
Java OpenBinder Extension
Radu-Corneliu Marin

School of Computer Science and
Automatic Control

Politehnica University
Bucharest, Romania

Email: radu.marin@cti.pub.ro

Daniel Urda
School of Computer Science and

Automatic Control
Politehnica University
Bucharest, Romania

Email: daniel.urda@cti.pub.ro

Nicolae-Vladimir Bozdog
School of Computer Science and

Automatic Control
Politehnica University
Bucharest, Romania

Email: nicolae.bozdog@cti.pub.ro

Abstract—Although Java is renowned for its myriad feature
set, we found that it lacks in performant Inter-Process Commu-
nication. A somewhat recent development in said domain, the
OpenBinder C/C++ framework, has introduced a novel inter-
process communication abstraction which we believe could be
easily extended into Java by using the Java Native Interface.
In our paper, we introduce JOBe, namely the Java OpenBinder
extension. Such an endeavor has been attempted a few years
back, when the Google team that developed Android designed
and implemented the core of the aforementioned software stack:
the Binder framework. Based on their concepts, we are extending
the OpenBinder framework into Java as to offer extremly flexible
Remote Method Invocation, based on the Binder abstraction.

I. INTRODUCTION

As Java is growing in popularity, its flaws are becoming
more apparent each day. One of the most pressing limitations,
it being the one we are interested in, is the lack of performant
IPC - inter-process communication - methods.

A rudimentary technique in Java for communication be-
tween processes (and even for programs written in different
programming languages) is using a protocol over sockets in
order to broker correspondence between two ore more entities
running in the same process or in other processes, on the
same machine or on remote machines. Such a method is
cumbersome to use, it implies a huge amount of effort to
design, to implement, to maintain and to debug secure inter-
process communication. We consider such a method as being
obsolete and do not consider it to be valid.

For years now, many frameworks and standards have been
developed for RPC - remote process calls - or for distributed
objects, such as XML-RPC, respectively CORBA, and most of
them have received praise, though none managed to become
a de facto standard in said domain. Although, not one of
these solutions were designed with respect to inter-process
communication, they represent valid choices in this direction.
Because these solutions present penalties, usually represented
by large time to execute the IPC call, we are not interested in
them.

Probably one of the most notable solutions for IPC in Java
is RMI - Remote Method Invocation - which ”enables the
programmer to create distributed Java technology-based to
Java technology-based applications, in which the methods of
remote Java objects can be invoked from other Java virtual
machines*, possibly on different hosts” [4]. RMI, being itself

a Java techonology, is easily integrated into basic Java code,
but because it was designed and implemented for transparent
remote calls on machines over a network, it has a consistent
overhead in dealing with an IPC call.

In our paper, we present a novel inter-process communica-
tion method based on a native C++ solution, namely Open-
Binder. The basic difference between this solution and the
previously mentioned solutions, is that OpenBinder is strictly
oriented for IPC, as opposed to the latter. Instead of using
sockets for correspondence between processes, OpenBinder
has introduced a unique method: passing a method call to
a Linux kernel module, which, in turn, reifies the identity
of the caller and of the callee and forwards the call to the
remote process (and in fact returns the result back to the
caller). Therefore, porting such a solution into Java is not
compatible with most operating systems, other than some
Linux distributions. This issue is of no concern for us, as
OpenBinder can be ported onto other platforms as well, while
the Java interfaces remain untouched.

Our paper is structured as following: Section 2 presents
the background for our work, most importantly it describes
OpenBinder and Android’s Java extension for it. In Section 3,
we present the design and architecture of our solution, whilst
Section 4 entails its implementation and issue coverage. We
end our work with our observations, conclusions and plans for
forthcomming features in Section 5, respectively Section 6.

II. RELATED WORK

Although OpenBinder introduces numerous interesting con-
cepts, it has not yet been popularized or documented. This
is mostly due to the fact that the OpenBinder project was
abandoned about the time that Android’s Binder was being
designed and implemented. Therefore, we feel obliged to
render a detailed description of the inner-workings of Open-
Binder and to provide an overview of Android’s view over
the Binder mechanism. This second section is dedicated to
the aforementioned subjects.

