Torque Extension for Scheduling in Cluster
Environments

Réazvan Ghitulete, Ana Ion, Mihai Prica
Automatic Control and Computers Faculty
Politehnica University of Bucharest
Emails: {razvan.ghitulete, ana.ion, mihai.prica}@cti.pub.ro

Abstract—This paper presents a solution for scheduling dif-
ferent types of tasks in a cluster environment running the
Torque open source resource manager. Given the heterogeneity
of the resources specific to clusters, it is important to provide
efficient ways of dispatching jobs, maximizing throughput and
performance. Currently, Torque only offers a first come, first
served implementation (without using any scheduling plugins)
and this is the problem we address in this paper. The proposed
solution provides means of scheduling using different algorithms
such as Bag-of-Tasks, aperiodic and DAG scheduling. We will
present implementation details for each of the models, evaluating
their performance using different workload scenarios.

Index Terms—cluster scheduling, DAG, Bag-of-Tasks, Torque

I. INTRODUCTION

Cluster technologies enable the aggregation of distributed
resources for solving large scale and computationally intensive
problems. The parallel and distributed computing community
has put a lot of effort in developing and understanding
scheduling algorithms for this kind of environments. Several
of these algorithms have been implemented in commercial or
open source solutions. Most of the clusters use space-sharing
[10] algorithms that assign resources to a single task until that
task completes execution. Some of the most common examples
in this category are first in, first out (FIFO), round robin (RR),
shortest job first (SJF), longest job first (LJB). FCFS and FIFO
work in a similar manner, assigning tasks to processors in the
order they arrive. RR assigns the tasks in the order of their
arrival, using a cyclical approach. SJF and LIJF sort, ascending
and respectively descending, the tasks based on the length of
their execution time, targeting the improvement of the average
turnaround time or that of the system’s utilization.

Based on these simple scheduling models, more complex
approaches can be developed. The Bag-of-Tasks model [5]
represents an application made of a collection of independent
and identical tasks that are to be scheduled on a master-worker
platform. Given the case of a homogeneous environment, a
greedy approach will achieve an optimal throughput. Still,
clusters are usually characterized by resource heterogeneity
in both CPUs and communication bandwidths, so it becomes
crucial to select which resources will be mapped to each
component of the application, before initiating the computation
phase.

The aperiodic scheduling paradigm is strictly related to the
distinction between hard and soft tasks. If meeting a task’s
deadline is critical to the system’s operation, then the task

is considered hard and scheduling decisions must be based
on respecting this constraint. If it is desirable to meet a task’s
deadline, but missing it is tolerable, then the task is considered
to be a soft one. For each of the categories exist different
scheduling approaches. This paper will consider the problem
of scheduling soft deadline aperiodic tasks that require fast
average response time from the scheduling entity. This goal
is achieved by the use of heuristic algorithms, as obtaining
optimal solutions is generally a NP-hard problem.

In comparison to the Bag-of-Tasks model, the directed
acyclic graph (DAG) representation is used when the input jobs
are characterized by execution dependencies. Each node in
the graph represents an executable job and each directed edge
implies a precedence constraint between two tasks. The task
scheduling problem consists of allocating the tasks on existing
resources so that all precedence constraints are respected and
the makespan (overall execution time) is minimized. Various
heuristic can be used to achieve this goal, some of the most
popular ones being Dynamic Level Scheduling (DLS), Het-
erogeneous Earliest Finish Time (HEFT) and Fastest Critical
Path (FCP).

Taking into consideration the aspects previously presented,
the goal of this paper is to enhance the Torque scheduling
solution with support for the described models and to compare
these approaches. Torque is a distributed resource manager
that was developed starting from the PBS project. It provides
control over batch jobs and distributed computing resources. It
is an open source tool that adds to PBS [3] important features
in terms of scalability, usability, reliability and functionalities.
The main objective of this project is the design and implemen-
tation of a cluster scheduling service on top of Torque. This
will improving the scheduling quality by focusing as much as
possible on the user demands. The solution will be validated by
thorough testing in a real-world, heterogeneous and dynamic
environment.

The rest of this document is organized as follows. Section 2
presents the current scheduling solutions Torque is compatible
with. Section 3 offers details on the design of the solution,
presenting the architecture of the meta-scheduler we propose.
Section 4 describes the implementation details. In section 5
experimental results are discussed, while the last section, 6,
synthesizes our conclusions and outlines future work direc-
tions.

