
Parallel GNU Optical Character Recognition
Laura Vasiliu

Parallel and Distributed Systems Master
The Faculty of Automatic Control and Computers

Bucharest, Romania
Email: lauravasiliu@ymail.com

Cristiana Voicu
Parallel and Distributed Systems Master

The Faculty of Automatic Control and Computers
Bucharest, Romania

Email: voicucristiana@yahoo.com

Abstract—The idea of Optical Character Recognition, known
as OCR, was introduced for the main purpose of having the
information in a digitized format, to easily access or search for
the data. To achieve this, powerful and accurate algorithms are
needed for character recognition. Two main issues in this field are
the text line and word segmentation that influence the accuracy
and the speed of processing. Parallel GOCR is meant to bring
the original GOCR to better performance results in terms of
processing time by running in parallel different parts of the tool.
All the pipeline steps of characters processing will be done each
in parallel.

Index Terms—OCR, parallel programming, characters detec-
tion algorithms

I. INTRODUCTION

Document image processing has been an important subject
for the research area in the field of human machine interface
for the last few decades. Optical character recognition, usually
abbreviated to OCR, is the conversion of scanned images
of handwritten or printed text into digitized text. One of its
purposes it to make use of the data that is still not in a
machine-encoded format and serve as a form of data entry
from some sort of original paper data source. By having
the information digitized , data can be easily electronically
searched, stored more compactly and used in machine pro-
cesses such as machine translation or text mining. OCR plays
an important role for the research field in pattern recognition,
artificial intelligence and computer vision.

The need for efficient and robust algorithms and systems
for recognition is being felt around the world. For example,
the postal department needs recognition for sorting the mail.
Another common usage is the preserving of out-of-print old
books by digitising them. Character recognition can also
form a part in applications like intelligent scanning machines,
text to speech converters or automatic language-to-language
translators.

Fast and accurate algorithms are necessary for OCR systems
to perform operations on document images such as pre-
processing, segmentation, feature extraction and post process-
ing. Text line and word segmentation are two main steps in
any OCR system. Having the wrong segmentation may reduce
the accuracy rate of OCR systems. The segmentation is very
challenging in cases of different types of noises, degradations,

and variation in writing and script characteristics. However,
existing algorithms suffer from a flawed tradeoff between
accuracy and speed.

In this paper, we introduce a modified tool, Parallel GOCR,
based on the original GOCR. The original tool is an OCR
(Optical Character Recognition) program, developed under the
GNU Public License. It converts scanned images of text back
to text files. GOCR [2] can be used with different front-
ends, which makes it very easy to port to different OSes and
architectures.

Parallel GOCR is meant to significantly reduce the process-
ing time by running several parts of the tool in parallel. It
intends to make use of shared memory to ensure communica-
tion between multiple threads.

This paper is structured as followed. In section 2 we review
the attempts to develop a parallel optical character recognition
project. Section 3 describes the architecture of an OCR project
and the changes needed to run in parallel. Section 4 describes
a parallel OCR implementation, with all the functions we have
changed. Section 5 presents some test scenarios and the results
for each one, results that will let us conclude some ideas shown
in section 6.

II. RELATED WORK

The first project that is related to our tool is Tesseract. This
application is an accurate open source OCR engine. Combined
with the Leptonica Image Processing Library it can read from
a wide range of image formats and convert them to text in
over 60 languages. Between 1995 and 2006 it had little work
done on it, but since then it has been improved extensively by
Google. It is released under the Apache License 2.0.

Until version 3.0 of Tesseract, this tool did not use any
parallel model. In order to achieve better performance, an API
instance of static methods was used. It was possible to use two
different APIs alternately in the same thread, but using them
concurrently in separate threads was not a good decision.

The main issues of the tool were the critical global variables
that had to be changed, or the memory manager that needed
protection from a mutex, or made thread-local. Either of these
changes would be affected by portability issues.

From version 3.0, Tesseract introduced into the application
the thread-safety concept. This way, multiple instances can be

used in parallel, being processed by multiple threads, with the
minor exception that some control parameters are still global
and affect all threads. To supply a proper environment for
thread-safeness, all critical globals and statics were moved to
members of the appropriate class.

