Securing the Networking System using Linux
Security Modules

Bogdan Davidoaia, Silviu Grigore
Faculty of Automatic Control and Computers
University POLITEHNICA of Bucharest
Bucharest, Romania
Email: bogdan.davidoaia@cti.pub.ro, silviu.grigore @cti.pub.ro

Abstract—The security of computer systems is becoming more
and more important due to the increased usage and integration
of computers in a wide range of domains. A key aspect is
represented by the security of distributed systems where network
communication can give rise to vulnerabilities.

This paper proposes a solution for securing network system
access in Linux that is easy to use and allows flexible configu-
rations. This is achieved through a kernel module that enforces
Mandatory Access Control rights by using Linux Security Mod-
ules. The implementation uses security hooks to restrict user
access to specific socket operations and filter network packets.

I. INTRODUCTION

As the number of computer systems used across various
fields increases, so does the security risks associated with us-
ing these systems. Large distributed systems can be vulnerable
both to failures and premeditated malicious attacks. Many of
these systems manage large amounts of money or confidential
data and, as such, they require additional security measures.

Security in Linux uses a Discretionary Access Control
(DAC) [1] model, which restricts access to objects based on
user or group identity. Objects in Linux are represented by
regular files, sockets, character and block devices, network
devices, etc. This DAC approach allows users and groups to
change access restrictions and also delegate them to other
users.

Mandatory Access Control (MAC) [2] also restricts users
and groups access to resources, but it doesn’t permit users to
make policy decisions and/or assign security attributes. The
restrictions on resources are implemented by enforcing a set
of static rules. This approach is preferred for securing network
systems because it is less vulnerable to attacks generated by
malicious or flawed applications ran by privileged users that
can damage or destroy the system.

Systems can enforce both DAC and MAC at the same
time, where DAC restricts access to objects in a discretionary
manner and MAC imposes additional restrictions upon the
DAC layer. This layered approach is commonly used in
security systems as it offers much more control and flexibility
in deploying different security policies.

Linux Security Modules (LSM) [3] is a general purpose
security policy framework, which is a standard part of Linux
since kernel version 2.6. LSM was designed to be truly
generic, conceptually simple, easy to use, efficient while intro-
ducing minimum overhead. LSM facilitates the creation and

stacking of loadable kernel modules that implement various
access control mechanisms and security policies.

The interface provided by LSM consists of a set of call-
back functions that are called before certain operations are
performed on kernel objects. These callbacks return an ’yes’
or ’'no’ value, which indicates if the checked operation is
allowed. The objects managed by LSM can be tasks, programs,
filesystems, files, sockets, network devices and packets, inter-
process communication objects.

The security solution proposed in this paper uses LSM to
implement MAC over sockets and filter network packets. It
is implemented as a loadable kernel module that extracts its
security policy from a configuration file. In addition to the
LSM API, the kernel module uses NetFilter hooks to analyze
and filter network packets.

The main advantage of this solution is that offers fine-
grained control over socket operations and, thus, allows com-
plex security policies to be implemented. This presents an
advantage over the standard Linux network security module
that provides only network packet filtering capabilities.

The rest of this paper is structured as follows. Section II de-
scribes related work. Section III presents the architecture of the
proposed solution. Section IV describes the implementation
details of the developed application. Section V presents the
experimental results. Finally, Section VI presents conclusion
and issues for future work.

II. RELATED WORK

The increased growth of security needs has given birth, over
time, to many security patches and modules for the Linux
platform. This section presents the most relevant security
solutions developed so far.

A. SELinux

Security-Enhanced Linux (SELinux) [4] is a security mech-
anism implemented in the Linux kernel, which was originally
developed by the United States National Security Agency. It
was initially implemented as a patch, but it was redesigned
as a kernel module based on LSM API. SELinux is an
implementation of flexible access control architecture that
supports Type Enforcement, Role-Based Access Control and
Multi-Level Security.

The architecture of SELinux consists of two components:
the policy decision-making component, which is encapsulated
in a security server and the policy enforcement component,
which is integrated in objects to which the policy is applied
such as processes, filesystems, sockets, IPC objects.

SELinux assigns a security label composed of strings for
role, user name and domain to every subject (user and process)
and kernel object. The security label components are used in
defining rules in policy file, which is loaded in the SELinux
kernel module.

