
Accelerating Encryption Algorithms Using Parallelism

Cristina-Loredana Duță, Gicu Michiu, Silviu Stoica

 Department of Computer Science and Engineering

University Politehnica of Bucharest

Bucharest, Romania

email :{cristina.duta, gicu.michiu, silviu.stoica}@cti.pub.ro

Abstract—The importance of protecting the information has

increased rapidly during the last decades and as a consequence

so did the need for cryptographic algorithms. So we want to

make these methods that protect our data as fast as we can and

also as secure as we can. In this project, we use parallelism for

encryption algorithms to bring out the full potential of it, by

implementing two cryptographic modes such as CBC and

ICBC for AES. The aim of this project is to show the

remarkable reduction in encryption and decryption time of

cryptographic systems when using parallel paradigms

(OpenCL, Cuda, OpenMP and MPI) and also to evaluate and

to compare the performances of serial versus parallel
implementation.

Index terms: symmetric cryptography, parallelization,

brute force, OpenCL, Cuda, OpenMP

I. INTRODUCTION

 When they first appeared, the main purpose of Graphic
Processing Units (GPUs) was to handle the generation and
modification of graphical data. As soon as GPUs became
increasingly powerful (in terms of floating point operations
per second) compared to available CPUs in the last few
years, the interest in using these devices for tasks other than
the interactive generation of graphical output appeared.

The use of general purpose graphics hardware to
accelerate cryptographic solutions has a long history. The
first paper about cryptography on graphic hardware was
published in August 1999 by Gershon Kedem and Yuriko
Ishihara. They succeed to crack a UNIX password cipher
using a graphic engine, PixelFlow that ran at 100 MHz

Programming GPUs are supported by new programming

models based on the C language, the most known and

widely used of them being vendor specific CUDA and the

industry-wide OpenCL standard.
Modern GPUs can be attractive for parallel processing

because these architectures by design have hundreds of

processing cores and have high on-chip bandwidth close to

one order in magnitude larger than modern CPUs. The

advantages brought by GPUs are: good support for hiding

latency in memory transactions (through massive

multithreading with low context switch overhead) and the

fact that the processing of instructions in the thread contexts

is based on the Single Instruction Multiple Data (SIMD)

processing paradigm which therefore makes them suitable

for algorithms that can expose a high degree of data
parallelism.

In this paper we perform an evaluation of Advanced
Encryption Standard (AES).

AES is a symmetric cryptographic algorithm published
by NIST. In this paper we have written in OpenSSL the code
for an improved mode of operation of AES (Interleaved
Cipher Block Chaining). The next step was implementing it
using OpenCL, OpenMP and CUDA and to compare the
results obtained in terms of performance.

Several recent research papers describe the acceleration
of symmetric block ciphers as well as other cryptographic
algorithms using General-Purpose Graphics Processing Unit
(GPGPU) frameworks. However, referring to symmetric
block ciphers, prior work focused on AES (CBC mode and
ICBC mode) and the CUDA , OpenCL and OpenMP
implementations, and only a few of these implementations
were released as an Open Source software.

In this paper, we develop a new parallelization technique
to speed up the AES-ICBC algorithm. The rest of the paper
is organized as follows: Section 2 presents the related work.
Section 3 gives an overview of AES algorithm and its modes
of operations and also shows the architecture of our proposed
solution on general-purpose multi-core processor and multi-
core (OpenMP, OpenCL, and CUDA). Section 4 presents
some details regarding the implementations realized. Section
5 explains our parallelization techniques compared to serial
implementations of the algorithms and other implementation
details. Section 6 shows the experimental results of the new
approaches compared to the serial ones. Section 7 describes
our conclusions and future work.

II. RELATED WORK

In the past few years, they have been some parallelization
of block algorithms. One of them described the
parallelization of the AES algorithm [5]. The AES algorithm
was divided into parallelizable and unparallelized parts. They
have shown that the iterative loops included in the most time
consuming functions (responsible for the data blocks
encryption and decryption) are fully parallelizable. In order
to parallelize these loops they made some transformations of
the body loops and used the variable privatization technique.

After some research they realized that the total running
time of the AES algorithm consisted of the following time-
consuming operations: 1) data reading from an input file; 2)
data encryption; 3) data decryption; 4) data writing to an
output file (both encrypted and decrypted text).

