
Detecting and Analyzing Zero-day Attacks using
Honeypots

Emma Mirica
University ”Politehnica” of Bucharest

Computer Science and Engineering Department
Bucharest, Romania

Email: emma.mirica@cti.pub.ro

Constantin Musca
University ”Politehnica” of Bucharest

Computer Science and Engineering Department
Bucharest, Romania

Email: constantin.musca@cti.pub.ro

Abstract—Computer networks are overwhelmed by self prop-
agating malware (worms, viruses, trojans). Although the number
of security vulnerabilities grows every day, not the same thing
can be said about the number of defense methods. But the most
delicate problem in the information security domain remains
detecting unknown attacks known as zero-day attacks. This paper
presents methods for isolating the malicious traffic by using
a honeypot system and analyzing it in order to automatically
generate attack signatures for the Snort intrusion detection/pre-
vention system. The honeypot is deployed as a virtual machine
and its job is to log as much information as it can about the
attacks. Then, using a protected machine, the logs are collected
remotely, through a safe connection, for analysis. The challenge
is to mitigate the risk we are exposed to and at the same time
search for unknown attacks.

Index Terms—Honeypot, Zero-day attacks, Intrusion detec-
tion/prevention system

I. INTRODUCTION

There has been an exponential growth in the number of
attacks and the current security mechanisms can’t keep up.
Every day hackers find new ways to break into systems,
destroying, modifying and stealing private data. They bypass
firewalls, security appliances, anti-virus applications and noth-
ing seems to stop them.

The primary goal of this research paper is to reinvent the
way information security research is done. We need to change
the approach used in detecting unknown attacks. Sun Tzu said
centuries ago that if you know the enemy and know yourself,
you need not fear the result of a hundred battles.

Instead of building firewalls and writing intrusion detection
and prevention systems, we are going to lure in attackers and
study their penetration methods. The primary concept in our
research is represented by the honeypot term, which signifies
a system similar to a production one that is used to gather
information about the attackers and their attack vectors.

We use an isolated environment (a virtual machine) to
deploy the honeypot system, which consists of software com-
ponents that constantly analyze what is happening to the
system. By doing so we don’t have the needle in the haystack
problem, which is trying to figure out whether the traffic
is malicious or not. The honeypot system will have only
malicious activity because it will not be used as a production
system.

Using a protected machine we will capture the collected
data through an encrypted tunnel and then process it. The
aim of this research is to build a system that automatically
detects unknown attacks and generates signatures for the Snort
intrusion detection/prevention system. In other words, we
deploy an attack analysis framework on the protected machine
and create IDS/IPS signatures by analyzing the incoming
traffic on the honeypot.

In order to successfully deploy a honeypot, we need to
satisfy the data control, data capture, data analysis and data
collection requirements. Thus, we have to mitigate the risk
of having the attacker circumvent the container’s security
mechanisms. The best way to do this is to use a combination of
different security layers, which makes it hard for the attacker
to penetrate the security container. Also, we have to capture
as much information as we can without being detected by the
attacker. In the end, the data is transformed into information
using the zero-day attack detection framework.

The remainder of this paper is organized as follows: Sec-
tion II presents an overview of related work. Section III dis-
cusses in detail the system’s architecture. The implementation
is presented in Section IV and some experimental results
are described in Section V. In the end, we summarize the
contributions and future work in Section VI.

II. RELATED WORK

A similar work is presented by Reshma R. Patel in his
”Zero-Day Attack Signatures Detection using Honeypot” ar-
ticle [1]. He describes Honeycomb, a Honeyd host-based de-
tection system extension, which applies the Longest Common
Substring (LCS) algorithm on per-service data captured by the
honeypot.

Honeyd is a framework that simulates computer systems at
the network level in order to fool the attackers. The strategy
used is to put the honeypot close to the production servers
and start common services like Telnet, Hyper Text Transfer
Protocol, File Transfer Protocol in order to lure the attackers.

The main idea is that all the incoming traffic on the
honeypot is considered malicious and is used to generate Snort
and Bro signatures. However, the problem is that it suffers
from false positives because it can overgeneralize per-service
data and generate a non-attack signature.