The solution presented in this paper is similar to SELinux
because it is implemented as a loadable kernel module, it
is based on LSM API and it loads its policy rules from
a configuration file. However, access control component is
simpler and rules are defined using only Linux user and group
IDs as subjects.

B. AppArmor

AppArmor [5] is a security module for the Linux kernel,
which can be seen as an easier to configure and maintain
alternative for SELinux. AppArmor is also implemented using
LSM interfaces and provides MAC capabilities upon the
traditional Linux DAC.

In the AppArmor security model restrictions are set only on
programs and not on users. For each application a profile is
defined as a file, which contains rules that specify the access
rights to system objects. A profile only specifies restrictions to
the access privileges given to the application by the operating
system and cannot grant other new rights.

AppArmor can provide two modes: enforcement mode that
applies the restrictions and complaining mode that only logs
policy violations, but doesn’t prevent the operation from being
executed. Thus, the complain mode can be used to observe
access habits of certain applications.

The solution proposed in this paper also logs attempts at
policy violations, but always prevents them from taking place.
However, an application level policy was not adopted by this
proposal, because the goal is to restrict socket or packet access
for all applications running in an user session.

C. Smack

Simplified Mandatory Access Control Kernel (Smack) [6]
is a kernel based implementation of mandatory access control
that includes simplicity in its primary design goals. Smack
is also implemented using the LSM interface and works best
with filesystems that support extended attributes.

The Smack security model uses four basic elements: subject
(Linux tasks), object (files of all types, Linux tasks and IPC
objects), access (read, write, execute, append), label (data that
identifies a subject or an object). In the case of a file the label
can be stored as an extended attribute.

Using these elements, access rules can be defined by spec-
ifying subject and object labels and the access mode. Generic
rules can be defined by using special labels such as *, ~, _, ?
(e.g. any access requested by a task labeled ”*” is denied).

Although the solution proposed in this paper uses rules
similar to Smack’s, it doesn’t use labels to identify subjects or
objects as it uses the identity given to them by the operating
system (user or group ID for subjects, IP address and port
number for sockets and packets).

D. Iptables

Iptables [7] is an user space application that is part of
the standard Linux distributions and allows packet filtering,
network address translation and general packet header mod-
ification rules to be defined in order to implement complex
firewall policies.

Iptables operates on the kernel firewall tables for IPv4 and
defines filtering rules for user defined chains or predefined
chains such as PREROUTING, INPUT, FORWARD, OUT-
PUT, POSTROUTING. For each predefined chain Iptables
uses a Netfilter hook in the Linux kernel, which is called for
each packet that traverses that chain.

The solution presented in this paper also uses Netfilter
[8] hooks to filter incoming and outgoing packets. It doesn’t
provide packet header modification capabilities as its goal
is only to drop or accept network packets according to the
configured network security rules.

III. DESIGN

The main goal of this paper is the design and develop-
ment of a Linux network security module that implements
Mandatory Access Control that is easy to configure, flexible
and offers a fine-grained control over socket operations. This
solution tries to distinguish itself from previous Linux security
modules by being conceptually simple, easy to extend and very
specific to network security.

To achieve this, an analysis of security mechanisms pro-
vided by the Linux kernel has been done and implementation
as a loadable kernel module seems to be the most flexible and
non-intrusive because it doesn’t require modifying the whole
kernel. The alternatives presented in Section II reinforced the
idea of implementing the security mechanism as a loadable
kernel module.

The solution is built upon Linux Security Modules to restrict
socket access and Netfilter to filter packets. The analysis
showed that LSM proved to be a powerful framework that
can be used to address a variety of security problems, while
Netfilter is standard and simplest way to filter network packets
in the kernel.

The main advantages of LSM are the fact that it is a standard
part of the Linux kernel and, as such, it doesn’t require explicit
installation and is available for most Linux distributions. LSM
is easy to use and introduces little overhead.

A. Security module features

The main goal of the security module is to manage subject
access to network sockets and packets in a MAC fashion and,
hence, its features are focused on enforcing these types of
security policies. The objects managed by the module could

also include types of system resources other than network
sockets and packets, but this is subject for future work.

The subject access to network sockets and packets is re-
stricted using a set of security rules that are defined in a
configuration file. The configuration file is read when the
module is loaded. The security rules can be changed while the
module is loaded by using a helper program, which specifies
a new configuration file.