Their implementation of parallelized AES algorithm
speed-up depends considerably in two major factors: the

capability of parallelizing the most time-consuming loops
and the methods used for reading and writing data in and
from the file.

The parallelized codes applied to most time-consuming
loops compared to the original codes showed that they are
some visible benefits in speedup of the algorithm.

The platforms on which the experiments was done was
one SGI computer with one, two, four, eight and sixteen
threads and this showed that the parallelized AES algorithm
gains considerably time at execution of encryption or
decryption. The gain earned in the most time-consuming
loops was good enough in their opinion but every few years
better performance is desired. Because of the sequential
nature of reading data at those dates, the unparallelized code
although time consuming is that which deals with file
reading and writing. Because of this impediment the total
gain in speed is not equal to the total gain succeeded with the
parallel code. The parallel AES algorithm presented by them
in this paper can be also helpful for hardware
implementations. The hardware synthesis of the AES
algorithm would depend on the appropriate adjustment of the
data transmission capacity and the computational power of
hardware.

 Another approach in AES parallelization was presented

in [6], where the authors described in their paper that

multithreaded ciphers using ICBC are a good match for

SMPs because there is no data sharing and no

communication among the threads. The threads are naturally
load balanced and computationally intensive, spending

hundreds of cycles per cache line of input data brought from

memory.

 Their multithreaded implementation achieved encryption

rates of 92 Mbytes/s on a 16-processor SMP at 1 GHz,

reaching a factor of almost 10 improvements over a

uniprocessor, which achieves 9 Mbytes/s.

 They managed to hide the line cache fetch in advance

completely by having the number of computation cycles per

cache line very large. Also this large number of computing

cycles allowed the bus to service requests of cache fetch in
advance from up to 16 processors. Even so serial

initialization code, software barrier costs, and bus

occupancy prevent multithreaded ciphers from achieving

perfect speedups on SMPs.
The cryptography community has proposed Interleaved

Cipher Block Chaining (ICBC) mode for maintaining the
balance between safety of data and speed of encryption.
Thus, interleaved chaining loosens the recurrence imposed
by CBC, enabling the multiple encryption streams to be
overlapped. The number of interleaved chains can be chosen
to balance performance and adequate chaining to get good
data diffusion.

The parallelized ICBC algorithm was tried also with
hardware capabilities [7] .This paper was used just as a
starting idea because its purpose is more related to some
hardware capabilities of some processors and coprocessors.

Related to CUDA parallelization [8], microprocessors
with multiple cores and Graphical Processing Units (GPUs)
are widely available at affordable prices. Considering the

computational demands of the cryptographic algorithms,
these parallel platforms are relevant to parallelize the
existing algorithms to enhance the performance. CUDA
programming language is used to parallelize the algorithms
in GPU. Traditional cryptographic algorithms are sequential.
But it is proved that with advances in hardware
computational technologies such as RISC Processors, ASIC
and FPGA chips, GPU and Multi-core processors and
software technologies such as Decomposition and Loop
Parallelization, it is possible to enhance speedup and achieve
better security through parallelization.

In this approach, parallelization was done with popular
cryptographic algorithms such as AES, 3DES, DES, IDEA,
etc. employing the hardware or software technologies
specified above. In some cases the performance is analyzed
based on throughput, while the others relied on speedup.
After analyzing all the techniques considered for
parallelization, it has been identified that hardware
techniques are efficient over that of software techniques.
However, software techniques claim wide acceptance
because they can be implemented on wide variety of
computing systems without the need for specialized
hardware units.

They have been also some OpenCL approaches like [9],
presented at International Conference on Computational
Science and Its Applications named The AES Implantation
Based on OpenCL for Multi/many Core Architecture and its
final goal was to develop a full OpenSSL library
implementation on heterogeneous computing devices such as
multi-core CPUs and GPUs. In this article, they presented a
study on an implementation, named clAES, of the symmetric
key cryptography algorithm AES using the OpenCL
emerging standard. They showed a comparison of the results
obtained benchmarking clAES on various multi/many core
architectures. They also introduced some basic concepts of
AES and OpenCL in order to describe the details of clAES
implementation.