Fig. 1. Architecture

Honeycomb also uses the Dynamic Taint Analysis for track-
ing incoming data from the network throughout the processes.
Tainting the data permits the system to send alerts when tainted
data is used in sensitive operations like JMP. Reshma Patel’s
system was able to successfully detect the Slammer worm and
create a signature for it.

The challenge with the Dynamic Taint Analysis approach is
represented by the propagation of the taint marks. We taint the
memory by associating a tag (a number) with every chunk of
memory allocated. The method’s primary purpose is to detect
Illegal Memory Accesses (IMAs), but it can also be used to
monitor how the data received through a network socket is
used later in the program. The ”Effective Memory Protection
Using Dynamic Tainting” [2] article presents an extensive
research regarding the propagation of taint marks in order to
detect illegal memory accesses. Every time a chunk of memory
is allocated, a tag is associated with both the memory and the
corresponding pointer. When one accesses a memory address
<m> using a pointer <p>, the dynamic tainting component
stops the execution if the tags are different. By marking and
tracking the data at runtime, one can verify if there are any
memory faults.

Another interesting article is ”Detecting Targeted At-
tacks using Shadow Honeypots” [3]. The proposed solution
combines the following components: a filtering component,
anomaly detection sensors and a shadow honeypot. A shadow
honeypot is another instance of the protected software and
shares the internal state with the regular application. The
difference is that the application’s original source code is
patched with the shadow honeypot code. The shadow honeypot

is instrumented to detect specific types of attacks. Based on
the anomaly detection sensors’ prediction, the system calls the
shadow instance or the regular application.

Hence the main idea of this project is to combine the advan-
tages of a shadow honeypot and an anomaly detection system
to prevent malicious requests to the protected application. This
way, when a request is received the filtering component will
block known attacks or will pass the request to the next stage
to be analyzed by one or more anomaly detection sensors.
The anomaly sensors will signal the system if the request is
potentially dangerous. If it is, the request is processed by the
shadow honeypot, which will notify the filtering process that
the attack was real (this way further requests will be blocked
by the filtering component). If the request doesn’t present any
danger, it will be processed by the application itself.

The shadow honeypot implementation was successfully
tested against some known exploits such as Mozilla PNG
exploit and other Apache-specific exploits. The results were
promising despite the considerable cost of processing suspi-
cious traffic on the shadow honeypot.

III. ARCHITECTURE

In order to lure attackers, we must first set our trap. The
honeypot (or eventually honeypots) will have to be placed
in our network alongside other systems: several workstations
that run different operating systems, servers and others. The
network will be protected by an IDS/IPS system that will be
improved by using our setup: a honeypot that communicates
through an encrypted channel with a protected machine where
our implementation of an attack detection framework is run-
ning.

The system’s general architecture is illustrated in Figure 1.
It is a simple and efficient approach of detecting unknown
network-based attacks. Its major components are: the honeypot
system, a framework that generates signatures and a filtering
component.

The filtering component is actually an intrusion detec-
tion/prevention system (such as Snort). Its purpose is to block
attacks based on the signatures it knows. This component
analyzes the traffic and based on its signatures, the traffic is
dropped or passed as it is malicious or not. The traffic passing
through the filtering component is logged by the honeypot
component. The honeypot doesn’t do any processing. It only
captures some information. The framework is implemented
on another machine, a protected one. This machine will
retrieve the information saved on the honeypot through a
secure channel. This framework analyzes the logs and based on
different methods it generates new signatures for the filtering
component.

The idea is to build the honeypot system using a virtual
machine or Honeyd. This honeypot will have many common
services running (such as apache, postfix, etc.) in order to
make it seem more valuable and lure in the attackers.

The filtering system can be implemented using Snort. Snort
is an open source network intrusion detection and prevention
system that can work both on Unix and Windows.

The framework will implement different methods (for ex-
ample memory tainting) of detecting and analyzing attacks.

The processing logic of the system is: when traffic flows
through the filtering component, it will be analyzed by the
filtering component based on the signatures it knows. If the
traffic turns out to be malicious the filtering component will
not let it pass. On the other hand, if the traffic doesn’t match
any signature it will flow through the network, including the
honeypot system, which will log information about it. Based
on the logs it retrieves from the honeypot, the framework runs
several algorithms and generates new signatures if it detects
unusual activity. This way, the filtering component is improved
and it can detect previously unknown attacks.

