
Automated testing using symbolic analysis
Tudor Cazangiu, Razvan Crainea

Automatic Control and Computers Faculty
Politehnica University of Bucharest

Emails: {razvan.crainea,tudor.cazangiu}@cti.pub.ro

Abstract—In this paper we present parallel-klee, a tool based
on KLEE symbolic virtual machine, which is capable of gen-
erating high coverage tests for software programs written in C
language. Symbolic analysis is a very time consuming process,
and our main contribution was to use all the power offered
by multiprocessor systems, in order to reduce the time needed
for the execution process, and to make feasible the testing of
bigger programs. Also because symbolic analysis involves a lot
of memory operations, we redesigned the memory manager and
we got a significant improvement in the time needed for memory
allocation.

Index Terms—symbolic analysis, software testing

I. INTRODUCTION

Nowadays, problems caused by software bugs are very
often and they can lead to important damages. Companies
spend lots of money on insurance, but sometimes software
bugs cause problems which cannot be measured in money.
Software testing is a very complicated work, and often the
results are not so good. This happens because software testing
is time consuming, resource hungry, labor intensive and prone
to human error and omission. Important investments are made
in quality assurance, but despite this, serious code defects are
discovered only after software has been released. Fixing this
type of bugs often implies important costs, because serious
modifications are needed.

In order to solve this kind of problems, important modifi-
cations in how software programs are tested are needed. The
only way in which the human related limitations of software
testing can be overcome is by developing automated software
testing techniques. Some automated testing techniques are
used mainly to reduce the time consuming and the laborious
process of regression testing. This kind of automated testing
can be applied to products that have a long maintenance
life. Patches fix some minor issues but can also break some
working features in the long run. These techniques are based
on writing test cases and running them automatically at given
time intervals, to ensure that changes do not affect in a negative
way the desired behavior of the application.

These issues have led in the last years at the development of
automated testing programs, which generates inputs capable
of executing a very large number of the lines of code in
a program. One of these tools is KLEE[1]. It is based on
symbolic execution, and is capable of generating high coverage
tests for programs written in C language. Symbolic analysis,
is a static analysis and his ultimate purpose is to construct
a mathematical model of the software program. From this

model, we can know how the program will behave in all
situations. In order to achieve this goal, all the input variables
are symbolic and also the environment in which the program
runs is symbolic. Symbolic variables are programs variables,
which can have all the values permitted by their types. An
symbolic environment, means that when a library or a system
call is made, this will behave also in a symbolic way, taking
into consideration the call parameters, which can be symbolic
or concrete, and all possible hardware states.

The key for running programs symbolically, is to transform
the instructions that operates with concrete variables, in in-
structions which can also handle symbolic variables. When a
branch instruction based on a symbolic value is encountered,
the system follows both branches and adds on each path, a
set of constrains called path conditions, which must hold on
the execution of that path. When a bug is encounter or a
path terminates, the current path conditions are transformed
in concrete values, and a test case can be generated. This test
case can be later used in order to execute the same path of
the program or to hit the same bug.

For now, this approach has proved to achieve good coverage,
on small programs. Also, series of bugs have been found, in
heavily tested open sorce programs, like Coreutils or Busybox,
but real world programs have not been yet tested, mainly
due to some drawbacks of this approach. These are the path
explosion and the symbolic environment. When a program
is tested using symbolic analysis the number of paths tends
to grow exponentially. This makes the analysis take a lot of
time and use a lot of memory. The second problem, symbolic
environment, appears because almost all programs interact
heavily with the operating system, the user or the network.

The contributions presented in this paper, tries to attack the
path explosion problem. Our version of KLEE is able to use
all the computation power, provided by, the multiprocessor
architecture in order to analyse bigger programs in shorter
time.

II. ARCHITECTURE

Our work was based on the KLEE project. KLEE is a
symbolic execution tool, designed for robust, deep checking
of a broad range of applications. Is is based on EXE[2] and
runs by interpreting LLVM[5] bitcode. KLEE has some very
good features, like compact state representation, constraint
solving optimization and uses search heuristics in order to
get high code coverage. When it needs to deal with the
system environment, it uses a simple approach, external calls

beeing executed in the normal environment. KLEE proved his
efficiency, when it was used in order to test Coreutils, arguably
the single most heavily tested set of open-source programs
in existence. It was able to automaticaly generate tests that
covers 84.5% of the total lines of code in Coreutils. KLEE
needed 89 hours to run on all Coreutils programs, and it was
capable of generating tests, that beat the developers test suit,
build incrementally in over 15 years, with 16.8%. Another
advantage of KLEE is that all the tests generated, can be run on
the row version of the code (compiled with gcc for example),
simplifying the debugging and error reporting.