III. ARHITECTURE

The basic algorithm from which we started this project is

an implementation of AES encryption algorithm using

CBC-mode (represented in Figure 1).

Figure 1. Cipher Block Chaining mode encryption

From this serial code we will develop an implementation

of Interleaved CBC mode (represented in Figure 2) in

different environments to obtain a maximum rate of

encryption for large amount of data. We will take into

account parallelizing input/output data.

Figure 2. Interleaved Cipher Block Chaining

The programming models that we are using are CUDA,

OpenCL, OpenMP and MPI. Each of them offers several

advantages, but we want to establish which is the best for

accelerating encryption algorithms.

The structure of AES implementation, in our project, is

represented in Figure 3.

Figure 3. General architecture for AES implementation

 There are two important elements to consider in our

implementation: the data and the encryption process.

A. Data

The concept of data varies from simple things like
personal information to the large amount of transactions used
online. The quantity is not the same but the concept of
privacy remains the same. The problems appear with high
flow of data, real time processing becoming very hard to
achieve. A solution proposed by us to obtain a certain degree
of parallelism is to read buffers of fixed large size, thus
limiting the system calls. The buffer is then used for
obtaining data for encryption.

B. Encryption process

The algorithm chosen for analysis is AES. From initial
configurations of the algorithms, we can create
processes/threads/parallel regions, which can bring a certain
degree of parallelism. This is done by separating the
algorithms in the following steps: 1) generate the round key
[12], 2) actual encryption (represented in Figure 4).

The generation of the keys can begin right after the
reading of the data buffers and consists of three parts: key
setup, key expansion unit, memory of internal (round) key.

Concerning the encryption process in ICBC-mode
(represented in Figure 2) we use N streams of plaintext

blocks, each of them encrypted independently with different

initialization vectors (IV). The next set of block is encrypted

right after the previous N have finished.

Figure 4. Basic Architecture

The equation that defines the process of encryption [12],
for IBC mode is represented in Formula 1.

Ci=Encrypt(Mi , IVi) : Ci=Encrypt(Mi , Ci-1) (1)

In this way, the interleaved chaining recurrence is

overlapped, permitting multiple encryption streams. These
models of parallelism are relevant in the case of a large
amount of input. We want to obtain results for different sizes
of the input data and also to compare which of the used
programming models is the best in terms of performance.

IV. IMPLEMENTATION

In this section we will describe the most important details

regarding our implementation in OpenCL, OpenMP and

CUDA and mention the problems and difficulties
encountered during this process.

A. OpenCL implementation

One of the advantages brought by OpenCL is that it
provides data parallelism. In our implementation, the input
text is splitted into multiple parts depending on the number
of work items found in a work group. In this situation, the
workload is being processed in parallel by each Compute
Unit of the OpenCL device.

There are some components that can be executed on the
CPU device and, in our case, these are:

1) The input text (plaintext or chipertext) is loaded by
reading the file directly using code lines for this action

2) The other elements necessary for the encryption/
decryption algorithm such as key, initialization vector are
read also from files

3) The type of action desired is specified as a function
in the main program.

4) All the S-boxes, P-boxes and other buffers required
are transferred to global memory

The function that we have chosen to be executed by the
OpenCL device is the function that performs the encryption
in the program because we determined through several
profiling tests that it is computational intensive and it
consumes the most time of the total execution time.

A problem encountered during the implementation of this
approach was the fact that that OpenCL's preprocessor
doesn't play well with #include, but include directive worked
nonetheless if the file was explicitly preprocessed in a
Makefile via the classic c preprocessor (cpp) or included
directly in the .cpp file.

Another difficult problem we had was the managing of
all the functions that AES uses in the process of encryption.
We decided that each of the operations of AES algorithm
(substitute bytes, shift rows, mix columns and add round
key) are serial functions called by the kernel.

B. OpenMP implementation

The first approach in parallelization was with one thread
that would read chunks of data from the file, which is desired
to be encrypted and 1, 2, 3 or 4 threads that would encrypt
the data read by the main thread. This approach uses shared
memory and the entire file was logically splitted at the
number of encrypting threads at the execution level. In this
way, when a part of the file was finished reading the thread,
which would be mapped to that part of the file could start his
task of encrypting the specific chunk of data. For notifying
the thread of the availability of data, we needed to have one
flag variable for every encrypting thread. The flag variables
represent shared variables, which would be shared by all the
threads.