The first step of our project was to build the honeypot and
to collect information. We used two types of honeypots: a
virtual machine and a virtual honeypot created with Honeyd.
Also, in order to obtain valuable and secure information about
the honeypot’s state, we process these logs on a protected
machine. More details will be given in the next sections.

IV. IMPLEMENTATION

As was mentioned before, we only focused on collecting
information from the honeypot. This raised some questions:
what information is valuable, how to transfer this information
securely to the protected machine, what statistics are relevant
in defining and detecting new attacks.

A honeypot can also be classified according to the level
of interaction the attacker has with it. And so we have low-
interaction honeypots and high-interaction honeypots. The first
one can be a port listener program that logs any connection

without doing an actual task. On the other hand, the high-
interaction honeypot can be a server that runs real services.
As one can see, the second category is riskier as with a low-
interaction honeypot the only thing the attacker can do is open
and close some ports.

We decided to implement our solution for these two differ-
ent types of honeypots. The next sections describe these two
solutions and their specific implementation.

A. Implementing data collection on Honeyd

A virtual honeypot [4] is a software application designed
to appear to be a real functioning network, but is actually used
to be probed and attacked by malicious users. The difference
between a honeypot and a virtual honeypot is that the first one
is a hardware device that lures attackers into its trap, whereas
the second one is a software that emulates a network. With
the classification from the previous section, a virtual honeypot
is a low-interaction honeypot.

Honeyd [5] is defined as ”a small daemon that creates
virtual hosts on a network”. It is an open source software
released under GNU General Public License. The Honeyd
framework is very flexible as it offers users the option to
configure different arbitrary services, which appear to be
running on different operating systems. Using Honeyd it is
very easy to configure a virtual honeypot.

When talking about virtual honeypots, Honeyd is the best
choice as:

• It is free and easy to configure and deploy.
• It can emulate different operating systems: Windows NT,

Windows 2000, Linux, Solaris, Cisco etc.
• It emulates services, not only at application level, but also

at the TCP/IP stack level.
• It offers logging capabilities. It can log TCP, UDP, ICMP

activity, but one can also add logging capabilities to the
scripts that emulate services.

• It can be easily installed on a Windows or Linux machine.
We installed Honeyd on a customized Linux machine used

mostly for penetration testing, called Backtrack [6].
To create a new honeypot machine we must write a con-

figuration file. Through this configuration file we tell honeyd
what operating system the honeypot should have, what ports
to open, what services to run and so on. A simple example of
a configuration file can be seen in Listing 1.
create default
set default default tcp action block
set default default udp action block
set default default icmp action block

create windows
set windows personality "Microsoft Windows XP

Professional SP1"
set windows default tcp action reset
add windows tcp port 135 open
add windows tcp port 139 open
add windows tcp port 445 open

set windows ethernet "00:00:24:ab:8c:12"
dhcp windows on eth0

Listing 1. honeyd.conf

The honeypots are created using the honeyd command (see
Listing 2).
honeyd -d -f honeyd.conf

Listing 2. The honeyd command

The ”-d” option tells honeyd not to run in background and
so to allow for more verbose output [7].

Using ”create” within the configuration file we create a new
template for a honeypot. This way we can create as many
honeypots as we want within the same file. For a honeypot
we set the personality, meaning when another device connects
to this honeypot it will appear to have the personality set
(Windows XP Pro SP1 in our case). We can also set some
common open ports, and the action if the traffic is not directed
to the open ports defined in this configuration file. We can
also set the MAC address and tell the template to acquire
an IP address from dhcp. The challenge is to simulate a real
operating system. One must know what are the properties that
define an operating system. In our example, we created a
Windows machine and we also opened three common ports
(135, 139, 445) for a Windows system.