A. OpenBinder

Dianne Hackborn, former manager of the OpenBinder
project and famous engineer at BeOS, PalmOS and currently
Google, described OpenBinder as ”a new approach to operat-
ing system design, in the same vein as a lot of other attempts

at introducing a modern object oriented approach to operating
system design” [2].

The OpenBinder introduces an interesting abstraction,
namely the Binder, which is used to design and implement
a distributed component architecture by means of abstract
interfaces, their behaviour and their implementation: ”As long
as you are using these interfaces, the actual object behind them
can be written in any language with Binder bindings, and exist
anywhere your own address space, in another process, or even
(eventually) on another machine” [3].

In broad strokes, OpenBinder is similar to CORBA on
Unix, but unlike most distributed component architectures, the
Binder is ”system oriented rather than application oriented”
[3], in other words it is designed to support system-level com-
ponents having its focus not on cross-network communication,
but on inter-process communication.

The core of the framework is the smooved executable which
is the main Binder server. Its main purpose is to set up the
Binder environment by creating a Root Binder Context by
dint of which components (such as services) will be made
available. The smooved executable is also responsible for start-
ing the Package Manager, which will host the components,
and for starting the Process Manager, which will run the
components in.

The Binder abstraction alone is used only for intra-process
communication and, in order to take advantage of the multi-
process bindings, the OpenBinder kernel module needs to be
built and inserted into the kernel. The module’s main purpose
is to create and manage a thread pool which takes care of
the inter-process bindings, also called a root namespace. It is
designed as a character device placed in /dev/binder and it
is interfaced by means of ioctl calls. The Binder module is
responsible for reifying the identity of the calling process and
the identity of the callee process. It marshals the parameters
sent for the remote method invocation and the results returned
after execution through the kernel from the host process to
the remote process and back. The custom kernel module
is used instead of standard Linux IPC facilities in order
to model IPC operations as thread migration. Although this
component is optional (all other OpenBinder features will
function properly without it), it is the backbone of the inter-
process communication solution.

The reification process in the kernel module is done by
means of file descriptors: if a user-space thread participates
in Binder IPC, it has to open the /dev/binder and the file
descriptor obtained is used to identity the initiator and recipient
of Binder IPCs. The IPC mechanism makes use of the file
descriptor in order to interface with the driver through a small
set of ioctl commands:

1) BINDER WRITE READ - used for dispatching
Binder commands after which blocks to receive in-
coming operations and related results. This is the key
command for all Binder IPC.

2) BINDER SET WAKEUP TIME - schedules a user-
space event at a given time.

3) BINDER SET IDLE TIMEOUT - sets timeout for

threads awaiting Binder operations.
4) BINDER SET REPLY TIMEOUT - sets timeout for

awaiting replies for Binder commands.
5) BINDER SET MAX THREADS - set the number of

threads in the thread pool.
A Binder IPC operation is also called a Transaction.
Last, but not least, the kernel module has another key

responsability in the communication mechanism: it performs
mapping of objects from one process to another. An object
reference has two mutually exclusive forms: an address -
local references - and a handle - remote references. The local
process sees a Binder reference as an address in its own
address space, but when initiating a Transaction it sends a
32bit handle to that reference, which the remote process sees
as a point to the object in its local address space. The module
performs the translation between pointers and handlers, being
the sole mapping manager.

That having been said, if the Binder module is inserted
into the kernel, the smooved executable has the responsability
of becoming the global host of the root namespace created
by the kernel module, in other words smooved assumes the
role of host of the root SContext namespace. Each Binder
is passed in a reference of Context representing the link to
the OpenBinder environment. For situations in which Binders
are not present, references to Context can be obtained from
the smooved process by means of the SContext class as
following:

1) SContext SystemContext()
This method is a back-door to obtaining the root or sys-
tem context. Although it is initially created by smooved
with full permissions, access to it is restricted and may
not return a valid context.

2) SContext UserContext()
This method is a back-door to obtaining the global user
context. This returns the least-trusted context which is
always guaranteed to exist, but the functionality offered
by it is fairly limited.