II. RELATED WORK
A. Open Source Resource Managers

Selecting the proper scheduler is an important decision that
affects directly the performance of the cluster’s utilization.
Responsiveness, availability, scheduling techniques are all
dependent on the used scheduling tool. The default Torque
scheduler, pbs_sched, is a basic solution that manages tasks in
a FCFS manner. It provides poor utilization of the resources
and does not scale under heavy workloads. The alternative
options are Maui Scheduler or Moab Workload Manager.

1) Maui Job Scheduler: Maui [1] is an advanced open
source job scheduler designed to optimize the utilization of
the system’s resources in heterogeneous environments, such
as clusters. Moreover, it is highly suitable for policy driven
tasks, being focused on fast turnaround time for large parallel
jobs. These aspects make it an efficient solution for HPC. It is
compatible with other resource managers, being able to replace
built-in schedulers and to improve the overall performance.

Maui uses a two phase scheduling algorithm. The first phase
schedules high priority jobs, using advance reservation. During
the second phase, a backfill algorithm is used in order to
schedule low priority jobs. The fair-share technique is used
when making scheduling decisions based on job’s history. This
approach is motivated by Maui’s internal behaviour that is
based on a single, unified, working queue that maximizes the
utilization of resources.

Although users are guaranteed specific QoS, administrators
are granted most of the control when using Maui. In this
manner, access to resources can be filtered according to
scheduling policies. Administrators are allowed to enable dif-
ferent QoS levels of access for users and jobs, which can then
be preemptively identified. Maui uses QBank for allocation
management, tools which allows multisite control over the use
of resources. The scheduling daemon is centralized and runs
on a single node.

Preemption is also supported, high priority jobs being
allowed to interrupt lower priority or backfill jobs if resources
are not available. Resources reserved for high priority tasks
can be assigned to lower priority ones if no high priority task
is queued. However, the resources will be reclaimed once a
high priority job is submitted.

Although offering a elaborate model of scheduling, Maui
lacks some of the essential features needed for efficient
scheduling in cluster environments. It does not support multi-
ple queues submission. In addition, it is a rather rigid platform,
new scheduling algorithms being difficult to integrate. The
priority driven scheduling may lead to poor performance
caused by process starvation.

2) Moab Workload Scheduler: Moab [2] is a solution to
manage a HPC environment with support for job scheduling
and workload management, offering an adaptive switcher for
both Linux and Windows workloads. At a high level it applies
site policies and optimizations to orchestrate jobs and services
across compute, network and storage resources. More than just
scheduling facilities, it provides an entire ecosystem for cluster

monitoring and performance evaluation.

Moab’s functionality is based on the assignment of pri-
orities to jobs, based on credentials, resources, usage and
job attributes. The priority of a job is computed as sum of
the priorities of different individual factors. After assigning a
dynamic priority value (which can change during runtime), a
task is submitted to a queue.

Offering a pluggable architecture, Moab can interface with
external Resource Managers (such as Torque). The resource
requirements are fulfilled using job templates. It is possible
to define new resources, but also to add or remove existing
ones from running queues. The queues can be configured to
use groups of resources and the scheduler may take decisions
based on resources availability.

Moab has an extensive set of scheduling algorithms. It
can schedule batch jobs, parallel jobs, and service workload.
Moab’s support for parallel jobs relates directly to the parallel
support provided by the Resource Managers. Torque supports
parallel and array jobs. Time based recurrence jobs are sup-
ported in Moab through the use of Triggers and Reservations.
Using Reservations guarantees availability of resources and
job start time — which might be critical for recurrence jobs.
Moab supports various event based scheduling in the form of
triggers. Some of the supported events are: threshold limits
in reservations, jobs hold/preempt scenarios, and scheduler
events. Moab can schedule workflows (which can be a group
of jobs). It also supports workflow creation through templates,
API and custom processes.

B. Proprietary Resource Managers

Besides the open source resource manager, commercial
solutions are also available. Platform Load Sharing Facility
(PLSF) is part of this category. It pursues maximization of
resource utilization within the constraints of the local admin-
istration policies. PLSF uses basic scheduling algorithms, as
well as advance reservation or backfill. The two available
versions, PLSF and PLSF HPC, offer dynamic scheduling
decision mechanisms. Using these means, jobs can be migrated
to computing nodes or rescheduled during execution, at the
cost of a higher scheduling computation cost. PLSF can
interface with external schedulers, such as Maui, enabling
sophisticated scheduling. The solution proposed in this paper
is only compatible with the Torque resource manager, but, in
the future, support for PLSF may also be added.