With a simple setup like this, it is obvious why we chose
Honeyd for our project. Another reason is the logging capa-
bilities of Honeyd. After deploying a virtual machine using
Honeyd, an output similar to the one listed in Listing 3 is
shown. These logs are written in the /var/log/syslog file.
Honeyd V1.5c Copyright (c) 2002-2007 Niels Provos
honeyd[1870]: started with -d -f honeyd.conf
Warning: Impossible SI range in Class fingerprint "

IBM OS/400 V4R2M0"
Warning: Impossible SI range in Class fingerprint "

Microsoft Windows NT 4.0 SP3"
honeyd[1870]: listening promiscuously on eth0: (arp

or ip proto 47 or (udp and src ...
honeyd[1870]: [eth0] trying DHCP
honeyd[1870]: Demoting process privileges to uid

65534, gid 65534
honeyd[1870]: [eth0] got DHCP offer: 192.168.99.135
honeyd[1870]: Updating ARP binding: 00:00:24:c8:e3

:34 -> 192.168.99.135

Listing 3. Honeyd log output

With this kind of input we can easily obtain important
information about the connections on the honeypot. For now
we are interested in information regarding connection requests,
established connections, connection resets, ARP replies and
ICMP replies. For this purpose we used the dictionaries shown
in Listing 4.
ip statistics table
ip_stats = {’<entry_type>’ : {’<source_ip>’ : {’<

dst_ip>’ : [(’<protocol>’,’<dst_port>’)]}}}

arp statistics table
arp_stats = {’<ip_address>’ : [’<mac_address>’]}

icmp statistics table
icmp_stats = {’<dst_ip>’ : [’<src_ip>’]}

Listing 4. Honeyd processing dictionaries

To create the ip stats dictionary we had to parse the entries
that concerned the connections. Honeyd logs information

about connection requests, when a connection is established
and when the connection is dropped by reset. The entry type
key in this dictionary represents exactly this type of informa-
tion. It identifies which event occurred: a connection request,
a connection was established or a connection was reset. These
statistics can indicate different types of attacks: ping sweep,
flood, scanning or Denial of Service.

The arp stats dictionary is created based on the information
received when an ARP request was made. This is useful when
we want to check if a machine has changed its MAC address,
indicating a possible spoofing attack.

The icmp stats are very useful to know how many times
an IP address was pinged by other IPs, possibly indicating
a distributed attack when different IPs try to ping the same
honeypot, or if we have more virtual honeypots in our network
we can identify when an attacker does a ping sweep.

Relevant output is obtained based on these dictionaries. The
script that generates useful output is written in Python and
offers arguments to obtain statistics about connection requests,
established connections, connection resets and ARP and ICMP
stats. More about the output obtained and how to use this script
in Section V-A.

B. Implementing data collection on Metasploitable

To implement the data collection on a honeypot built as a
virtual machine, we chose the Metasploitable2 solution [8].
This is an intentionally vulnerable Linux machine used to
conduct security training, test security tools and practice some
common penetration techniques. It can be downloaded from
[9]. It is compatible with VMware, VirtualBox and others. By
default, Metasploitable’s network interfaces are bound to the
NAT and Host-only network adapters, and the image should
never be exposed to a hostile network.

Using nmap command we can easily find out what services
run on the Metasploitable machine (Listing 5).

root@ubuntu:˜# nmap -p0-65535 192.168.149.132
Starting Nmap 5.61TEST4 (http://nmap.org) at

2012-05-31 21:14 PDT
Nmap scan report for 192.168.149.132
Host is up (0.00028s latency).
Not shown: 65506 closed ports
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
25/tcp open smtp
53/tcp open domain
80/tcp open http
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
512/tcp open exec
513/tcp open login
514/tcp open shell
1099/tcp open rmiregistry
1524/tcp open ingreslock
2049/tcp open nfs
2121/tcp open ccproxy-ftp
3306/tcp open mysql
3632/tcp open distccd
5432/tcp open postgresql
5900/tcp open vnc

6000/tcp open X11
6667/tcp open irc
6697/tcp open unknown
8009/tcp open ajp13
8180/tcp open unknown
8787/tcp open unknown
39292/tcp open unknown
43729/tcp open unknown
44813/tcp open unknown
55852/tcp open unknown
MAC Address: 00:0C:29:9A:52:C1 (VMware)

Listing 5. Check for open ports on Metasploitable2 machine

Using the information shown in Listing 5, we can easily get
a root console, as almost every one of these services provides
a remote entry point into the system.

