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Abstract—The importance of protecting the information has 

increased rapidly during the last decades and as a consequence 

so did the need for cryptographic algorithms. So we want to 

make these methods that protect our data as fast as we can and 

also as secure as we can. In this project, we use parallelism for 

encryption algorithms to bring out the full potential of it, by 

implementing two cryptographic modes such as CBC and 

ICBC for AES. The aim of this project is to show the 

remarkable reduction in encryption and decryption time of 

cryptographic systems when using parallel paradigms 

(OpenCL, Cuda, OpenMP and MPI) and also to evaluate and 

to compare the performances of serial versus parallel 
implementation.  

Index terms: symmetric cryptography, parallelization, 

brute force, OpenCL, Cuda,  OpenMP 

I.  INTRODUCTION  

 When they first appeared, the main purpose of Graphic 
Processing Units (GPUs) was to handle the generation and 
modification of graphical data. As soon as GPUs became 
increasingly powerful (in terms of floating point operations 
per second) compared to available CPUs in the last few 
years, the interest in using these devices for tasks other than 
the interactive generation of graphical output appeared. 

The use of general purpose graphics hardware to 
accelerate cryptographic solutions has a long history. The 
first paper about cryptography on graphic hardware was 
published in August 1999 by Gershon Kedem and Yuriko 
Ishihara. They succeed to crack a UNIX password cipher 
using a graphic engine, PixelFlow that ran at 100 MHz 

Programming GPUs are supported by new programming 

models based on the C language, the most known and 

widely used of them being vendor specific CUDA and the 

industry-wide OpenCL standard. 
Modern GPUs can be attractive for parallel processing 

because these architectures by design have hundreds of 

processing cores and have high on-chip bandwidth close to 

one order in magnitude larger than modern CPUs. The 

advantages brought by GPUs are: good support for hiding 

latency in memory transactions (through massive 

multithreading with low context switch overhead) and the 

fact that the processing of instructions in the thread contexts 

is based on the Single Instruction Multiple Data (SIMD) 

processing paradigm which therefore makes them suitable 

for algorithms that can expose a high degree of data 
parallelism. 

In this paper we perform an evaluation of Advanced 
Encryption Standard (AES). 

AES is a symmetric cryptographic algorithm published 
by NIST. In this paper we have written in OpenSSL the code 
for an improved mode of operation of AES (Interleaved 
Cipher Block Chaining). The next step was implementing it 
using OpenCL, OpenMP and CUDA and to compare the 
results obtained in terms of performance. 

Several recent research papers describe the acceleration 
of symmetric block ciphers as well as other cryptographic 
algorithms using General-Purpose Graphics Processing Unit 
(GPGPU) frameworks. However, referring to symmetric 
block ciphers, prior work focused on AES ( CBC mode and 
ICBC mode) and the CUDA , OpenCL and OpenMP 
implementations, and only a few of these implementations 
were released as an Open Source software. 

In this paper, we develop a new parallelization technique 
to speed up the AES-ICBC algorithm. The rest of the paper 
is organized as follows: Section 2 presents the related work. 
Section 3 gives an overview of AES algorithm and its modes 
of operations and also shows the architecture of our proposed 
solution on general-purpose multi-core processor and multi-
core (OpenMP, OpenCL, and CUDA). Section 4 presents 
some details regarding the implementations realized. Section 
5 explains our parallelization techniques compared to serial 
implementations of the algorithms and other implementation 
details. Section 6 shows the experimental results of the new 
approaches compared to the serial ones. Section 7 describes 
our conclusions and future work. 

II. RELATED WORK 

In the past few years, they have been some parallelization 
of block algorithms. One of them described the 
parallelization of the AES algorithm [5]. The AES algorithm 
was divided into parallelizable and unparallelized parts. They 
have shown that the iterative loops included in the most time 
consuming functions (responsible for the data blocks 
encryption and decryption) are fully parallelizable. In order 
to parallelize these loops they made some transformations of 
the body loops and used the variable privatization technique.  

After some research they realized that the total running 
time of the AES algorithm consisted of the following time-
consuming operations: 1) data reading from an input file; 2) 
data encryption; 3) data decryption; 4) data writing to an 
output file (both encrypted and  decrypted text).  

