e�ectively
be SMP (and it would need to be compiled as such)
since multiple virtual machines could be executing
the code and accessing its data simultaneously. S-
ince the virtual machines could be UP, this arrange-
ment would create a set of hybrid UP-SMP virtual
machines.

Con�guring the kernel into this minimal, very spe-
cialized, role would require changes in the generic
kernel. Capabilities that are normally mandatory
would become optional. The kernel startup would
need to be changed so that it doesn't attempt to
boot a system by running init. Instead, the startup
code would be executed by one of the virtual ma-
chines using it, and it would return after doing the
necessary setup of its own data.

Filesystems aren't the only subsystems that could
be shared in this way. For some applications, a
shared block device, with either no �lesystem or
a distributed �lesystem, would be useful. Anoth-
er possibility is the network subsystem. Sharing
it would e�ectively create a shared network device
which the virtual machines could use to communi-
cate with the outside world.

These are obviously useful for virtual machines run-
ning on the same host. They o�er performance ad-
vantages and more e�cient use of the host resources.
These advantages would also apply to physical ma-
chines, if this arrangement can be realized in ac-
tual hardware. Devirtualizing the shared �lesys-
tem would result in a multiported disk with its own
memory that is mapped into the memory of each
machine that has access to it. This memory con-

tains the code and data described above, and the
native kernels would treat it as a module in exactly
the same way that UML would.

This physical disk would o�er the same advan-
tages to the physical machines as the shared virtual
�lesystem o�ers to UMLs. If this happens, it would
create a new area of application for UML - prototyp-
ing new devices virtually in order to see what uses
they may have, and if they turn out to be useful
enough, implementing them physically in hardware.

3.4.1 Security considerations

For multiple virtual machines to share a subsystem
which enforces some kind of security, they must al-
so share a security domain. In particular, for a
shared �lesystem, the virtual machines must also
share user ids and group ids. Since users of virtu-
al machines will commonly have root access, a set
of UMLs that share a read-write �lesystem must be
mutually trusting. Otherwise, a root user in one
machine could destroy data in the shared �lesystem
that was written by one of the other virtual ma-
chines.

4 Applications

There are a variety of applications for virtual ma-
chines such as UML. The main ones include

� Kernel debugging and development

� Process debugging in situations where the ker-
nel is doing something inexplicable - stepping
through the relevant portion of the kernel can
quickly uncover the problem

� Sandboxing - this includes jailing potentially
hostile code and untrusted services, as well as
safely running new versions of the kernel, new
distributions, and new services

� Education - using virtual machines instead of
physical ones greatly simpli�es the logistics
of running courses on operating system de-
sign, system administration, network admin-
istration, and clustering

� Virtual hosting - the applications in the host-
ing industry are obvious; customers get root



access to their own virtual machine without
having to colocate a physical server

� A Linux environment for other operating sys-
tems - once UML is ported to other operat-
ing systems, it provides a completely authen-
tic Linux environment

It has become apparent that UML can be con�g-
ured in many more ways than just a single virtual
machine running on a single host. The rest of this
section discusses applications that take advantage
of this �exibility.

4.1 UML clustering

It is not necessary for a virtual machine to be con-
�ned to running on a single host machine. Since
UML physical memory is virtual from the perspec-
tive of the host, it can be mapped into and un-
mapped from the UML address space. This means
that it's possible to partition the physical memory
of a single UML instance across a number of hosts.
Memory that's present on one host would be un-
mapped from the others. When a virtual processor
accesses memory that's not present on its host, a
new low-level fault handler would request the page
from the host which currently owns it. It would be
unmapped from that host, copied across the net,
and mapped on the host that needs to access it.

This would create an SMP virtual machine instance
running on multiple hosts with at least one virtual
processor on each host. Since this virtual machine
has access to the combined resources of the hosts,
this is e�ectively a single system image (SSI) cluster.

This would be useful to experiment with and fun to
play with, but it would be so slow that it would be
unlikely to �nd any kind of production use. The rea-
son is that some kernel data structures are accessed
so often by all the processors on the system that
this cluster would spend all of its time copying the
pages containing this data from node to node. Some
data structures, spinlocks in particular, are accessed
in such a pathological way that this cluster would
come to a halt whenever two processors on di�erent
hosts tried to access them simultaneously.