OpenBinder also offers a Support Kit consisting of a suite
of classes and utilities which ease the development of Binders.
The most significant components are the following:

1) SValue
The SValue is a generic container for a blob of bytes that
has a type code associated with it. Its most significant
feature is its genericity: it can contain complex data
structures or simple typed data.

2) SParcel
The SParcel is a container of raw block data and it is
used to marshall SValues for inter-process communica-
tion.

3) SAtom
The SAtom is a base class for reference counted objects.
By definition, Binder objects are reference counted (in
order for the kernel module to take them into consid-
eration). Classes should either inherit from it and all
pointers to an SAtom must use a sptr<T> and wptr<T>

smart pointer template classes instead of raw pointers.
OpenBinder uses IDL - Interface Definition Language - to

ease generating Binder interfaces. The framework provides the
pidgen tool which parses IDL interfaces and generates neces-
sary code for Binder transactions. IDL interfaces may import
other interfaces and can define functions - Binder methods,
events - methods called on specific events - and properties
- Binder state values. The pidgen tool mainly generates two
classes both of which implement the defined interface and that
derive from the BBinder class - the standard implementation
of the core Binder interface, namely the IBinder:

1) a Binder class - the class which will implement the
interface and which will be registered in the Package
Manager by means of the Binder root SContext.

2) a BinderProxy class - the class which provides a schele-
ton for remote accessing the Binder class instances.
It provides stubs for all the methods in the interface;
each stub marshalls its parameters, initiates a Binder
Transaction, waits for results and returns them in a
transparent fashion.

The only issue that OpenBinder raises is its old age. Due to
the fact that the project was abandoned in 2005, it has become
deprecated: the main problem is in the kernel module that has
been developed for the 2.6.10 Linux kernel and porting it to
the latest Linux kernel is a complicated task and not part of
the current article.

B. Android Binder

Considering that ”the Binder could be described as a
<<framework framework>>. It doesn’t do anything itself,
but is an enabling tool for implementing other rich frame-
works, such as the view hierarchy, media framework, etc” [3],
Android has taken it literally and has built all the System
Servers based on the Binder framework. In order for this
solution to be feasible, they have enriched the OpenBinder
kernel module and have ported it to a newer Linux kernel
version, namely 2.6.35.

The novelty of their solution is that they did not just bring
the OpenBinder framework up to date, but they have also
extended the native C++ implementation into Java as well. By
so doing, they were able to create a safe, fast and dependable
Java based software stack based on the Binder IPC Model.

Although the Android Binder infrastructure is based on
the original OpenBinder implementation, there are also dif-
ferences:

• The smooved server is no longer used. Instead Android
defines the ServiceManager Java class (which also has
native C++ hooks as well), which is responsible for regis-
tering all Binders for System Services such as the Sensor
Manager, the Battery Manager, the Activity Manager and
many more.

• Android has abandoned the pidgen tool. Instead it pro-
vides the aidl tool which no longer offers support for
native C++ IDL files, but for Java IDL interfaces (which
are modelled like standard Java interfaces).

Android has also extended the functionality offered by
OpenBinder with the following features:

• File descriptors may be passed between processes,
• Memory (heap regions) may be shared between pro-

cesses,
• Binders may be transacted between processes.
A more accurate overview of the Android Binder Java

extension can be seen in Figure 1. As can be observed the Java
layer sits on top, mapping the Java IBinder onto the native one.
The Java Binder is mapped onto the native Binder by means
of helper classes such as JavaBBinderHolder and JavaBBinder
which are responsible for converting the instances between
Java and C++.

Fig. 1. An Overview of the Java binder implementation [1]

The core of the Android Binder framework is the IBinder
interface which is implemented by all Binder components,
NativeBinders and BinderProxies alike. The IBinder defines
a crucial method, namely transact() which, on the client
side marshalls the data and method code to the Binder kernel
module and waits for results, and on the server side it invokes
a Java callback onTransact(), marshalls the results and sends
them back to the kernel module. Marshalling is performed
by means of the Parcel class which serializes primitive types
such as int or float, but also live IBinder objects and serialized
Parcelable objects.