Their implementation of parallelized AES algorithm 
speed-up depends considerably in two major factors: the 



capability of parallelizing the most time-consuming loops 
and the methods used for reading and writing data in and 
from the file.  

The parallelized codes applied to most time-consuming 
loops compared to the original codes showed that they are 
some visible benefits in speedup of the algorithm. 

The platforms on which the experiments was done was 
one SGI computer with one, two, four, eight and sixteen 
threads and this showed that the parallelized AES algorithm 
gains considerably time at execution of encryption or 
decryption. The gain earned in the most time-consuming 
loops was good enough in their opinion but every few years 
better performance is desired. Because of the sequential 
nature of reading data at those dates, the unparallelized code 
although time consuming is that which deals with file 
reading and writing. Because of this impediment the total 
gain in speed is not equal to the total gain succeeded with the 
parallel code. The parallel AES algorithm presented by them 
in this paper can be also helpful for hardware 
implementations. The hardware synthesis of the AES 
algorithm would depend on the appropriate adjustment of the 
data transmission capacity and the computational power of 
hardware. 

       Another approach in AES parallelization was presented 

in [6], where the authors described in their paper that 

multithreaded ciphers using ICBC are a good match for 

SMPs because there is no data sharing and no 

communication among the threads. The threads are naturally 
load balanced and computationally intensive, spending 

hundreds of cycles per cache line of input data brought from 

memory.  

     Their multithreaded implementation achieved encryption 

rates of 92 Mbytes/s on a 16-processor SMP at 1 GHz, 

reaching a factor of almost 10 improvements over a 

uniprocessor, which achieves 9 Mbytes/s. 

     They managed to hide the line cache fetch in advance 

completely by having the number of computation cycles per 

cache line very large. Also this large number of computing 

cycles allowed the bus to service requests of cache fetch in 
advance from up to 16 processors. Even so serial 

initialization code, software barrier costs, and bus 

occupancy prevent multithreaded ciphers from achieving 

perfect speedups on SMPs. 
The cryptography community has proposed Interleaved 

Cipher Block Chaining (ICBC) mode for maintaining the 
balance between safety of data and speed of encryption. 
Thus, interleaved chaining loosens the recurrence imposed 
by CBC, enabling the multiple encryption streams to be 
overlapped. The number of interleaved chains can be chosen 
to balance performance and adequate chaining to get good 
data diffusion. 

The parallelized ICBC algorithm was tried also with 
hardware capabilities [7] .This paper was used just as a 
starting idea because its purpose is more related to some 
hardware capabilities of some processors and coprocessors.  

Related to CUDA parallelization [8], microprocessors 
with multiple cores and Graphical Processing Units (GPUs) 
are widely available at affordable prices. Considering the 

computational demands of the cryptographic algorithms, 
these parallel platforms are relevant to parallelize the 
existing algorithms to enhance the performance. CUDA 
programming language is used to parallelize the algorithms 
in GPU. Traditional cryptographic algorithms are sequential. 
But it is proved that with advances in hardware 
computational technologies such as RISC Processors, ASIC 
and FPGA chips, GPU and Multi-core processors and 
software technologies such as Decomposition and Loop 
Parallelization, it is possible to enhance speedup and achieve 
better security through parallelization. 

In this approach, parallelization was done with popular 
cryptographic algorithms such as AES, 3DES, DES, IDEA, 
etc. employing the hardware or software technologies 
specified above. In some cases the performance is analyzed 
based on throughput, while the others relied on speedup. 
After analyzing all the techniques considered for 
parallelization, it has been identified that hardware 
techniques are efficient over that of software techniques. 
However, software techniques claim wide acceptance 
because they can be implemented on wide variety of 
computing systems without the need for specialized 
hardware units. 

They have been also some OpenCL approaches like [9], 
presented at International Conference on Computational 
Science and Its Applications named The AES Implantation 
Based on OpenCL for Multi/many Core Architecture and its 
final goal was to develop a full OpenSSL library 
implementation on heterogeneous computing devices such as 
multi-core CPUs and GPUs. In this article, they presented a 
study on an implementation, named clAES, of the symmetric 
key cryptography algorithm AES using the OpenCL 
emerging standard. They showed a comparison of the results 
obtained benchmarking clAES on various multi/many core 
architectures. They also introduced some basic concepts of 
AES and OpenCL in order to describe the details of clAES 
implementation. 