Another project in the OCR field is DRISHTI OCR, having
a multi threaded architecture [3]. DRISHTI stands for Docu-
ment Recognition and Imaging Software for Handling Telugu
as ISCII. It is a project developed by Lalita Nayal and Rakesh
Kumar Gupta, two students at University of Hyderabad. The
main purpose of the DRISHTI project was to improve the
computational speed of the OCR.

In order to achieve this, the communication is based on the
shared memory paradigm. Each thread could either access a
whole line at a time or one word at a time. The main problem
for the DRISHTI project was to synchronize the threads so
that they could have a correct output. For this purpose, they
used mutexes as a mean of synchronization.

The third related project, is Devanagari parallel OCR system
tool [1]. Devanagari text line and word segmentation are
carried out using modified standard profiling based segmenta-
tion approach and parallelized it on Graphics Processing Unit
(GPU).

The project goal is to make segmentation faster for pro-
cessing a large number of document images using parallel
implementation of algorithms on GPU. Due to reduced costs
in comparison to powerful parallel systems, GPUs have been
chosen to match the design of the application. The approach
employs extensive usage of highly multithreaded architecture
and shared memory of multicore GPU.

An efficient use of shared memory is required to optimize
parallel reduction in Compute Unified Device Architecture
(CUDA). Experimental results show an achieved speedup of
about 20x-30x over the serial implementation when running
on a GPU named GeForce 9500 GT having 32 cores.

III. ARCHITECTURE

As shown in Fig. 1, GOCR system starts with the optical
scanning phase or getting the raw RGB data that is going to
be digitized.

As input, the GOCR supports the following file formats:
PNM, PBM, PGM, PPM, PCX (some), TGA. Other formats
are automatically converted using netpbm-progs, gzip and
bzip2 via the use of a unix pipe. GOCR creates a new job
for every image. The raw data is then converted from RGB
format into gray-level format which means that red text on
green background will not be recognized. The gray-level text
image is filtered to remove noise and dust.

The application does not need to train the program or store
large font bases.

As the process of recognition is conducted character by
character, the next step is to segment the text image into char-
acter lines and individual character blocks through horizontal
and vertical projection. For this stage, each character will be

Figure 1. Parallel GOCR Design

put inside a box and processed. There are several steps in the
process of recognizing the characters:

A. Segmentation of textual regions

The first step in recognizing characters is the segmentation
of textual regions. This process is recursively divided in two
parts. It searches the thickest horizontal or vertical gap through
the box. In case the gap is less than five times the thickest gap
no division will be performed. Otherwise, the process will be
repeated with the newly two parts obtained from the previous
division.

B. Line detection

After identifying the textual regions, lines of characters
are detected by looking for interline spaces. These are char-
acterized by a large number of non-black pixels in a row.
The line detection plays an important role for obtaining good
accuracy in character recognition. For example, it is difficult
to distinguish between lowercase letter p and uppercase letter
P without having a baseline (same total height). The lowercase
version of p has a depth (the lower end is below the baseline)
and therefore it’s easy to distinguish from the uppercase
version if the baseline is known. The line detection must find
the baseline of every text line.

Image rotation (skewing) represents a problem, therefore the
program first looks only at the left half of the image. When a
line is found, the left half of the right side is scanned, because
lines are often short. The variation in height gives an indication
of the rotation angle. Using this angle, a second run detects
lines more accurately. The profiling results of the original OCR
revealed that the function that implements this functionality
(detect rotation angle) spends the most processing time from
the whole application. To achieve a better performance, we
used a multi threaded environment by using shared memory
as form of communication between threads. We used OpenMP
[4]tasks as API for having a parallel processing.

C. Cluster detection

A cluster represents a group of pixels connected with each
other. For detecting the cluster the algorithm for leaving a

maze was used.
Up to this point, the text information is localized in stan-

dalone character blocks, in RAM. GOCR is able to work
with different recognition engines. Having this big advantage,
GOCR has the possibility to compare results of different
engines or, in case of a not recognized character, to inform
the user which characters probably could be there. The base
engine is the original engine used in the first implementation
of GOCR.