From a high level perspective, KLEE is a mix between an
operating system for symbolic processes and an interpreter.
Like all normal process, symbolic processes have their own
stack, registers files, heap and program counter. In addition,
they have path conditions. In order to avoid confusion with
Linux processes, the symbolic processes are called states.
Because KLEE interprets LLVM instructions and maps them
to constraints, all the programs which are run on KLEE must
be compiled LLVM.

When a program is tested, KLEE needs to cope with a large
number of states. The core of KLEE is a loop in which one
state is selected and then the next instruction is symbolically
executed, in the context of that state. The execution continues
until all the states are finished, or a defined time threshold
is reached. An important difference between processes and
states is how the memory objects are stored. In an normal
process, all memory object are data values, while in an
symbolic process they are expresions. This expressions are
trees in which the leaves are constants or symbolic variables
and the interiour nodes are LLVM operations like arithmetic
operations, comparisons or memory accesses.

In our quest of making KLEE a solution for testing real
world software programs, we first wanted to use all the power
offered by multiprocessor systems, so we tried to parallelize
the symbolic execution. To do that, we designed two different
approaches.

Figure 1. Parallel symbolic execution with one executor and multiple threads

In the first approach we maintain only one executor1 and
we executed multiple symbolic instructions on it. To do so,
we shared the executor and we also create a pool in which all
the states were put. We designed this solution to work with
threads, because we needed to share a lot of the memory space
between two different executors. Also, the thread creation
overhead, is smaller than the overhead of the by processes.
Each thread takes one state from the pool, and executes sym-
bolically the next instruction. When he finishes the execution
he puts the state, or states (if there was a branching instruction)
back into the pool. The process starts all over again, until
there are no states in the pool, or a defined time threshold is
reached. An example of how this approach runs is shown in
Figure 1. The numbers inside the nodes represent the relative
time values when the state is processed.

Figure 2. Parallel symbolic execution with one executor per thread

In the second approach we decided to create one executor
for each thread. When the symbolic analysis begins, one thread
starts executing the instruction of the first state, while the other
threads wait until other states are created. When a branching
instruction is encounter, and a new state is created, this state
is given to a waiting thread. The algorithm goes on, until all
the threads have some work to do. From this moment on,
each thread keeps all the states generated on his branch. So
in this approach states are not passed so frequently between
the threads. Only when a thread finishes all his the jobs, he
signals this to the other working threads. If they do have more
jobs to do, they can pass one of their states to the idle worker.
An example of how this approach runs is shown in Figure 2.
The numbers inside nodes represent relative time values.

Symbolic execution execution requires a lot of memory.
Therefore a lot of memory operations are done, so we decided
to change the main program memory manager, in order to
reduce the amount of time spent allocating memory. Our
profiling analysis reflected a series of memory spaces with
specific dimensions that are alocated very often. That is why
we decided that instead of allocationg several times small
amount of memory, we should create a different memory

1operating system for symbolic processes

allocation system that allocates a big chunk of memory and
then splits it into small fragments with specific dimensions.
When a memory request is issued, instead of calling the
malloc function each time, we simply return a reference to
one of the memory fragments we already have allocated that
fits into the desired dimension. The free operation is done
by simply marking the fragment as unused.

III. IMPLEMENTATION

A. Parallelization

The first solution we tried for KLEE parallelization, in
which we use one executor (operating system for symbolic
processes) and multiple threads proves to lead to an unex-
pected problems. In order to use the executor from different
threads without problems, we had to use a lot of synchro-
nization mechanisms. After we succeeded synchronizing the
access to the LLVM engine, the STP[4] constraint solver and
the memory manager, the results were very disappointing. On
most of the programs we tested, we could not exceed the
normal execution time. The threads were most of the time
blocked waiting for synchronization. And this was happening
mainly because the symbolic instructions are actually LLVM
instructions, and therefore they are executed in the LLVM
engine. Also the path constrains, which are executed in the
STP constraint solver were consuming a lot of processing
time. There were only small regions of code where the threads
actually could run in parallel, so the overall speed-up was not
so satisfying.