III. ARHITECTURE 

The basic algorithm from which we started this project is 

an implementation of AES encryption algorithm using 

CBC-mode (represented in Figure 1).   

 
 

Figure 1. Cipher Block Chaining mode encryption 

 

From this serial code we will develop an implementation 

of Interleaved CBC mode (represented in Figure 2) in 



different environments to obtain a maximum rate of 

encryption for large amount of data. We will take into 

account parallelizing input/output data.   
 

 
 

Figure 2. Interleaved Cipher Block Chaining 
 

The programming models that we are using are CUDA, 

OpenCL, OpenMP and MPI. Each of them offers several 

advantages, but we want to establish which is the best for 

accelerating encryption algorithms.  

The structure of AES implementation, in our project, is 

represented in Figure 3. 

 
 

Figure 3. General architecture for AES implementation 

 

 There are two important elements to consider in our 

implementation: the data and the encryption process. 

A.  Data 

The concept of data varies from simple things like 
personal information to the large amount of transactions used 
online. The quantity is not the same but the concept of 
privacy remains the same. The problems appear with high 
flow of data, real time processing becoming very hard to 
achieve. A solution proposed by us to obtain a certain degree 
of parallelism is to read buffers of fixed large size, thus 
limiting the system calls. The buffer is then used for 
obtaining data for encryption.  

B. Encryption process 

The algorithm chosen for analysis is AES. From initial 
configurations of the algorithms, we can create 
processes/threads/parallel regions, which can bring a certain 
degree of parallelism. This is done by separating the 
algorithms in the following steps: 1) generate the round key 
[12], 2) actual encryption (represented in Figure 4).  

The generation of the keys can begin right after the 
reading of the data buffers and consists of three parts: key 
setup, key expansion unit, memory of internal (round) key.  

Concerning the encryption process in ICBC-mode 
(represented in Figure 2) we use N streams of plaintext 

blocks, each of them encrypted independently with different 

initialization vectors (IV). The next set of block is encrypted 

right after the previous N have finished.  

 
 

Figure 4. Basic Architecture 
 

The equation that defines the process of encryption [12], 
for IBC mode is represented in Formula 1. 

  
Ci=Encrypt(Mi , IVi)  :  Ci=Encrypt(Mi , Ci-1)    (1)  

 
In this way, the interleaved chaining recurrence is 

overlapped, permitting multiple encryption streams. These 
models of parallelism are relevant in the case of a large 
amount of input. We want to obtain results for different sizes 
of the input data and also to compare which of the used 
programming models is the best in terms of performance. 

IV. IMPLEMENTATION 

In this section we will describe the most important details 

regarding our implementation in OpenCL, OpenMP and 

CUDA and mention the problems and difficulties 
encountered during this process. 

 

A. OpenCL implementation 

One of the advantages brought by OpenCL is that it 
provides data parallelism. In our implementation, the input 
text is splitted into multiple parts depending on the number 
of work items found in a work group. In this situation, the 
workload is being processed in parallel by each Compute 
Unit of the OpenCL device.  

There are some components that can be executed on the 
CPU device and, in our case, these are: 



1) The input text (plaintext or chipertext) is loaded by 
reading the file directly using code lines for this action 

2) The other elements necessary for the encryption/ 
decryption algorithm such as key, initialization vector are 
read also from files 

3) The type of action desired is specified as a function 
in the main program. 

4) All the S-boxes, P-boxes and other buffers required 
are transferred to global memory 

The function that we have chosen to be executed by the 
OpenCL device is the function that performs the encryption 
in the program because we determined through several 
profiling tests that it is computational intensive and it 
consumes the most time of the total execution time.  

A problem encountered during the implementation of this 
approach was the fact that  that OpenCL's preprocessor 
doesn't play well with #include, but include directive worked 
nonetheless if the file was explicitly preprocessed in a 
Makefile via the classic c preprocessor (cpp)  or included 
directly in the .cpp file. 

Another difficult problem we had was the managing of 
all the functions that AES uses in the process of encryption. 
We decided that each of the operations of AES algorithm 
(substitute bytes, shift rows, mix columns and add round 
key) are serial functions called by the kernel. 