With these shared variables it was encountered the need
of the most common form of synchronization in threaded
parallel programs, the mutual exclusion. This
synchronization method resolves the access to critical zone
like the shared flag variables. OpenMP has support for safe
access to a critical zone but the synchronization degrades the
performance gained through parallelism.

In addition to mutual exclusion, this approach was not
the best because in order for the encryption threads to get
notified regarding data availability, they should do busy
pooling on those variables. In this way, the time that could
be gained will be lost because of busy waiting.

Because the busy pooling was not a good idea, the next
step was to determine a way to read chunks of data and
encrypt them in parallel without losing the time. The chosen
approach includes using a lock variable for every encrypting
thread and also splitting the file in <number of threads>
logical parts. The time that was lost through the busy pooling
is gained here by letting the main thread to continue reading,

or letting other threads, which have available data to encrypt
their chunks.

This is achieved because at the start of execution, the
main thread sets all locks and when the encrypting threads
start executing, they block by trying to set the already locked
variable. The main thread unsets the locks when it succeeds
to read some portions of data. From the OpenMP lock
variables implementation is guaranteed that when a thread
unsets a lock variable, one of the threads that are sleeping on
the specific variable will be awaked and it will start to
execute his task until it will be preempted by the scheduler.

C. CUDA implementation

For CUDA implementation because of some
compatibility issues and because of different framework
architecture, the AES has been implemented without using
the OpenSSL library. The AES algorithm proposed has been
done using as a base the two approaches presented in [12]
and [14].

After the first step of the implementation, the AES
algorithm, in order to parallelize and gain some time for
encryption, has been modified to function in interleaved
cipher block chaining mode. The gain in processing time was
in terms of cost, similar to what we obtained in the OpenMP
and in the OpenCL implementations. Another element that
affects the cost of this solution is a longer IV that must be
supplied to the algorithms as input in order to guarantee a
stronger security. The cost is directly proportional with the
gain desired because at N blocks being encrypted in parallel,
the algorithm needs an IV of length N times longer than the
standard IV (where the IV standard length is 16 Bytes).

Because of some implementation issues, this is the only
approach that was implemented in CUDA, but for future
research a data parallelization like the OpenMP approach can
also be implemented.

V. PERFORMANCE EVALUATION

In this section we describe the performance evaluation of
the AES algorithm taking into consideration the serial and
the parallel implementations.

For evaluating the performance of the three parallel
paradigms we ran tests on several sets of input files with
various dimensions, the largest one having 1.4GB. The
experimental results for the serial implementation are
specified in Table 1 and a graphical representation of these
results is presented in Figure 5.

TABLE I. SERIAL TIME RESULTS

FILE SIZE TOTAL

TIME
ENCRYPT

TIME
READ TIME WRITE

TIME

1 MB 0,020 0,020 0,0001 0,0001

10 MB 0,160 0,060(37%) 0,050(31%) 0,040(25%)

100 MB 2,030 0,890(44%) 0,590(29%) 0,450(22%)

500 MB 10,962 5,061(46%) 2,981(27%) 2,521(23%)

1.4 GB 30,546 15,373(50%) 7,942(26%) 6,811(22%)

Figure 5. The plot of the serial implementation results

The serial results were used for the comparison with the

parallel results obtained with OpenMP, CUDA, OpenCL and
to determine the gain in speed and the advantages of using a
parallel approach for encryption algorithms.

As it can be observed, as the size of the file grows, the
time of encryption compared to I/O operations time tend to
become equal but we have to be aware that the I/O operation
consists of both reading the initial clear text and writing the
cipher text after it was encrypted. Also being aware that in
general I/O operations are very time consuming we can
determine that the encryption is intense computational and
consumes very much time from the total execution.

After the initial data and context was established, it was
started the OpenMP documentation on how the parallel
approach for AES algorithm could be done.

The results specified in Table 2 correspond to OpenMP’s
implementation when we used five threads in the encryption
function.