That is why we had to design a different approach, where
less synchronization was required. As already presented in
section II, we had to implement a different version with a
rougher and more complex threads scheduler for states.

So the second approach, where we used one executor for
each thread was far more difficult to implement. In order to
lower the complexity of the solution, we decided to continue
our implementation using the threads paradigm. This approach
was proven useful when we started to change states between
threads. Even if some parts of the executed programs are still
shared between thread, this does not affect us very much since
there is a lot of read-only data. Actually sharing this kind of
data is useful, because less memory is required. And they
are indeed big memory structures like the whole code section
representation, the program read-only data, global variables
table and so on. But the other information like the states
representation and their variables will no longer be shared,
and therefore less synchronization mechanisms are required.

KLEE is written in C++, which offered us a big variety
of multi threaded programming implementations to choose
from, like POSIX threads, TBB, OpenMP and others. Based
on our previous experience, we choosed in favor of the POSIX
threads2. Also the synchronization mechanism offered us the
flexibility we needed.

2Unix pthreads

B. Memory Allocation Management

According to our profiling analysis, KLEE uses intensively
the memory allocation system. And consequently a lot of
memory system calls are issued in order to allocate small
chunks of data. This obviously drops the performance of
KLEE. Therefore we decided that reducing the number of
system calls issued, we would improve the global execution
time.

Our approach was to create a wrapper over the malloc
function. The difference between the Standard Template Li-
brary memory allocator and our implementation is that instead
of executing system calls for each memory request, we allocate
once a big chunk at the beginning, and then, for all the
sequential requests, we divide this chunk equally in order to
fulfill all demands.

In terms of memory, this is definitely not a good solution
since we always allocate more memory then needed. But
nowadays, the memory consumption is no longer so valuable,
in contrast to the execution speed, so we decided to proceed
with this approach.

Our implementation consists in developing a C++ class
named MemoryPool that exports two methods: klee_-
alloc and klee_free. The first one is a wrapper over the
STL’s malloc function and it’s purpose is to return a chunk
of memory and the other one is used to free memory. More
about their implementation is detailed in the next paragraphs.

In order to integrate it in KLEE’s code, we overloaded the
operators new and delete of the Expr class. This class
contains the whole structure of the source being analyzed, and
therefore most of the memory operations are handled here.
Consider for example that for a simple analysis of the classical
HelloWorld.c test file, there are over 200 memory requests
of 8 bits size. The regexp.c test (detailed in Section IV)
has 192104 memory requests. Also, the whole heap memory
used by the analysed program will also be managed by our
allocator.

Before proceeding with the implementation, we will have
to detail the following terms:

• MemoryPool - is the class that represents the memory
allocator. It contains the list of buckets.

• klee_bucket - a structure that holds the information
about the memory allocated. It also holds a pointer to the
memory allocated in the first request, and it is split into
multiple fragments.

• klee_frag - this is a fragment from the actual memory
allocated at the request.

The following paragraphs describe the internal implemen-
tation of the allocator and the memory organization.

MemoryPool. The MemoryPool object consists of a vec-
tor of buckets. Each bucket represents a set of objects with
similar sizes. For example if a size of 4 bytes is requested,
the allocated memory is rounded to the size of the bus (8
in our tests). The same memory size will be allocated if the
request would be of 5, 6 or even 8 bytes. But when the
requested memory overlaps, a bigger chunk will be returned.

For example for a request of 9 bytes, a memory space of 16
bytes will be returned.

Each bucket has associated a size for it’s fragments, which
is multiple of the bus size. The first bucket has the size of
8 bytes, the second one 16 bytes, the third 32 and so on.
Each bucket has a double size of its predecessor, until the
limit of the page size is reached (4KB). For each request of
memory larger then 4KB, the allocator will issue a malloc
call, therefore the allocation is no longer optimized.

Figure 3 illustrates how the memory is organized in a
MemoryPool object.

Figure 3. MemoryPool object representation

Bucket. klee_bucket is a structure that describes the
allocated memory zone using malloc. It contains informa-
tion about the size of the fragments it contains, how many
fragments it manages, a mask of the free fragments and other
meta data. It also contains two pointers: one to the allocated
memory zone, and the other to the next klee_bucket with
the same size. We will see in the next paragraph the reason
we have this pointer.