The security rules can be divided into socket rules and
packet rules. A socket rule refers to socket operations, IP ad-
dresses and/or port numbers. A packet rule refers to transport
protocols, source and destinations IP addresses and/or port
numbers. A security rule can specify whether an operation
is permitted or forbidden.

For system administrators to be able to track potential
access violation attempts, the security module records all the
operations prevented from being executed and dropped packets
after security rules checks. These are logged using the syslog
daemon.

B. Security module components

The security module consists of five major elements: con-
figuration file parser, rule set checker, dynamic configuration
loader, LSM hooks component and Netfilter hooks component.

The configuration file parser is responsible analyzing the
configuration file and generating a set of rules that dictates
the security policy. It is invoked when the module is loaded
with a predefined path to the configuration file and each time
a new configuration is set dynamically.

User Level process
User space

open system call
look up inode

DAC checks

Kernel space

LSM Module Policy Engine

Examine context.
Does request pass policy ?

"OK with you ?"

LSM hook - "
es orfio Grant or deny.
' access inode '
Fig. 1. LSM Hook Architecture

The parser generates a rule set stored in an internal rep-
resentation, which allows efficient rule lookup. The rule set
checker is called for every access to a network object and it
looks for rules that may deny that access. If no such rule is
found, then the default decision is to permit the access.

The dynamic configuration loader is associated with a
character device that permits ioctl operations. These operations
are used to specify a new configuration file to generate new
rules that would replace the old ones. To facilitate an easier
usage of this feature, a helper program was developed to
communicate with the character device.

The LSM hooks component consists of a set of callback
functions that overrides the corresponding default LSM hooks.
These hooks are called just before the kernel would have
accessed the object as seen in Figure 1. The callback functions
use the rule set checker component in order to verify if access
should be granted.

The defined callback functions cover all socket system
call operations: create, bind, connect, listen, accept, sendmsg,
recvimsg, getsockname, getpeername, getsockopt, setsockopt,
shutdown. All these individual hooks can be used to offer fine-
grained access control over sockets.

The Netfilter hooks component is conceptually similar with
the LSM hooks component, the difference being that the
callback functions are used to accept or drop incoming or
outgoing packets. This component alone can offer firewall-like
functionality.

IV. IMPLEMENTATION

As was stated in Section III, the application is composed of
five major modules, for which implementation details will be
presented in the following subsections.

A. The configuration file parser

The configuration file parser is implemented as a user-space
process, which is invoked when the kernel module is loaded
by using the call_usermodehelper function provided by the
Linux kernel. The module waits for the invoked process to
finish loading all the rules from the configuration file. The
user-space process can also be started independently, in which
case it reloads the kernel module configuration.

The reason why a user-space implementation was chosen
for the configuration parser is because reading and processing
files directly in kernel-space is unsafe and the kernel doesn’t
support it by default. Therefore, file processing is done in user-
space and the extracted data is transferred to the kernel module
through ioctl calls.

An example of the configuration file format can be seen
in Figure 2. The configuration file is composed of lines
containing statements that specify the default policy enforced
for cases not covered by the rules, the scope of the rules
(user or group) and operation specific rules. The configuration
file can also include single line comments started by the ’#
symbol.

The operation specific rules have the following format:

o SOCKET CREATE (protocol) ACCEPT | DENY

o SOCKET BIND | LISTEN (source ip) (source port)
ACCEPT | DENY

o« SOCKET CONNECT | ACCEPT | SENGMSG |
RECVMSG (source ip) (source port) (dest ip) (dest port)
ACCEPT | DENY

o SOCKET GETSOCKOPT | SETSOCKOPT (option) AC-
CEPT | DENY

« SOCKET SHUTDOWN (how) ACCEPT | DENY

o PACKET CONNECTION (protocol) ACCEPT | DENY

o PACKET PROTOCOL (protocol) (source ip) (source
port) (dest ip) (dest port) ACCEPT | DENY

The operation specific rules are associated with the user
or group declared before them by using either the USER or
GROUP statement. If there is no such previous statement, the
defined rules are applied to all groups. In addition, if a rule
is malformed, the parser ignores it and displays a notification
message to the standard output.