The database engine was the second engine added to GOCR.
The main algorithm compares not recognized characters with
stored images and calculates a distance value. If the distance
value is small enough, the character is treated as recognized.

The function that glues the holes is also CPU consuming.
We have followed the same approach to parallel the process-
ing, using OpenMp [5] tasks.

IV. OCR ISSUES

There are some cases when the recognition of the letters is
difficult to implement because of some extra or missing pixels
from the letter. For example, let’s take the n letter from Fig.
2, that has some additional pixels at the bottom, which makes
it difficult to detect. The proposed idea contains three main
steps. At first, the horizontal and vertical pixels are marked
with ”=” for the horizontal ones and ”I” for the vertical ones.
The decision to mark one pixel with one of the symbols is
taken based on the distance between the next horizontal and
next vertical white pixels, that there are marked with ”.” .

Figure 2. Example of picture with extra pixels

Secondly, the mean thickness of vertical and horizontal
clusters is measured so that we can identify the main char-
acteristics/lines of the letter. In the last step, we erase the
unnecessary pixels and in the end we obtain the clear letter.

Previously, we mentioned that are cases when we need
to add pixels in order to detect the character. In Fig. 3 we
encounter these cases. Here we have the ”m” letter but the
legs are not glued. In case the engine fails recognizing, a filter
is switched on and the engine starts again. The purpose of the
filter is to add ”O” pixels to connect the pixels that are slightly
apart from one another.

Figure 3. Adding pixels to determine the character

Not only the missing or the extra pixels represent a problem,
but also the overlapping characters. In Fig. 4 we have a good
example of two letters, ”r” and ”u”, that overlap. For the first
one, it is difficult to distinguish between them and we have
to look for the weak connections. A partition of the entire
cluster into boxes is made. Then, a test with the engine is
made on each of the bounded boxes to try to recognize the
character inside the box. In the end, a correction is made for
the surrounding box of each character.

Figure 4. Overllaping characters

Another important issue for recognizing the letter is the
misleading dust on paper represented by the ”blind pixels”,
as can be observed in Fig. 5. These pixels are not connected
with the character and are removed by using a fill-algorithm.

Figure 5. Removing dust

The noise is another problem for detecting the pixels. To
eliminate noise, characters are identified by comparing them
with others, already detected through a distance function.

To simplify the character recognition, the colored images
are converted into gray ones when processing. In this case,
the application will not be able to detect the green text on red
background.

V. IMPLEMENTATION

Before starting to analyze our parallel approach, we profiled
our application with the Solaris Studio profiling tool from
Oracle. This way, we were able to discover the parts were
GOCR was spending most of the time.

In our steps of implementing the parallel version of the
GOCR we encountered several constraints. The first one was
related to the limitation of the picture size. As designed, the
GOCR keeps in memory the entire image while processing.
This fact limits the number of images processed in parallel.
Another important issue that we had constantly taken into
consideration in our parallel implementation was not to lose
accuracy. If we would have just divided the image in chunks
processed by different threads, we would have had broken
rows, broken letters and, as result, a great loss in accuracy.

Moreover, the steps for detecting the characters are in
pipeline. This restricted us from processing different steps in
parallel. So, as the serial version was designed, it narrowed
our parallel design.

Our first approach regarding the implementation of the
parallel version of the GOCR project was to use OpenMP
’for’ directives. The ’for’ directive splits the for-loop so that
each thread in the current team handles a different portion
of the loop. After we have investigated more the code, we
understood that every cluster(the element representing the
image for a letter), is represented in code as an element in
a list. For this purpose, the serial version of GOCR has two
files: list.h and list.c, where you can find the implementation
of some macros and methods used to manipulate a list. The
macro that influenced us in implementing the parallel version
of GOCR is the following:

Figure 6. Iterating the list with all the characters from the image

The second approach proved to be the most appropriate.
Given the fact that the all information about the clusters from
images are saved in a list, we conclude that we have to
use OpenMp tasks, as can be noticed in Fig. 7. The task
pragma can be useful for parallelizing irregular algorithms
such as pointer chasing or recursive algorithms for which other
OpenMP workshare constructs are inadequate.