III. ARCHITECTURE

One of the main design goals for this project was the
decoupling between the proposed Torque extension and the
existing resource manager so that our solution will be as
independent as possible while making use of the underlying
scheduling architecture. Another major design goal was the
seamless integration between the meta-scheduler and the ex-
isting manager. In this scope, the design is a simple one, both
from the user’s perspective as well as from the developer’s
point of view. An overview of the design is represented in
Figure 1.

Extension

Torque
Server

Nodes

Figure 1. Extension architecture overview

Based on these goals, the extension was built using a mod-
ular design, with three independent stages that communicate
in a pipeline fashion.

A. Parser

The Parser is the main entry point into the program and is
responsible for interpreting the user provided input. It receives
a resources description, and also a list of the tasks that
have to be scheduled. It has a modular design, so that new
configuration file formats can easily be integrated. Different
types of workloads can be specified, as we enhanced support
for dependent tasks execution as well as bag of tasks scenarios.
After the parser has finished reading and validating the user
provided input, it can start the second stage of the pipeline.

B. Scheduler

While the parser is the main entry point into the application,
the scheduler stage represents the core. Based on the invoked
scheduling algorithm and the workload provided, a run order
will be outputted. This will, then, be forwarded to the next and
final stage of the pipeline, the executor. Various scheduling
policies are implemented at this stage, the final scheduling
configuration being highly dependent on the resources that
are available. As well as the parser, the scheduler is designed
so that it can be easily extended by adding more scheduling
algorithms, without the need to modify the core application.

C. Executor

In the final stage of the pipeline, the tasks are sent to the
cluster’s resource manager to be executed. Extra precautions
have to be taken to ensure the tasks are not scheduled in a
different order by the basic Torque scheduler. This stage could
as well be integrated in the Scheduler, but this would bring
unwanted overhead to it and would also restrict the flexibility
associated with the future extension of the Scheduler.

IV. IMPLEMENTATION

In order to enhance Torque with support for the schedul-
ing models that were mentioned in the Introduction section
of this paper, we created a Python implementation of a
meta-scheduler, built according to the architectural design

previously described. As the response time is not critical
(scheduling is statically performed, using input files), a high
level programming language suits the implementation. In addi-
tion, Python also offers support for DAG representations (the
pygraph packet) and is a free and open source programming
language, thus the solution being portable and easy to extend.
Figure 2 illustrates the classes diagram used in the imple-
mentation. The modular design allows easy integration of the
current solution with other scheduling models or algorithms.

Algorithms

DAG pel BoTs

| ccF EDF FCFS

ETF ECT

| | werer wQ

M MinMax

| MinMin

[

. _Y_ _ _ — I_ — — 3
I Scheduler |

Parser

| I
|
Covmoen) bl Gamrary
| I
G | . |

([- — — 4

Workload
Input File
Resources
Input File

| Executor

|

| |

G

! |

! |
| — — — _—

Figure 2. Classes diagram

As mentioned at the beginning of this document, the Torque
extension we propose consolidates the current version of
the resource manager by adding support for new types of
scheduling. The DAG model is associated with tasks that
are tightly coupled and present dependencies among each
other. Aperiodic scheduling is specific for running tasks that
have to be completed before meeting a deadline. The Bag
of Tasks approach addresses independent tasks that reach the
system organized in separate ’bags” (applications). The results
obtained for each of these paradigms are discussed later in this
paper, different heuristics for each of the scheduling model
being analyzed.

A. DAG Scheduling

This type of scheduling is specific to applications where we
have dependencies between the tasks and an estimated running
time is known a priori for each task. The application can be
modeled using a directed acyclic graph (DAG) in which the
nodes represent the tasks and the edges represent inter-task
dependencies.

For a solution to be valid, all the inter task dependencies
have to be satisfied. The results of the algorithms are compared
based on the overall completion time (makespan). Because

the problem is NP-complete, various heuristics are used for
minimizing the time for the scheduling itself.