B. OpenMP implementation 

The first approach in parallelization was with one thread 
that would read chunks of data from the file, which is desired 
to be encrypted and 1, 2, 3 or 4 threads that would encrypt 
the data read by the main thread. This approach uses shared 
memory and the entire file was logically splitted at the 
number of encrypting threads at the execution level. In this 
way, when a part of the file was finished reading the thread, 
which would be mapped to that part of the file could start his 
task of encrypting the specific chunk of data. For notifying 
the thread of the availability of data, we needed to have one 
flag variable for every encrypting thread. The flag variables 
represent shared variables, which would be shared by all the 
threads.  

With these shared variables it was encountered the need 
of the most common form of synchronization in threaded 
parallel programs, the mutual exclusion. This 
synchronization method resolves the access to critical zone 
like the shared flag variables. OpenMP has support for safe 
access to a critical zone but the synchronization degrades the 
performance gained through parallelism. 

In addition to mutual exclusion, this approach was not 
the best because in order for the encryption threads to get 
notified regarding data availability, they should do busy 
pooling on those variables. In this way, the time that could 
be gained will be lost because of busy waiting. 

Because the busy pooling was not a good idea, the next 
step was to determine a way to read chunks of data and 
encrypt them in parallel without losing the time. The chosen 
approach includes using a lock variable for every encrypting 
thread and also splitting the file in <number of threads> 
logical parts. The time that was lost through the busy pooling 
is gained here by letting the main thread to continue reading, 

or letting other threads, which have available data to encrypt 
their chunks.  

This is achieved because at the start of execution, the 
main thread sets all locks and when the encrypting threads 
start executing, they block by trying to set the already locked 
variable. The main thread unsets the locks when it succeeds 
to read some portions of data. From the OpenMP lock 
variables implementation is guaranteed that when a thread 
unsets a lock variable, one of the threads that are sleeping on 
the specific variable will be awaked and it will start to 
execute his task until it will be preempted by the scheduler.  

C. CUDA implementation 

For CUDA implementation because of some 
compatibility issues and because of different framework 
architecture, the AES has been implemented without using 
the OpenSSL library. The AES algorithm proposed has been 
done using as a base the two approaches presented in [12] 
and [14].  

After the first step of the implementation, the AES 
algorithm, in order to parallelize and gain some time for 
encryption, has been modified to function in interleaved 
cipher block chaining mode. The gain in processing time was 
in terms of cost, similar to what we obtained in the OpenMP 
and in the OpenCL implementations. Another element that 
affects the cost of this solution is a longer IV that must be 
supplied to the algorithms as input in order to guarantee a 
stronger security. The cost is directly proportional with the 
gain desired because at N blocks being encrypted in parallel, 
the algorithm needs an IV of length N times longer than the 
standard IV (where the IV standard length is 16 Bytes). 

Because of some implementation issues, this is the only 
approach that was implemented in CUDA, but for future 
research a data parallelization like the OpenMP approach can 
also be implemented. 

V. PERFORMANCE EVALUATION 

In this section we describe the performance evaluation of 
the AES algorithm taking into consideration the serial and 
the parallel implementations. 

For evaluating the performance of the three parallel 
paradigms we ran tests on several sets of input files with 
various dimensions, the largest one having 1.4GB. The 
experimental results for the serial implementation are 
specified in Table 1 and a graphical representation of these 
results is presented in Figure 5. 

TABLE I.  SERIAL TIME RESULTS 

FILE SIZE TOTAL 

TIME 
ENCRYPT 

TIME 
READ TIME WRITE 

TIME 

1 MB 0,020 0,020 0,0001 0,0001 

10 MB 0,160 0,060(37%) 0,050(31%) 0,040(25%) 

100 MB 2,030 0,890(44%) 0,590(29%) 0,450(22%) 



500 MB 10,962 5,061(46%) 2,981(27%) 2,521(23%) 

1.4 GB 30,546 15,373(50%) 7,942(26%) 6,811(22%) 

 

 

Figure 5. The plot of the serial implementation results  

 
The serial results were used for the comparison with the 

parallel results obtained with OpenMP, CUDA, OpenCL and 
to determine the gain in speed and the advantages of using a 
parallel approach for encryption algorithms. 

As it can be observed, as the size of the file grows, the 
time of encryption compared to I/O operations time tend to 
become equal but we have to be aware that the I/O operation 
consists of both reading the initial clear text and writing the 
cipher text after it was encrypted. Also being aware that in 
general I/O operations are very time consuming we can 
determine that the encryption is intense computational and 
consumes very much time from the total execution. 