DEFAULT_POLICY ACCEPT

rules for user root

USER root

SOCKET CREATE tcp DENY

SOCKET BIND 12.212.123.45 * ACCEPT
SOCKET CONNECT * 123 12.212.113.45 * DENY
SOCKET LISTEN * * DENY

SOCKET ACCEPT * * * * DENY

SOCKET SENDMSG * * * * ACCEPT

SOCKET RECVMSG * * * * ACCEPT

SOCKET GETSOCKOPT KEEPALIVE ACCEPT
SOCKET SETSOCKOPT BROADCAST ACCEPT
SOCKET SHUTDOWN * * RD DENY

rules for group student

GROUP student

PACKET PROTOCOL tcp * * * * DENY
PACKET CONNECTION tcp ACCEPT

SOCKET * DENY
PACKET * DENY

Fig. 2. Configuration file example

Due to the fact that the kernel only operates with user and
group IDs and not their name, a name to ID translation step is
required when parsing the configuration file. The translation
is done by parsing the /etc/passwd and /etc/group files and
storing the associations between user and group names and
IDs.

The data extracted from the configuration file is stored in a
structure that keeps the default policy, the policies that apply to
all users and groups and the lists containing the rules specific
to each user and group.

B. The dynamic configuration loader

The dynamic configuration loader is the part of the kernel
module that handles the ioctl call through which the data
extracted by the parser is received. The structures used to store
the rules are slightly different for the parser and the kernel rule
set.

This means that the dynamic configuration loader can’t copy
all the data using a single copy_from_user call. Instead, the
loader has to navigate all the pointers from the user-space
structure and copy the data step by step while building the
kernel-space structure.

The kernel-space structure consists of the default policy,
the list of rules that apply to all users and groups and two
hash tables, which contain the rules specific to each user and
group. Hash tables were used instead of list in order to provide
faster rule lookup. Each hash item contains the default policies
applied to the associated group or user and an array of lists
for each operation type.

C. The rule set checker

The rule set checker provides a lookup function for the rule
set. This function is called in every LSM and Netfilter hook
to check access rights for the requested operation.

The input values for the rule set checker are the operation
type and a structure containing operations specific data. The
structure is the same as the one used internally by the dynamic
rule loader. Depending on the combination of rules, the
returned result can be ’accept’ or ’deny’.

To determine if an operation is permitted or not, the rule set
checker first obtains the user and group identifiers associated
with the process that initiated the operation. The user ID is
used to check if there are any operation rules specific to that
user, in which case the rule set checker searches for a matching
rule. If there multiple matching rules, the one defined last in
the configuration file is used to determine the result.

If there is no rule that matches the parameters of the opera-
tion, the default policy associated with that user is consulted.
If the result cannot be inferred by using this information, the
rules that apply to all users are checked in the same fashion.
Unless the result can be determined, the same procedure is
applied for the group specific rules. The default policy is
consulted when no rule from the configuration file matches.

For each operation specific rule parameter, a **’ symbol can
be declared in the configuration file, which means that the rule
matches for any of the values permitted for that parameter.

D. The LSM hooks

The implemented LSM hooks are set of socket specific
functions that are called before any socket operation is per-
formed, to check if it is permitted. These hooks are stored in
a security_operations structure, which is registered with the
LSM framework.

As not all available LSM hooks are needed, the unused
hooks from the security_operations structure are set to dummy
functions, provided by the Linux kernel.

In each security hook the following operations are per-
formed:

« the data required for rule matching is extracted from the

hook’s arguments

« the rule set checker is consulted in order to determine if

the operation is permitted or not

« the result is logged using the syslog daemon

« the result is returned to the LSM framework

E. The Netfilter hooks

The implemented Netfilter hooks operate only the PRE-
ROUTING and POSTROUTING chains, in order to filter only
the sent and received packets. These hooks are stored in
a nf_hook_ops structure, which is registered to the Netfilter
framework.

These hooks are associated to two types of rules: connection
rules and protocol rules. The protocol rules are static rules that
dictate whether a packet will be sent or received (similar to
the socket send and receive rules).

The connection rules refers to packets sent and received
over a particular connection. If a restricting rule is declared
for a certain protocol, then packets associated to connections
that were initiated by remote peers are dropped.

For each user, the module keeps a list of connections
initiated by him, which are described by the used protocol,
the local and remote ip addresses and port numbers. These
elements are inserted in the list when a connection is initiated
by the local entity and removed when the connection is
closed. Sent packets are not restricted, but received packets
are checked against the connection list.

Connection initialization and termination is protocol depen-
dent. For TCP, the connection is started when the local entity
sends a message with SYN flag set and the ACK number 0,
and is terminated by a message with the FIN flag set.