We consider the Android implementation as our base state-
of-the-art reference and its influences are noticeable in the
following sections, namely Architecture and Implementation.

III. ARCHITECTURE

The third section describes the JOBe proposed architecture
which contains elements from both OpenBinder and the An-
droid Binder, but also components introduced by us.

Figure 2 illustrates the JOBe architecture. The following
components are directly visible or indirectly deductible from
datapaths:

Fig. 2. JOBe architecture

• OpenBinder core: in order to be easily compatible with
Linux distributions, we have preserved the OpenBinder
smooved server and kernel module. These components
offer the means to register/lookup binder services (instead
of implementing yet another server which has to be set
up) and also provide the functionality that allow kernel
Binder calls. The Binder is continuosly running in the
Linux system, in order to ensure the availability of the
inter-process communication mechanisms.

• JOBService: it is not visible in the Figure 2, but the
green datapath offers insight into its functionality. It is
an OpenBinder native service which actually represents
the communication media by means of which Java Binder
calls will run upon. The simplicity of this service is given
by our solution in which the native service does not need
to know about the actual Java method it is executing, it
only acts as the communication channel by which Java
messages are passed from process to process, from virtual
machine to virtual machine.

• an interface between the Local and Remote objects
represented by means of the blue datapath. This is an
implicit component describing the agreement between
local and remote objects. Java interfaces need to be parsed
by an automatic tool which offers a formalization for
Java method calls. In this sense, our framework extends
the definition of a regular Java method invocation, that
of being a standardized method to send a message to an
Object. Each method is standardized as a tuple <Code,
Arguments, ReturnType>, where Code is a unique
code identifying the method in the interface, Arguments
being a container describing the argument data with their
associated datatypes and ReturnType being the datatype
associated with the method result.

• Local Object: will be further referenced as Binder Proxy.
This component represents the local connection to the
remote object. It contains stub implementations of the
interface which marshall arguments, initiate a Binder

transaction by means of the JOBService and wait for
results or Exceptions.

• Remote Object: will be further referenced as Binder.
This component actually offers the true implementation
of the interface. It (probably) lives in a separate pro-
cess and is accessed by means of the JOBService. It
unmarshalls the arguments, executes the methods body
and marshalls return values or Exceptions back to the
Binder Proxy through the JOBService.

• Parcel: means of marshalling data. All Binder methods
pass arguments and returned values through serialized
data containers, namely Parcels. A Parcel contains raw
data with associated datatype. The Parcel class has equiv-
alents both in Java and C++ and a sound mapping
between the two leads to more feasible marshalling and
unmarshalling.

As can be observed from the detailed architecture, the
Android Binder has left its mark on our solution due to the
fact that we could not ignore our predecessors in this direction.
Although, the Android solution is complete and sufficient
we believe that our changes infer different, but valuable,
semantic information: we have chose not to add the IBinder
Java interface, which in Android was implemented by Binders
and Binder Proxies alike to show the relationship between the
two components, even if they both implemented the cross-
process interface as well. We believe that in a semantic
sense our solution separates the Binder abstractions from the
interface itself, as to illustrate a more transparent system to
the programmer. In order to reflect this, we differentiate the
local and remote object by separate components the Binder and
the Binder Proxy in which the only common point between
them is the cross-process interface they are implementing. This
solution is also complete and sufficient for our needs, because,
as opposed to Android, we do not plan on sending Binder
objects by means of Binder IPC calls.

The true transparency provided by our framework is illus-
trated in Figure 2 as the blue datapath. From the programmer’s
point of view, all the aforementioned components are not
visible because the Binder inter-process method invocation
appears to act as regular Java method invocation. The only
apparent difference is that Binder method invocations must
treat the case of remote exceptions.

IV. IMPLEMENTATION

This section covers the actual implementation of the ar-
chitecture presented in the previous section. In designing and
developing the JOBe framework we have used the Java and
C++ programming languages, the OpenBinder framework and,
in order to create the links between them, we have used the
Java Native Interface. In the following subsections, we have
covered all of our tools and components in detail.