After the initial data and context was established, it was 
started the OpenMP documentation on how the parallel 
approach for AES algorithm could be done. 

The results specified in Table 2 correspond to OpenMP’s 
implementation when we used five threads in the encryption 
function.  

TABLE II.  OPENMP  TIME RESULTS 

FILE SIZE TOTAL TIME ENCRYPT 

TIME 
READ TIME WRITE TIME 

1 MB 0,030 0,030 0,00001 0,00001 

10 MB 0,160 0,066 0,040 0,039 

100 MB 1,8 0,890 0,490 0,450 

500 MB 9,4 5,55 1,8 2,0 

1.4 GB 25,51 15,373 5,832 4,31 

Comparing the serial results with the OpenMP results we 
obtain the graphic shown in Figure 6. Observing the graph 
we can determine that as the size of file grows the time 
gained by the parallel implementation grows also. These 
parallel results were tested with 5 threads. There were some 
test with 2 threads but the gain was little so the 5 thread 
results are the most important to show. 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6. OpenMP versus serial implementation 

 
Then we tested our AES implementation in OpenCL 

using the same set of input data and we obtained the results 
presented in Table 3. 

TABLE III.  OPENCL  TIME RESULTS 

FILE SIZE TOTAL TIME ENCRYPT TIME READ TIME WRITE TIME 

1 MB 0,001 0,001 0,00001 0,00001 

10 MB 0,050 0,030 0,010 0,010 

100 MB 0,251 0,100 0,121 0,130 

500 MB 5,02 3 1,52 0,5 

1.4 GB 18 15 2 1 

 
The graphic in Figure 7 emphasizes the fact that a 

parallel approach such as OpenCL gains time more than the 
serial implementation when the file size is growing, ensuring 
in this way the acceleration of the AES cryptographic 
algorithm.  

0

10

20

30

40

50

1 MB 10 
MB

100 
MB

500 
MB

1,4 
GB

Ti
m

e
 in

 s
e

c

File Size

Total Time

Encrypt 
Time

Read Time

Write Time

 

0
5

10
15
20
25
30
35

1 
MB

10 
MB

100 
MB

500 
MB

1.4 
GB

Ti
m

e
 in

 s
e

co
n

d
s

File Size

Serial Time

OpenMP 
Time



 

Figure 7. OpenCL versus serial implementation 

 
The last implementation was realized in CUDA, for the 

same set of input data as before. The performance obtained 
for every file we tested can be observed in Table 4. 

TABLE IV.  CUDA  TIME RESULTS 

FILE SIZE TOTAL 

TIME 
ENCRYPT 

TIME 
READ 

TIME 
WRITE 

TIME 

1 MB 0.0005 0.0005 0,00001 0,00001 

10 MB 0.01 0.005 0.0025 0.0025 

100 MB 0.0148 0.0071 0.0041 0.0036 

500 MB 1.04 0.71 0.2 0.13 

1.4 GB 11.29 9.56 1 0.73 

 
 In Figure 8, we can observe the comparison between the 

serial and CUDA’s results. It can be seen that the best 
speedup of 2.70 was obtained for this implementation.  

 
Figure 8. CUDA versus serial implementation 

VI. CONCLUSION 

In this paper we presented our implementation of the 
symmetric block cipher AES using CUDA, OpenMP and 

OpenCL. We chose this algorithm because it is a standard 

encryption algorithm implemented in the OpenSSL 

cryptographic library. Using the OpenSSL library as a 

support for parallel implementations makes this cipher 

available to software that already uses OpenSSL with very 

little effort. 

The aim of this paper was to show the remarkable 

reduction in encryption and decryption time of 

cryptographic systems when using ICBC mode of AES and 

also when we have serial implementation versus parallel 

implementation. These preliminary, very good results, can 
lead to better performances on GPUs after a further 

optimization of the source codes. 
Our future work will involve the following activities: 

optimization of AES code for every parallel approach used,   
development of the OpenCL, CUDA and OpenMP 
implementations of all cryptographic algorithms existent in 
OpenSSL that would lead into a guideline for evaluation and 
development of cryptographic algorithms on GPU platforms. 
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