Most of the heuristics are based on list-scheduling which
consists of two phases: task prioritizing, where each task is
assigned a priority and the actual scheduling, where the tasks
are sorted by their priority and are assigned to the processor
that minimizes a cost function. If the processor selection
phase starts after the priorities have been assigned to all the
tasks, the algorithm is called static and if the two phases are
interleaved the algorithm is called dynamic. For this project we
chose to implement two static and two dynamic list-scheduling
algorithms [7].

o Highest Level First with Estimated Time (HLFET): The
HLFET algorithm is one of the simplest static list-
scheduling algorithms. At each step, the tasks are sched-
uled on the processor that allows for the earliest start-
time. It uses an attribute called static level (SL) as the
scheduling priority. The static level of a node is the cost
of the longest path from the node to the exit node without
taking into account the communication costs between the
tasks. The tasks are sorted in descending order by their
static level and are scheduled on the processor that allows
for the earliest execution start time.

e Modified Critical Path (MCP): This algorithm is very
similar to HLFET, except it uses the LST(Latest Start
Time) attribute for the task prioritizing. The tasks are
sorted in ascending order by their LST and are processed
in a sequential manner. Each task is scheduled on the
processor that allows for the earliest execution start time.
In the case of equivalent LST value, the LST values of
the children of the tasks are taken into consideration to
break the tie.

o Earliest Time First (ETF): This main goal of this dy-
namic list-scheduling algorithm is achieving a good load
balancing on the available processors. At each step of
the algorithm, the earliest start-time is computed for each
ready node (node having all parents scheduled) and the
one with the smallest time to start is selected. In the case
of a tie, the node with highest static level priority will be
chosen.

e Dynamic Level Scheduling (DLS): The DLS algorithm
is very similar to ETF except it uses an attribute called
dynamic level(DL) as the scheduling priority. The dy-
namic level is the difference between the static level
of a node and the earliest start-time on a processor. At
each step of the algorithm, the DL is computed for each
ready node(node having all parents scheduled) and the
node-processor pair that gives the largest value of DL is
selected for scheduling.

B. Bag of Tasks Scheduling

For the Bag of Tasks scheduling paradigm, there are two
scheduling stages that were taken into consideration: bag
selection and task scheduling inside the bag. The high level
of parallelism which characterizes cluster environments where
Torque is usually run, allows the implementation of different

policies for the two steps involved by the Bag of Tasks model.
The strategies further described will be compared in terms of
the makespan that was obtained during testing.

There are several techniques for performing the bag selec-
tion phase [6]. Each bag is associated a queue when it enters
the system and the centralized scheduler decides the way
the tasks in each bag are mapped to the available resources.
Moreover, we assume all bags are submitted at the beginning
of the scheduling period, thus all information about tasks
inside a bag or tasks duration is known a priori.

In our implementation we considered the following bag
selection policies:

e First Come First Served Exclusive (FCFS-excl): Appli-
cations (bags) are scheduled in the order of their arrival.
No other bag is given access to resources until all the
tasks in a bag are completed. This approach is indicated
especially when the submitted bags belong to different
users and there are strong security policies enforced.

e First Come First Served Shared (FCFS-shared): In a
similar manner to the previously described policy, appli-
cations are also scheduled in the order of their arrival, but
resources are not longer assigned to a single Bag. Once
the current running bag finishes executing its tasks, jobs
from the following bag will be submitted in the system.
Certainly, this approach ensures a better utilization of
the available resources, as the processors that complete
execution earlier are no longer kept idle until all tasks in
a bag are finished.

o Minimum Bag First (MinBag): This policy uses available
a priori information in order to sort the bags by their
execution time (execution time of a bag is sum of the
execution time of the tasks inside a bag). In this manner
the bags that have the minimum completion time are
submitted first, so in case of a system failure they are
more probable to have been executed. Both shared and
exclusive access to resources are available for this policy.

Task scheduling inside a bag has the highest impact on
the resulting maskespan. Ideally, the tasks inside a bag are
identical and they target the same behavioral response from the
system. Nevertheless, the I/O operations and the computation
cycles of a task often lead to different execution costs. The
heuristics presented in [8] target the same meta-scheduling
approach that we address in this paper. Taking into consider-
ation that the scheduling technique we use statically assigns
jobs to resources before starting execution, it is important to
implement a method that delivers a good response time. Under
these circumstances, a near optimal solution is considered to
be satisfactory. The Torque extension we developed uses the
following heuristics for programming the tasks inside a bag:

o First Come First Served (FCFS): The tasks are executed
in the order of their arrival. Although this heuristic has
the best response time, no information about resources
state or performance is used by the scheduler. In addition,
load on the machines during execution is not taken into
consideration.