A. JOBService

As mentioned in the previous section, the JOBService is a
simple OpenBinder component which is responsible for acting
as the communication media by which Java callbacks are

passed between processes. In implementing said component
we have used the IDL description language provided by
OpenBinder. The interface is depicted below:

interface IJobService {

methods:

void onTransact(SParcel in,

SParcel *out,

int methodCode);

}

The purpose of this interface is to define an OpenBinder
service which serializes arguments through the in SParcel
and return values through the out SParcel, and passes both
alongside the unique methodCode to identify the Java call-
back that needs to execute. Using the pidgen tool, we have
obtained the BnJOBService and BpJOBService, representing
the native Binder, respectively the native BinderProxy. The
BnJOBService is responsible for mapping the in SParcel to
a Java Parcel and passing it along with the methodCode to a
Java callback registered when creating an instance of the native
Binder; also the Binder waits for the Java code to execute,
marshalls the results into an SParcel and ends the Binder
call. The BpJOBService is the mirrored component, which
actually maps the arguments Parcel into an SParcel, initiates
an OpenBinder transaction sending the arguments alongside
the methodCode and waits for the transaction to return the
values, which are marshalled and sent back into the Java code.

This component is built only once, and used by all Java
Binder classes. In this sense, we have introduced a naming
scheme in order for the smooved server to distinguish between
different components: the Java interface name and package are
passed into the BnJOBService and BpJOBService and their
concatenation is used to register or lookup the component in
the OpenBinder framework.

B. Binder

The Java Binder is defined as an abstract class which maps
onto the BnJOBService. It is declared as following:

abstract class Binder {

public abstract void

onTransact(Parcel in,

Parcel out,

int methodCode);

public abstract String

getInterfaceName();

private native void

initialize();

static {

initialize();

}

The native initializer is used to create a BnJOBService
instance, pass it a reference to the onTransact abstract method
and the yet unknown interface name (represented by the ab-
stract getInterfaceName method). The class initializing is done
in a static context, as to guarantee that when the implementing
class is loaded, the BnJOBService tied to it is registered once
and only once to the smooved server.

An outstanding issue that occured in the implementation
of this component is its registration to the smooved server.
As mentioned in the second section, in order for a service
to be taken into account by the OpenBinder framework it
needs to obtain an external SContext instance. Although, the
OpenBinder implementation offers two Binder contexts: user
and system, neither of them is able to register our component
into the system - the user context does not have enough
privileges and the system context returned by the framework
is not valid. The solution to this problem is to re-implement
the Package Manager included in the smooved server and such
an endeavor is not included in the current paper.

C. Binder Proxy

The Java Binder Proxy is also an abstract class which maps
onto the BpJOBService. It’s implementiation is presented
below:

abstract class BinderProxy {

private native void

transact(Parcel in,

Parcel out,

int methodCode);

public abstract String

getInterfaceName();

}

In comparison with the Binder class, the BinderProxy is
much simpler: it also complies to the naming scheme, fact
reflected by the abstract getInterfaceName() method and what
it actually does is forward all calls to the native transact()
method. In C++ code, this looks up the service on the
smooved server and initiates a Binder transaction passing in
the arguments passed from Java code.

As mentioned in the Binder implementation, the Binder-
Proxy is also affected by the SContext issue as it cannot lookup
a service that could not be registered to OpenBinder.

D. Parcel and Parcelable

The Parcel concept is borrowed from the Android solution.
It is a container for raw data and it also contains datatypes
associated with the data within. Our Parcel class is currently
implemented using a Java Vector which retains data and type
as well. We provide methods for marshalling and unmar-
shalling primitive types. In order for Objects to be passed
between virtual machines we have implemented the Parcelable
interface, also borrowed from the Android Binder. It’s purpose
is to force serialization:

public interface Parcelable {

Parcel toParcel();

}

Our Parcel model maps upon the SParcel class defined by
the OpenBinder SParcel datatype which may be passed in
native Binder transactions. Currently our mapping is probably
not the best, because conversion between the Java objects and
the C++ instances cannot be automatized. This creates an issue
for the JIDL tool presented in the following subsection. A
possible fix for this problem could imply passing the address of
a SParcel pointer to the Java instance as well. By so doing, all
operations would operate directly onto it and conversion would
be a matter of accessing an internal private field. Unfortunately
we have not been able to implement it yet.