We parallelized a few parts of the code because if we would
have gone further we would have lost accuracy. We made an
improvement into the function that detects the rotation angle of
the text. We parallelized also inside the function that detected
glue boxes inside another box. The small glue boxes represent
extra pixels that don’t belong to the initial box and have to
be eliminated. The third function to which we improved the
performance is the one that compared the chars that couldn’t
be detected from the first run and had to be compared with

Figure 7. Code snippet of parallel section

the one already found. All these three functions are CPU
intensive because they make several searched in the structure
that contains all the letters received as input.

VI. EXPERIMENTAL SETUP AND RESULTS

A. Performance profiling

This section shows the profiling results for both serial (Fig.
8) and parallel (Fig. 9) approach and refinements made in light
of this analysis using the Sun Studio profiling tool.

Figure 8. Profiling results of the serial GOCR

B. Results

We run our benchmark, once, on an environment on differ-
ent scenarios with 2, 4, 8, 16 and 32 different Nehalem cores
on the same node from the fep.grid.pub.ro cluster.

As set of data, we used a 15 MB ppm file with text and
no figures. From the results pictures we can notice that the
parallel GOCR obtains a good speedup for 8 threads, being
3.2. Moreover, we obtained 95 percent accuracy on the parallel
version in comparison with the serial implementation.

As you can observe in Fig. 11, the speedup when the
application is running on 2 threads is 1.9. This means that

Figure 9. Profiling results of the parallel GOCR running on 8 threads

we have reached our goal, we have parallelized the part from
the serial project that is taking the most important time. Also,
another conclusion that can be drawn from this graphic, is
that the I/O part doesn’t take so much time, related to the
time necessary for character recognition.

Figure 10. Results of running the application on multiple number of threads

Figure 11. Speedup obtained from running the application on multiple
number of threads

VII. FUTURE WORK

Even if the code has been developed to the point where
it can recognise well formed printed text with a high de-

gree of accuracy, a real step forward could be developing a
commercially product. We propose for future development the
following extensions:

1. Line segmentation

As a feature, we propose designing a new line segmentation
algorithm that could be able to handle correctly pages of text
with multiple columns and poorly aligned text. We might have
the case of important data from newspapers. Because these
issues could easily affect the viability of the parallel approach,
we consider that they are highly important and should be
addressed before other extensions.

2. Extending the characters that can be recognized

This is an important request since the tool should be
available on a wide range of languages. This feature would
require quite little effort for implementing.

3. Improve performance on lower quality documents.

The tool should address different input qualities. From high
resolution scanned documents to lower quality such as faxes
and photocopied text.

So far, we talked about improving the recognition phase
of the application. Once these issues are solved , there are
a range of techniques available for improving the accuracy:
an improved character segmentation algorithm, the use of
contextual information and more sophisticated handling of
multiple fonts - the classifier could remember the current font.

VIII. CONCLUSIONS

In this paper, we have briefly described the experience
made by parallelising a sequential OCR application by using
OpenMP paradigms. The parallel OCR project which has been
implemented has demonstrated a good scalability when run-
ning on the Politehnica University Fep cluster and on personal
computers, as well. Furthermore, the scalability can be easily
improved as more sophisticated computational techniques are
employed.

The results indicate that a parallel approach on a work-
station cluster offers a promising means of achieving high
performance OCR.

REFERENCES

[1] Devanagari parallel ocr system. http://www.ijcaonline.org/volume24/
number9/pxc3873988.pdf.

[2] Gocr. http://jocr.sourceforge.net/.
[3] Multi threading drishti ocr. http://dcis.uohyd.ernet.in

/ chakcs/ProjectReport.odt.
[4] Openmp 3.1 specification released. http://openmp.org/wp/2011/07/

openmp-31-specification-released.
[5] Openmp compilers. http://openmp.org/wp/openmp-compilers.