As UDP is not a connection oriented protocol, packets are
considered part of the same message stream if they are sent
and received only a few milliseconds apart. Thus, when a
packet is sent, a timer is started, which is rearmed when the
response is received. If the timer expires without a response,
the connection is considered closed and its entry is removed
from the connection list.

V. EXPERIMENTAL RESULTS

The solution proposed in this paper was implemented and
tested on a system that runs Ubuntu 7.10 (with the kernel
version 2.6.22-14). The reason this version was chosen and
not a more recent one is that, since version 2.6.24 the LSM
framework can’t be used anymore to create loadable kernel
modules, instead LSM modules need to be compiled together
with the kernel.

This approach was used to ease the development process
as compiling the whole kernel and reinstalling Linux after
every change takes a significant amount of time. Still, the
solution presented in this paper will work with little changes
with newer kernel versions.

The conducted tests were oriented towards validation and
not performance measurement. The main reason for this was
that our efforts were concentrated on first having a functional
version of the solution and future work will include perfor-
mance analysis.

The validation tests were done by using a predefined config-
uration file for the security module and writing an user-space
program, which tries to invoke each of the operation defined
in the rule set. Checking whether a test was successful was

done by inspecting the rule set checker results, which were
printed by the syslog daemon.

DEFAULT_POLICY ACCEPT

rules for user student

USER student

SOCKET * ACCEPT

PACKET * ACCEPT

SOCKET RECVMSG * * * * DENY

Fig. 3. Test configuration file

For example, the kernel module was loaded using the
configuration file listed in Figure 3 that forbids the user
’student’ from using the socket receive message operation. For
this test case two test applications were written.

One of the test applications was deployed on a system on
which the security module was not enabled. This application
listens for connections on a specific port and for each accepted
connection it reads a message and sends back a reply.

The other test application was executed by the user "student’
on a system were the security module was loaded using the
configuration specified in Figure 3. This application connects
to the first one, sends a message and waits for a reply.

The behaviour was that the message sent by the second
application was successfully received by the first one, which
in turn sent a reply that was not received by the remote peer.
Because the security module was configured to deny socket
receive message operation for all connections belonging to
the user ’student’, the recvmsg function returned with an error
code.

Similar tests were done to check the functionality of all
the other rules. The tests showed that the security module
is behaving as expected. However, performance tests are still
important and remain an issue for future work.

VI. CONCLUSION

The approach presented in this paper offers a solution
for implementing a network security module that enforces
the MAC schema. In order to achieve this, we used the
LSM and Netfilter frameworks, which provide a set of hooks
for restricting user access to specific socket operations and
filtering network packets.

The main advantage of the proposed solution is that it allows
complex security policies to be implemented by offering
fine-grained control over socket operations. This presents an
advantage over the standard Linux network security module
that provides only network packet filtering capabilities.

Future work can be aligned to two directions: conducting
thorough performance testing as well as optimizing the appli-
cation and adding new features such as extending the rule set
to support filesystem access. In addition, porting the security
module to a newer kernel version should also be taken into
account.

(1]

(2]

(3]

(4]
(3]
(6]
(71
(8]

REFERENCES

D. D. Downs, J. R. Rub, K. C. Kung, and C. S. Jordan, “Issues in
discretionary access control,” Security and Privacy, IEEE Symposium on,
vol. 0, p. 208, 1985.

Y. Jiang, C. Lin, H. Yin, and Z. Tan, “Security analysis of mandatory
access control model,” in Systems, Man and Cybernetics, 2004 IEEE
International Conference on, vol. 6, pp. 5013-5018, IEEE, 2004.

C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman,
“Linux security modules: General security support for the linux kernel,”
in Proceedings of the 11th USENIX Security Symposium, vol. 2, p. 44,
San Francisco, CA, 2002.

S. Smalley, C. Vance, and W. Salamon, “Implementing selinux as a linux
security module,” NAI Labs Report, vol. 1, p. 43, 2001.

M. Bauer, “Paranoid penguin: an introduction to novell apparmor,” Linux
Journal, vol. 2006, no. 148, p. 13, 2006.

C. Schaufler, “Smack in embedded computing,” in Proceedings of the
10th Linux Symposium, 2008.

G. Purdy, Linux iptables Pocket Reference. Pocket References Series,
O’Reilly Media, 2004.

J. Engelhardt and N. Bouliane, “Writing netfilter modules,” Revised,
February, vol. 7, 2011.