E. JIDL tool

The JIDL tool is in many ways similar to pidgen. It takes
an interface and automatically generates code comprising
all interactions with Binder internals. By so doing, it eases
the programmers burden to understand the entire framework
before actually programming and also reduces the time of
development for applications. The JIDL tool has one advantage
over the native OpenBinder tool: it used Java regular interfaces
to define the agreement between Binders and Binder Proxies.
By so doing, it takes advantage of the Reflecion API provided
by Java for retrieving method information and it also gains all
of the time wasted by pidgen to check the validity of the IDL
interface.

Being provided with a valid Java interface, JIDL’s function-
ality can be sinthesized into the following steps:

• for each method generate a unique integer identifier
and based on its signature generate the marshalling and
unmarshalling code

• generate the Binder class - it is actually an abstract class
as it does not offer implementation for the interface, it
is the programmer’s duty to provide such information
after the code generation phase ends. The most important
feature generated is the onTransact()’s body: it groups
the unmarshalling code previously generated by unique
identifier for each method and invokes the cross-process
interface methods (which will be implemented by the
programmer). This ensures the closed loop, as the on-
Transact() method is invoked from native code when
receiving a Binder transaction.

• generate the BinderProxy class. This is no longer an
abstract class as it provides stub implementations for
all methods. For each method, it uses the marshalling
code generated above to serialize the arguments and calls
into the native C++ code in order for the BpJOBService
to initiate the Binder transaction with the appropriate
component. The results returned by the Binder transaction
are passed back into the Java onTransact() callback.

After the code generation is finalized, the programmer only
needs to implement the Binder’s code for the cross-process
interface.

As can be seen and how we actually mentioned in the
”Architecture” section, the entire development process is trans-
parent to the programmer as he or she is oblivious of the inner
workings of our framework.

V. EXPERIMENTAL RESULTS

The most significant outcome of our project was building
and running the OpenBinder framework. Due to the fact
that the project was abandoned more than 7 years ago, the
build process was tedious and cumbersome and required most
specific features: the 2.6.10 kernel and headers, gcc 3.4.0,
bison 1.875d, flex 2.5.31 and Java 1.5. This prooved to be
the winning configuration that permitted us not only to build
OpenBinder but also applications based on the aforementioned
framework, such as the Binder Shell. Based on the Binder
Shell, which emulates a system shell and runs on top of the
smooved server, we have managed to manually register Binder
components.

Unfortunately, because of the SContext issue presented
in the previous section, we could not test our framework.
Allthough we could not present empirical data, we consider
it to be common sense that the Java Binder framework offers
most feasible inter-process communication because instead of
using sockets which are renowned for high latency as most IPC
solutions do, we implement our mechanism by calling into a
Linux kernel module which further pushes our transactions to
the remote process.

VI. FUTURE WORK

We consider the OpenBinder framework as having the
highest priority, it being the core of our framework. In this
sense, not only do we plan on bringing the infrastructure up-
to-date with the current Linux kernel, but we would also port
it to other platforms as well, such as Windows or Mac OS X.
But also considering our encountered issues we feel it would
be best to first re-implement the Package Manager from the
smooved server as to provide means to register OpenBinder
components from external contexts. By so doing, we would
offer powerful justification for porting onto other platforms
by means of a proof-of-concept implementation on Linux
systems.

VII. CONCLUSIONS

In conclusion, we sustain our initial motivation: Java needs
powerful and feasible inter-process communcation mecha-
nisms. As Android has prooved with their stunning success,

the OpenBinder IPC model seems to be the most suitable
solution for modern operating systems and we strongly feel
that extending it into Java will have a major impact on the
Java application development.

REFERENCES

[1] Kees Jongenburger. Android binder, 2011.
[2] Eugenia Loli-Queru. Introduction to openbinder and interview with

dianne hackborn, January 2006.
[3] OpenBinder. Openbinder, 2005.
[4] Oracle. Remote method invocation home, 2012.