The easiest way is by using TCP ports 512, 513 and 514
that are known as ”r” services. These have been configured to
allow remote access from any host (one can check the .rhosts
file on the Metasploitable). An attacker only needs to install
rsh-client on his machine and by running a command similar
to the one in Listing 6 he can obtain a root console on the
honeypot.

rlogin -l root 192.168.149.132

Listing 6. Obtaining root console on Metasploitable

As opposed to Honeyd, Metasploitable is a virtual machine
and so it is a high-interaction honeypot. Honeyd has many
features, one of them being the logging capabilities. Metas-
ploitable doesn’t offer this feature and so we decided to collect
important logs, transfer them to the protected machine, and
then process them. To protect the collected logs from being
tampered with, we decided that the protected machine should
retrieve these logs remotely, by running the following scripts:
log fetcher.sh and log archiver.sh.

#!/bin/bash

LOG_DIR=/tmp/log
SYSLOG_DIR=/var/log
shred_folders=(${LOG_DIR} ${SYSLOG_DIR})

create LOG_DIR if necessary
[-d ${LOG_DIR}] || mkdir -p ${LOG_DIR}

remove all .gz and rotated files
find /var/log -type f -regex ".*\.gz$" -delete
find /var/log -type f -regex ".*\.[0-9]+$" -delete

get process log
ps -A -o pid,ppid,comm,%cpu,time,%mem,eip,esp,ni,

euser,ruser --sort ni > ${LOG_DIR}/ps.log

get TCP/UDP general log
netstat -ltn | tr -s " " | cut -d" " -f4,7 > ${

LOG_DIR}/netstat.log

get list of installed packages
dpkg --get-selections > ${LOG_DIR}/installed-pkgs.

log

tar -cz -C ${SYSLOG_DIR} . -C ${LOG_DIR} .

shred log files
for folder in "${shred_folders[@]}"
do

find ${folder} -type f -exec shred -z {} \;
done

Listing 7. log archiver.sh

Basically the script does the following:
• Identifies important logs: system logs, daemon logs, open

ports stats, kernel logs, processes stats, installed packages
and so on. These are found in the /var/log folder. Also
some information is generated using netstat and ps.

• Shreds the file as we don’t want to analyze the same
information more than once. We also had to be careful
not to lose valuable information between two collecting
actions.

This script is periodically called on the protected machine
by the log-fetcher script. Because we wanted to generate as
little traffic as possible, we archive the logs and then transfer
them to the protected machine.

#!/bin/bash

HONEYPOT_ADDR="192.168.149.132"
LOGS_DIR=logs

rm -rf ${LOGS_DIR}
mkdir -p ${LOGS_DIR}
ssh root@${HONEYPOT_ADDR} ’bash -s’ < log_archiver.

sh | tar -C ${LOGS_DIR} -xvz

Listing 8. log fetcher.sh

We used the ssh protocol to retrieve the logging information
remotely. To avoid being asked for the password every time the
scripts were executed, we generated a new public key on our
protected machine using ssh-keygen and then copied it on the
Metasploitable2 machine using ssh-copy-id. Now we can run
the log fetcher script without being prompted for a password.

Next, on the protected machine, we must analyze the state
of the honeypot. This is done by processing the periodically
collected logs. Every time the log is fetched we check to
see what happened on the honeypot since the last time we
verified. Basically, we look for new root processes, installed
packages or listening ports. A new root process tells us that
an attacker managed to obtain administrator privileges, which
allowed him to open a backdoor in the system. Our processing
script captures important events like these in order to study the
attacker’s behavior. We parse the ps output and create a list
with the logged processes, which is compared to the previous
list built. Similarly, we generate lists for installed packages and
listening ports using netstat and dpkg outputs. In addition, we
check to see if there are new established TCP connections and
log valuable pieces of information about them.

Because a process represents an important entity in an
operating system we collect a lot of metadata about it: PID,
PPID, CPU utilisation, EIP/ESP registers and effective/real
user id. We use this information to infer which executables
are used on the ongoing attack and to determine the attacker’s
target.

Furthermore, we retrieve and process all the logs from the
daemons installed on the honeypot. In case the attacker obtains
access to the SMTP server and he sends spam our script detects

this immediately. Thus, we analyze all the important events
logged by the common services and try to correlate them.

Another important source of information is the dmesg log.
We use it to detect if somebody inserted a kernel module,
which can act as a rootkit. This malicious software hides it’s
existence from the other processes and it’s critical to recognize
it from the beginning.