The root cause of these problems is that this is an
extreme form of Non-Uniform Memory Access (NU-
MA). Normal NUMA machines have a number of

nodes, each containing one or more processors, with
their own local memory. This local memory can
be accessed quickly by the processors in that node.
Accesses to the local memory of a di�erent node
is comparatively very expensive. In addition, there
is some global memory which is equally accessible
by all the node. Access to global memory is slow-
er than access to a node's local memory and faster
than access to a di�erent node's local memory.

This UML cluster has no global memory, only local
memory. In addition, access to a di�erent node's
local memory is particularly slow. The performance
problems of this type of cluster will at least be allevi-
ated by NUMA support in the generic kernel. This
will partition some of the kernel's data between the
machine's nodes so that non-local accesses are in-
frequent, and the only inter-node accesses are from
a slow, background load balancing process.

This existence of this type of cluster will e�ectively
put NUMA hardware in the hands of a large number
of people who otherwise would have no access what-
soever to it. I hope and expect that this will attract
more people to the e�ort of adding good NUMA
support to the kernel.

However, this sort of shared-memory cluster may
be so extreme a type of NUMA that good support
in Linux may not be enough to get good perfor-
mance. In this case, some sort of RPC interfaces will
be needed so that the nodes can cooperate without
needing to fault entire pages back and forth. The
pure shared memory cluster would make a good s-
tarting point for that e�ort. For all its performance
problems, it would work, so the RPC could be added
incrementally, with a working cluster available at
each stage. Debugging and performance analysis
would be possible at all points of this process.

This work would also largely be applicable to na-
tive kernels running on physical machines. So, this
process would probably speed the development of a
more traditional clustering system for Linux, where
the nodes are physical machines rather than virtu-
al ones. However, the genesis of this system as a
virtual cluster would leave its mark. Once Linux
has physical clustering, there would be no require-
ment that a cluster's nodes be physical machines.
A cluster could consist of a combination of physical
machines and virtual nodes.

This creates the possibility of personal clusters,
where an individual could cluster a number of per-



sonal machines, such as desktop and laptop ma-
chines, with virtual machines running on larger cen-
tral servers. This would provide access to the hard-
ware of the personal machines and the CPU horse-
power of the servers. The virtual nodes could have
access to the servers' hardware, or they could have
access to nothing but virtual devices. So, these clus-
ters could be used for everything from a sysadmin
cluster, which provides centralized access to all of
the servers and their hardware, to a user cluster,
which provides access to personal hardware and no
access to server hardware.

4.2 UML as a userspace library

So far, UML as been used solely in a standalone con-
�guration, as a traditional virtual machine. Howev-
er, the fact that it is normal userspace code makes it
possible to con�gure it as a library which would be
linked into other applications. This would require
some structural changes which are also needed for
it to be used in the shared subsystem con�guration
described in section 3.4. The kernel's initialization
code would be required to initialize its data and
nothing else. It would not then exec init in order
to boot a system. It would behave the same as any
library initialization code - initialize the library and
return to the application.

The most obvious implication of this is that user-
level applications could link against the kernel and
gain access to the kernel's facilities, such as memo-
ry management and allocation, threads, �lesystems,
and networking.

The kernel's memory allocation facilities include the
slab allocator, which allocates uniform sized object-
s, and page allocator, which allocates memory in
units of pages using a buddy system which provides
defragmentation.

The thread facilities o�er a very e�cient scheduler
and a full set of spinlock and semaphore primitives.

These are all well-tested, debugged, e�cient, and
scalable. For these reasons alone, they make attrac-
tive replacements for their libc equivalents. In par-
ticular, the ongoing scalability work that's intended
to make Linux scale to high-end SMP machines will
translate directly into allowing applications to link
against the UML library and gain the same scala-
bility to a similar number of threads.

There are also a number of facilities in the ker-
nel which do not have any equivalent in libc. The
�lesystems supported by Linux can be viewed as
hierarchical data stores. A �lesystem stored on a
ramdisk is a temporary data store which will go
away when the process exits. In order to make the
data persistent, it would simply be stored on a de-
vice backed by a �le on the host.

The network subsystem provides a complete private
TCP/IP stack and network interface. This would
allow an application to be a full-�edged, if some-
what specialized, network node.

Combined, these facilities o�er some interesting pos-
sibilities to an application. It could store some of its
data in an internal �lesystem and export it to the
rest of the world via NFS or another remote �lesys-
tem. External processes could mount this �lesystem
and gain access to this internal data. If it's read-
only, this would allow transparent monitoring of the
application's internal state. If it's writable as well,
external monitors could change that state.