o Earliest Completion Time (ECT): Each task is assigned
to the processor that leads to the earliest completion time.
When comparing the time to complete the task on a
processor the following function is used to evaluate the
performance:

ratio = TaskCost x ProcLoad/ProcPer formance
ey
The parameters in the formula 1 represent the cost to
execute the task, as mentioned in the workload input file
(TaskCost), the time the task has to wait until execution
for the chosen processor (ProcLoad) and the performance
unit assigned to the processor (ProcPerformance).

e MinMin: Min-min heuristic uses minimum completion
time (MCT) as a metric, so the task which can be
completed will be firstly executed. Starting from the set
of all unmapped tasks, the set of minimum completion
times, M = min(completion time(Ti , Mj)) for (1 <i <n,
1 <j < m), is computed. The completion time for a task
is computed using the evaluation function mentioned in
1. M consists of one entry for each unmapped task. The
task with the minimum completion time is selected and
assigned to the corresponding machine. The mapped task
is removed from the set and the process repeats until all
tasks are assigned resources (U is empty).

e MaxMin: Like MinMin, the MaxMin heuristic also uses
the MCT as metric. Starting from the same set U of
unmapped tasks, the M set of minimum completion times
is found. The task with the maximum completion time is
chosen and assigned to the machine, removing it from
the set U. The steps are repeated until all the tasks are
mapped.

o WorkQueue: This basic heuristic randomly chooses the
next task to be scheduled. The designated job is assigned
the best machine (the one which leads to the minimum
completion time).

C. Aperiodic Scheduling

The implemented Torque Extension also has a module
that support scheduling for aperiodic tasks. This paradigm is
completely different from the ones presented above due to the
unique restrictions introduced by each task. Due to the fact
that there is no guarantee, whatsoever, that the tasks can be
scheduled respecting the user provided deadlines, our meta-
scheduler introduces the concept of soft task deadlines, mean-
ing that the outputted scheduling might miss some deadlines.

To illustrate the aperiodic scheduling feature, we imple-
mented a modified version of the Earliest Deadline Scheduling
(EDF) heuristic. As the name clearly states the main criteria
for scheduling tasks is the deadline. Tasks are sorted in
ascending deadline order and then are scheduled at the next
suitable time interval. The EDF[11] heuristic is one of the
simplest heuristics available for scheduling aperiodic tasks,
but also one of the few that can be used on the Torque
infrastructure, due to its non-preemptive behavior. This non-
preemptiveness exposed by the Torque scheduler is also the

main reason for introducing the soft deadline concept, in our
implementation, and allowing tasks to miss deadlines. Another
difference from the standard EDF algorithm is the ability to
schedule on multiple cores. This is done by scheduling each
task on the processor that offers the earliest start time possible
which will in turn offer the highest probability of not missing
any deadlines.

V. EXPERIMENTAL RESULTS

In order to test the implementation of the Torque extension
we developed, we ran a series of tests in a simulated environ-
ment. Details regarding the set up of the machines, as well as
the workflow used for testing are presented in the following
sections, specific to each type of scheduling.

A. Bag of Tasks Experimental Results

For testing the Bag of Tasks implementation we designed,
we created a heterogeneous environment that uses eight nodes
to run the tasks. As mentioned before, the scheduling phase
is performed before running any of the jobs, so the tasks
are submitted to Torque using the order outputted by the
scheduler. Figure 3 illustrates the makespan values obtained
using the FCFS bag selection, while in Figure 4 is presented
the evolution of the system using the minimum bag selection
policy. Both policies were tested using the same workload and
tasks were scheduled according to the five heuristics.

120 . I I . .
Q FCFS Maxh c

MinMin
Heuristics

Makespanjseconds)

Figure 3. FCFS-shared bag selection

The good performance delivered by the MinMin heuristic
is based on minimizing the makespan by choosing the fastest
processor for each task. This choice guarantees that all tasks
will executed their earliest completion time, while adding the
minimum load on running nodes. The homogeneity of tasks
specific to a bag (application) leads to their optimal scheduling
when using the FCFS heuristic for both bag selection and task
scheduling.