Figure 4 shows the bucket representation.

Figure 4. klee_bucket structure

Fragment. The fragment is the simplest structure in our
allocator. It is also represented in figure 4. It consists only of
two fields:

• the object - the actual memory space returned to the
request

• a pointer back to the bucket it belongs.
With the terms above being properly explained, we can now

describe the behavior of our allocation manager. As stated
before, it consists of two actions:

a) klee_alloc: it is the method exported by the
MemoryPool class that returns the needed memory.

The first step done when requesting memory is to compute
the rounded size in order to find the needed bucket. As
described earlier, the object will be framed in a fragment size
greater or equal to the dimension requested. Note that finding

the bucket is a very fast process, only some bit operations
being required, so the complexity is O(1).

The next step is to check if there was previously allocated
a memory for this bucket. If it was not, then the malloc
function is used to allocate a memory space multiple of the
page size3. Next, we have to find a free fragment within that
bucket. In order to do that, we need to check the bit mask.
The first free fragment found is returned to the requested. If
there is no free fragment, and the bucket is full, then a new
bucket of the same size is allocated and linked to the previous
one. And the algorithm goes on, until a free fragment is found.
The bucket’s mask is updated and then the memory zone is
returned.

b) klee_free: is called when an object is destroyed.
The implementation of this function is trivial. When given

the object, we determine the pointer to the bucket (it is locate
right before the object) and update it’s mask by setting the
fragment as freed. This is also a executed very fast with a
O(1) complexity.

C. Thread safety

As we already presented in the previous section III-B, mem-
ory operations happen very often. Sharing a MemoryPool
object among all the threads will require a lot of synchro-
nization. Therefore our program performance will decrease
considerably. That is why we designed a different approach,
where each thread has his own memory manager.

This solution spares us of expensive synchronization be-
tween threads and increases the overall performance of KLEE.
The implementation was also simple, each thread having
to keep it’s own MemoryPool object in his Thread Local
Storage. Each time a thread issues a memory request, the
corresponding manager object is determined and the request
is satisfied. This method guarantees that two threads can not
share the same memory object.

One of the biggest problems with our approach is the
memory fragmentation that may appear for intensive testing
of big programs. Even if we have not met any problems with
the memory during our tests, we would have to consider this
in the final deployment of the tool. But once again, our initial
settlement was to give memory size a lower priority in contrast
with speed.

IV. EXPERIMENTAL SETUP

The testing environment we used was an 8 core virtual
machine, with QEMU Virtual CPUs clocked at 2GHz and 8
GB of RAM memory. This allowed us to test the program
without concerning of the memory limitations. But once again,
on a regular computer, this should be taken into account.

As any other system analysis tool, KLEE needs the source
code of the program in order to perform the testing and verify
it’s functional correctness. The program used in our tests was a
regular expression matching, presented in the following source
code snippet.

3One or more pages can be allocated, depending on the configuration of
the memory allocator

1. static int matchstar(int c, char *re, char *text) {
2. do {
3. if (matchhere(re, text))
4. return 1;
5. } while (*text != ’\0’ && (*text++ == c || c== ’.’));
6. return 0;
7. }

8. static int matchhere(char *re, char *text) {
9. if (re[0] == ’\0’)
10. return 0;
11. if (re[1] == ’*’)
12. return matchstar(re[0], re+2, text);
13. if (re[0] == ’$’ && re[1]==’\0’)
14. return *text == ’\0’;
15. if (*text!=’\0’ && (re[0]==’.’ || re[0]==*text))
16. return matchhere(re+1, text+1);
17. return 0;
18. }

19. int match(char *re, char *text) {
20. if (re[0] == ’ˆ’)
21. return matchhere(re+1, text);
22. do {
23. if (matchhere(re, text))
24. return 1;
25. } while (*text++ != ’\0’);
26. return 0;
27. }

Even if this short example is not very well structured and
does not have a real life appliance, we used it because it
emphasises the limitations of a symbolic analysis tool.

• computing intensive - a normal execution of this program
takes over 10 seconds.

• highly recursive - all these three functions recurently call
each other (lines 3, 12, 16, 21, 23).

• intensive memory access - it iterates over two strings in
order to find if they match. Also switching through the
stack frames affects a lot the memory operations.