This would be useful for managing the con�guration
of a complex server such as Apache. It could ex-
port its con�guration to an external monitor, which
could tweak it as needed, without needing to change
the con�guration �les and have Apache restart or
reread those �les. A sophisticated monitor could
keep track of the state of the machines running A-
pache and change limits so that it continues to run
e�ciently. For example, a server on a fully-loaded
server could be limited to not accepting further re-
quests until it has reduced its backlog.

Another possibility would be to store the con�gura-
tion in a �lesystem outside the application and have
it import it via NFS. This would enable changing
the con�guration of a large number of instances of
this application at once, from a central location.

A di�erent sort of application of this capability is
to have an interactive application export its user in-
terface (UI) to the host as a �lesystem. External
processes could then examine and manipulate the
UI, allowing them to do such things as

� customizing the application as it's launched,
restoring the state of the UI at the time that it
was shut down or making site- or user-speci�c
modi�cations

� �lling in forms and dialog boxes as they are



created, restoring the most recently entered
values, default values for the user or site, or
values taken from another application that the
process is monitoring

Allowing a process to copy data from one applica-
tion's UI to another would allow it to intelligently
maintain session-wide context. For example, if the
user visits a friend's home page and starts compos-
ing an email message, the UI monitor could �gure
out whose home page that was, look up that per-
son's email address, and �ll it in as the default des-
tination in the email composition window.

5 Conclusion

Up to this point, UML has implemented a classi-
cal virtual machine. This involves creating strict
boundaries between the virtual machine, the host
and everything else running on the host, including
other virtual machines. The future development of
UML is, in large part, going to blur, or completely
eliminate these boundaries.

In a small way, this has started to happen. The
hostfs �lesystem allows UML to access the host
�lesystem as though it were its own. The boundary
between the host and virtual machine are going to
blur further as hostfs is used to access other host re-
sources, such as databases, processes, and services.
Other host resources will be virtualized within UM-
L as processes within the virtual machine, allowing
them to be manipulated in the same way as UML
processes.

The distinction between the virtual machine and
host will become even more hazy when UML be-
comes a library and is linked into applications.
Then, the running image is both a normal applica-
tion and a virtual machine running a Linux kernel.
It will act as an application when it's running its
own code, and as an operating system when it is
making use of the capabilities of the UML library.

Boundaries between applications will become hazy
as they export their UI structure and other inter-
nal state as �lesystems where processes on the host
can monitor and manipulate them. They'll be able
to do such things as copy data from one applica-

tion to another and use information taken from one
to determine how to manipulate the other. As this
process becomes extensive, it will be increasingly
unclear what application really �owns� a particular
piece of data. The data will start acquiring a exis-
tence independent of the applications that used to
have sole control over it.

Similarly, the implementation of UML clusters is
going to eliminate the boundary between di�erent
hosts, as spreading a single virtual machine instance
across multiple hosts will allow all of the resources
of all the hosts to be accessed from within a single
machine. Almost as a side-e�ect, this will provide
a convenient platform for developing SSI clustering
technologies for Linux as a whole, not just for UML.
In addition, the genesis of this general clustering in
virtual machines will mean that Linux clusters will
be able to arbitrarily mix physical and virtual nodes,
providing a new level of �exibility in clustering.

Taking all of these together, it is possible to see a
future where kernel code and user-level code are ar-
bitrarily mixed together, where a process may be
running on a single machine or spread over several
machines, which may be both physical and virtual.
It will be possible for several processes to be trans-
parently operating on and presenting to the user the
same data. Breaking down boundaries always open-
s up new possibilities and the most interesting ones
will be ones that no one had predicted beforehand.

References

[1] Dike, Je�. A user-mode port of the Linux kernel.
In Proceedings of the 4th Annual Linux Show-

case & Conference, Atlanta, page 63, Atlanta,
GA, 2000. Usenix

[2] The User-mode Linux Kernel Home Page.
http://user-mode-linux.sourceforge.net

[3] Porting UML to a new architecture.
http://user-mode-linux.sourceforge.net/

arch-port.html

[4] Plex86 White Paper. http://www.plex86.org/
cgi-bin/cvsweb.cgi/~checkout~/plex86/

docs/txt/paper-19991129a.txt

[5] VMWare Home Page. http://www.vmware.com