B. Aperiodic Scheduling Experimental Results

For testing the EDF implementation provided, we used the
dataset from Table I which required the heuristic to provide
a suitable scheduling for a 3 node cluster. The output of the
algorithm can be observed in the last two columns of the same

Makespang(seconds)

12

b wQ FCFS N c

MinMin
Heuristics

Figure 4. MinBag-shared bag selection

Arrival | Cost | Deadline | Node | Start Time
Task_A 1 1 20 1 1
Task_B 5 4 18 2 5
Task_C 4 2 25 3 4
Task_D 3 1 21 2 3
Task_E 2 8 29 1 9
Task_F 3 1 22 3 3
Task_G 3 6 11 1 3
Task_H 3 9 26 3 6
Task_I 2 1 16 3 2
Task_J 9 15 30 2 9
Task_K 2 8 45 3 15
Task_L 1 2 15 2 1
Table 1

APERIODIC TASKS

Table I which illustrates a valid planning of the tasks with no
missed deadlines.

C. DAG Scheduling Experimental Results

A random graph generator [4] was used to generate the
input files for the DAG module. The graphs are generated
based on a number of parameters like the total number of
tasks, the number of levels in the graph and the ratio of
communication cost to computation cost. The algorithms were
evaluated by taking into consideration the overall execution
time (makespan). The results can be seen in Table II. The
rows marked with B represent the percentage of cases when
the algorithm on the row was better that the algorithm on the
column. The rows with E represent the number of cases where
the two results had the same makespan.

The results vary depending on the characteristics of the
graph. The dynamic algorithms averaged a smaller makespan
and, consequently, a higher speed-up than the static list-
scheduling algorithms but with the cost of a higher compu-
tation time. If the scheduling time is a important factor, then
the lower complexity of the static algorithms makes them the
better choice. The two dynamic algorithms have almost the
same performances, while HLFET is better than MCP.

The input files use the same format as DAGMan [9], a meta-
scheduler within HTCondor. The format was extended with a

HLFET | MCP | ETF | DLS
HEEE I IE
MeP |k | s 2 | 0%
mHEIEINE
TEHE AR

Table II

COMPARISON OF DAG SCHEDULING ALGORITHMS

new section for specifying the communication costs between
tasks.

VI. CONCLUSIONS

Scheduling is one of the core actions when using het-
erogenous systems in order to run jobs. Such environments
need powerful resource managers to ensure that the best
results are delivered to the end user. Torque is a popular
implementation for this type of application and the meta-
scheduler implemented by this project extends its capabilities
by adding an extension that allows it to properly schedule
workloads like DAG, Bag-of-Tasks or aperiodic tasks. The
experimental results we measured validate the implementation
of the heuristics described in the previous sections. As we
built a modular system, in the future we plan to add support
for other types of scheduling too, as well as to stress test our
current implementation.

The meta-scheduler proposed by this article does not pro-
vide any mechanisms for fault tolerance. The implementation
of a rescheduling policy for tasks that generate errors at
runtime is a possible future work.

REFERENCES

[1] Maui Scheduler.
maui/mauiadmin.

http://www.adaptivecomputing.com/resources/docs/

[2] Moab Workload Manager. http://www.adaptivecomputing.com/products/hpc-

products/moab-hpc-basic-edition/.

[3] Portable Batch System. www.openpbs.org.

[4] Synthetic DAG generation. http://www.loria.fr/ suter/dags.html.

[5] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal sharing of bags
of tasks in heterogeneous clusters. In 5th ACM Symp. on Parallelism
in Algorithms and Architectures (SPAA’03), pages 1 — 10. ACM Press,
2003.

[6] C. Anglano and M. Canonico. Scheduling algorithms for multiple bag-
of-task applications on desktop grids: a knowledge-free approach.

[7] T. Hagras and J. Janecek. Static vs dynamic list-scheduling performance
comparison. pages 16 — 21. Acta Polytechnica, 2003.

[8] H. Izakian, A. Abraham, and V. Snasel. Performance comparison of
six efficient pure heursitics for scheduling meta-tasks on heterogeneous
distributed environments. pages 695 — 710. Neural Network World,
20009.

[9] J. W. Peter Couvares, Tevik Kosar and K. Wenger. Workflow in condor.

In Workflows for e-Science. Springer Press, 2007.

P. S. and K. Nithya.D. An integrated approach of task scheduling

with space sharing algorithm for effective processor allocation and

scheduling of parallel application. In International Journal of Research
and Reviews in Electrical and Computer Engineering, United Kingdom,

2011. Science Academy Publisher.

J. L. Sungyoung Lee, Hyungill Kim. A soft aperodic task scheduling

algorithm in dynamic-priority systems.

[10]

(11]