• high number of branches - this program generates a huge
amount of states. This is mainly caused by the do-while
loops with if nested (see lines 2-5 and 22-25).

Having a well formed image of the testing environment and
the testing example, we can now proceed to the next section
where we will present our achievements.

V. SCENARIOS AND RESULTS

As we previously stated, our research focuses in two direc-
tions: optimizing the memory operations and parallelizing the
computing intensive parts.

According to our initial profiling of KLEE running on the
regular expression testing program presented in the previous
section IV, the malloc function call takes over 21% of
the total running time. Even the free function takes about
11%, counting over 32% of the total amount being wasted on
memory operations. This information is presented in Table I.

Our tests consisted in four different scenarios. For each one
we reserved different memory chunks for their buckets. The
first one allocates only 1 page of 4KB for each bucket, the
second one 2 pages, the third 4 and the last 8 pages. The
more allocated pages, the better performance we obtain, as
we can see in Table I, also graphically represented in Figure
5.

As you can see, we managed to improve the total amount of
time spent with memory operations from 32.74% to 22.45%

Operation Initial 1 page 2 pages 4 pages 8 pages
malloc 21.57% 15.83% 15.25% 15.03% 14.91%
free 11.17% 8.03% 7.87% 7.76% 7.54%
Total 32.74% 23.86% 23.12% 22.79% 22.45%

Table I
MEMORY OPERATIONS PERCENTAGE

Figure 5. Memory operations percentage

from the total amount of time. Table II presents the total
execution time for each case. As you can see, we managed
to improve the total amount of time with over a second for
this scenario.

Initial 1 page 2 pages 4 pages 8 pages
Time 13.54s 12.72s 12.59s 12.41s 12.27s

Table II
EXECUTION TIME

The second optimization we performed is related to the
parallelization of the high computing area. The approach
implemented as described in section III improved the total
execution time as described in Table III. Note that this are our
final results, including the memory allocator manager.

1 thread 2 threads 4 threads
Time 13.54s 9.29s 6.21s

Speedup - 1.45 2.18

Table III
PARALLEL EXECUTION TIME

Table III reflects the final results of our research. Starting
from the initial execution time of 13.54 seconds, after applying
our optimizations we managed to obtain an execution time of
9.29 seconds for two threads. Executing it with 4 threads, the
results are even promising, obtaining an execution time of 6.21
seconds and a speedup of 2.18.

VI. RELATED WORK

The idea of parallel symbolic execution is not new. It was
first described in[3]. Cloud9, the result of those ideas, is a
distributed solution, which can run symbolic execution on
clusters. Cloud9 is based on workers, and uses a load balancer
to equal the tasks done by each of those workers.

JPF, Java Pathfinder[6], also has an extension that paral-
lelizes symbolic execution by using parallel random searches
on a static partition of the execution tree. JPF is also based
on workers and pre-computes a set of disjoint constraints that,
when used as preconditions on a worker’s exploration, steers
each worker to explore a subset of paths disjoint from all other
workers. In this approach, using constraints as preconditions,
imposes at every branch in the program, a solving overhead
relative to exploration without preconditions. The complexity
of these preconditions increases with the number of workers,
as the preconditions need to be more elective.

VII. CONCLUSION AND FURTHER WORK

The results presented in section V illustrate our achieve-
ments. We have successfully accomplished or goal by im-
proving KLEE, parallelizing the intensive computational zone.
We have also proposed a new memory allocator manager that
offers a better memory management, but with the cost of
internal fragmentation.

There is still a lot of optimizations that can be done for
KLEE and generally in the symbolic analysis field. Researches
like optimizing the path merging or the constraint solver, I/O
buffering features, would improve this domain, and therefore
will create more powerful software testing tools that will be
able to verify any application.

ACKNOWLEDGMENT

The authors would like to thank Emil Slusanschi and Mircea
Bardac for the suggestions, ideas and feedback they gave
throughout the course of the project.

REFERENCES

[1] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs. 2008.

[2] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. Exe:
Automatically generating inputs of death. 2006.

[3] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea. Cloud9:
A software testing service. 2009.

[4] V. Ganesh and D. Dill. A decision procedure for bit-vectors and array.
2007.

[5] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong
program analysis & transformation, 2004.

[6] M. Staats and C. Pasareanu. Parallel symbolic execution for structural
test generation. 2010.