In contrast to the honeyd solution, the real honeypot
approach allows us to obtain more information about the
attacker. Every service on the honeypot system is continuously
monitored by the protected machine in order to capture all the
steps of an attack.

V. EXPERIMENTAL RESULTS

As shown in the previous section, is far easier to implement
the collecting phase on the Honeyd. Because of its logging
feature we only had to worry about the processing script. The
Honeyd implementation has several advantages:

1) The effort estimation based on lines of code is less than
the effort of the Metasploitable implementation.

2) It can simulate several honeypots with little effort and
low overhead.

3) We tried to reduce the traffic generated with the Metas-
ploitable solution, but the Honeyd solution doesn’t gen-
erate traffic at all. The Honeyd already runs on the
protected machine, and so we don’t have to transmit
the logs over the network.

The disadvantage is that the output obtained with Honeyd isn’t
as verbose as the information we can get from Metasploitable.

The next two sections summarize the results we obtained
with our implementations.

A. Results obtained with Honeyd

The script developed for parsing honeyd logs and for
generating reports is presented in the Listing 9 below:

usage: honeyd_log_parser [-h] [-f FILE] [-v]
[-req [REQUEST]] [-rst [RESET]]
[-est [ESTABLISHED]] [-i [ICMP]] [-a [ARP]]

Honeyd log parser

optional arguments:
-h, --help

show this help message and exit

-f FILE, --file FILE
specify the output file

-v, --verbose
verbose output

-req [REQUEST], --request [REQUEST]
list request information grouped by source
IP address

-rst [RESET], --reset [RESET]
list reset information grouped by source
IP address

-est [ESTABLISHED], --established [ESTABLISHED]
list established information grouped by
source IP address

-i [ICMP], --icmp [ICMP]
list icmp reply information grouped by
destination IP address

-a [ARP], --arp [ARP]
list arp information grouped by IP address

Listing 9. Honeyd log parser

One can specify the report type by using the honeyd log -
parser arguments listed in the script’s usage message.

In order to demonstrate the script’s functionality we gener-
ated a –icmp report for a flood attack.

TABLE I
ICMP REPORT

Destination IP Source IP Pings

192.168.149.151 192.168.149.254 1
192.168.149.135 123

192.168.149.132 192.168.149.254 1
192.168.149.135 10

This report presented in Table I shows that the machine with
the 192.168.149.135 IP has flooded the 192.168.149.151 ma-
chine using the ICMP protocol. Also, the 192.168.149.132 and
192.168.149.151 honeypot machines were pinged by the same
IP, possibly indicating a ping sweep done by 192.168.149.135.

Another interesting report is obtained running the honeyd -
log parser with -req option. The result is shown in Table II.

TABLE II
TCP REQUEST REPORT

Source IP Destination IP Protocol Port Num of conns

192.168.149.135 192.168.149.151 tcp 445 3
tcp 139 3
tcp 135 3

192.168.149.132 tcp 445 2
tcp 139 2
tcp 135 1

192.168.149.148 192.168.149.132 tcp 445 2
tcp 139 2
tcp 135 41

It can be seen that the 192.168.149.135 machine scanned
the standard windows ports of the 192.168.149.151 and
192.168.149.132 machines for potential vulnerabilities. This
setup uses two virtual honeypots created similar to the one
presented in Section IV-A. Also, another machine scanned
the 192.168.149.132 standard ports, possibly indicating a
distributed attack.

One can also check the MAC address and IP association
using -a option of the script. This will show if a machine had
several MAC addresses indicating a possible spoofing attack.
The report obtained is similar to the one shown in Table III.
When a spoofing attack occurs, the line for the IP address that
changed its MAC address will contain more than one MAC
entry.

TABLE III
ARP REPORT

IP Address MAC Address

192.168.149.254 00:50:56:fd:ff:6a

192.168.149.135 00:0c:29:6e:d0:c2

B. Results obtained with Metasploitable

The implementation for Metasploitable can analyze different
types of information. This is because Metasploitable is an
actual system that offers us the opportunity to collect different
statistics compared to the ones obtained from Honeyd.

The arguments of the Metasploitable script that is used to
process logs and generate reports are presented in Listing 10:

usage: honeypot_log_parser [-h] [-f FILE] [-ps]
[-ns] [-pkgs]

Honeypot log parser

optional arguments:
-h, --help

show this help message and exit
-f FILE, --file FILE

specify the output file
-ps, --process

list process relevant information
-ns, --netstat

list netstat relevant information
-pkgs, --packages

list package-related information
-mods, --modules

list kernel modules information

Listing 10. Honeypot log parser

The user can configure the script to listen for process, port,
installed package or kernel module events. He can also choose
to run the script with all of the options.

The script can be run as a regular user, that has ssh access
to the honeypot. By running this script with the -ps, -ns, -
pkgs and -mods arguments we get an output similar to the one
presented in Listing 11.

New root process (PID:3451)
New installed package (nc)
New listening port (TCP:555)
New kernel module (syscontrol)

Listing 11. Honeypot log events

In this example we can see that a new root process (with pid
3451) is running. This could indicate that an attacker has root
permissions and is now running a possible malicious process
with full permissions. Also, a new package has been installed
(nc). This clearly indicates that somebody else has root access
to our honeypot. By running this script every few seconds
we can capture information about new listening ports, new
installed kernel modules and packages and new root processes.

As one can see with the Metasploitable implementation we
can obtain useful information about processes as opposed to
Honeyd implementation, where we only obtain information
about the connections on the honeypot.

VI. CONCLUSION

Honeypots are a powerful tool for detecting unknown
attacks. Because it only has malicious traffic, it is easier
to identify an attack. They can be classified as low-level
interaction and high-level interaction honeypots.

We were able to implement our processing logic for both
types of honeypots: a high-interaction honeypot (using Metas-
ploitable) and a low-interaction honeypot (using Honeyd).
Both solutions are promising and give relevant output. As this
paper shows, it is easier to use and implement a detecting
method for Honeyd as it offers logging capabilities. On the
other hand, we can get more valuable information by using
a high-interaction honeypot. We can understand the attacker’s
method by analyzing his steps through our network.

A. Future Work

In this paper we developed a tool that analyzes logs from
the honeypot. We were able to identify some simple attacks
by analyzing our scripts’ output. We plan to improve these
scripts in order to identify other attacks. Also, based on these
logs, we want to implement different types of algorithms to
detect attacks. These algorithms will be incorporated in the
detection framework that will generate new signatures for the
Snort system.

ACKNOWLEDGMENT

We want to thank Laura Gheorghe for her constant support
and useful advice. Her comments were always very helpful
and motivating. We also thank Traian Popeea for his thorough
review of the paper and Razvan Deaconescu for his help with
our project’s wiki and repository.

REFERENCES

[1] R. R. Patel and C. S. Thaker, “Zero-day attack signatures detection using
honey-pot,” International Conference on Computer Communication and
Networks CSI-COMNET-2011, vol. 1, no. 1, pp. 4–27, 2011.

[2] J. Clause, I. Doudalis, A. Orso, and M. Prvulovic, “Effective memory
protection using dynamic tainting,” Effective Memory Protection Using
Dynamic Tainting, vol. 1, no. 1, pp. 4–27, 2007.

[3] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos,
and A. D. Keromytis, “Detecting targeted attacks using shadow honey-
pots,” Proceedings of the 14th USENIX Security Symposium, vol. 1, no. 1,
2005.

[4] N. Provos and T. Holz, Virtual Honeypots: From Botnet Tracking to
Intrusion Detection, 1st ed., 2007.

[5] “Honeyd development,” http://www.honeyd.org/, [Online; accessed 12-
10-2012].

[6] “Backtrack - linux machine,” http://www.backtrack-linux.org/, [Online;
accessed 11-09-2012].

[7] “Honeyd tutorial,” http://travisaltman.com/honeypot-honeyd-tutorial-part-
1-getting-started/, [Online; accessed 12-10-2012].

[8] “Metasploitable2 - linux vulnerable machine,” https://community.rapid7.
com/docs/DOC-1875, [Online; accessed 11-01-2012].

[9] “Metasploitable2 - download link,” http://sourceforge.net/projects/
metasploitable/files/Metasploitable2/, [Online; accessed 11-01-2012].