TABLE II. OPENMP TIME RESULTS

FILE SIZE TOTAL TIME ENCRYPT

TIME
READ TIME WRITE TIME

1 MB 0,030 0,030 0,00001 0,00001

10 MB 0,160 0,066 0,040 0,039

100 MB 1,8 0,890 0,490 0,450

500 MB 9,4 5,55 1,8 2,0

1.4 GB 25,51 15,373 5,832 4,31

Comparing the serial results with the OpenMP results we
obtain the graphic shown in Figure 6. Observing the graph
we can determine that as the size of file grows the time
gained by the parallel implementation grows also. These
parallel results were tested with 5 threads. There were some
test with 2 threads but the gain was little so the 5 thread
results are the most important to show.

Figure 6. OpenMP versus serial implementation

Then we tested our AES implementation in OpenCL

using the same set of input data and we obtained the results
presented in Table 3.

TABLE III. OPENCL TIME RESULTS

FILE SIZE TOTAL TIME ENCRYPT TIME READ TIME WRITE TIME

1 MB 0,001 0,001 0,00001 0,00001

10 MB 0,050 0,030 0,010 0,010

100 MB 0,251 0,100 0,121 0,130

500 MB 5,02 3 1,52 0,5

1.4 GB 18 15 2 1

The graphic in Figure 7 emphasizes the fact that a

parallel approach such as OpenCL gains time more than the
serial implementation when the file size is growing, ensuring
in this way the acceleration of the AES cryptographic
algorithm.

0

10

20

30

40

50

1 MB 10
MB

100
MB

500
MB

1,4
GB

Ti
m

e
 in

 s
e

c

File Size

Total Time

Encrypt
Time

Read Time

Write Time

0
5

10
15
20
25
30
35

1
MB

10
MB

100
MB

500
MB

1.4
GB

Ti
m

e
 in

 s
e

co
n

d
s

File Size

Serial Time

OpenMP
Time

Figure 7. OpenCL versus serial implementation

The last implementation was realized in CUDA, for the

same set of input data as before. The performance obtained
for every file we tested can be observed in Table 4.

TABLE IV. CUDA TIME RESULTS

FILE SIZE TOTAL

TIME
ENCRYPT

TIME
READ

TIME
WRITE

TIME

1 MB 0.0005 0.0005 0,00001 0,00001

10 MB 0.01 0.005 0.0025 0.0025

100 MB 0.0148 0.0071 0.0041 0.0036

500 MB 1.04 0.71 0.2 0.13

1.4 GB 11.29 9.56 1 0.73

 In Figure 8, we can observe the comparison between the

serial and CUDA’s results. It can be seen that the best
speedup of 2.70 was obtained for this implementation.

Figure 8. CUDA versus serial implementation

VI. CONCLUSION

In this paper we presented our implementation of the
symmetric block cipher AES using CUDA, OpenMP and

OpenCL. We chose this algorithm because it is a standard

encryption algorithm implemented in the OpenSSL

cryptographic library. Using the OpenSSL library as a

support for parallel implementations makes this cipher

available to software that already uses OpenSSL with very

little effort.

The aim of this paper was to show the remarkable

reduction in encryption and decryption time of

cryptographic systems when using ICBC mode of AES and

also when we have serial implementation versus parallel

implementation. These preliminary, very good results, can
lead to better performances on GPUs after a further

optimization of the source codes.
Our future work will involve the following activities:

optimization of AES code for every parallel approach used,
development of the OpenCL, CUDA and OpenMP
implementations of all cryptographic algorithms existent in
OpenSSL that would lead into a guideline for evaluation and
development of cryptographic algorithms on GPU platforms.

REFERENCES

[1] David B. Kirk, Wen-Mei W. Hwu , Programming Massive Parallel
Processors,Elsevier, 2010, pp. 100-200.

[2] Matthew Scarpino , OpenCL in Action, O’Reilly Media, 2011, pp.
300-420.

[3] Wlodzimierz Bielecki, Darius Burak ,Parallelization of the AES

Algorithm , Springer US, 2008, pp. 191-204.

[4] Praveen Dongara and T. N. Vijaykumar, Accelerating Private-Key
Cryptography via Multithreading on Symmetric Multiprocessors,

Springer, 2005, pp. 213-254 .

[5] Ted Huffmire, Application of Cryptographic Primitives to Computer
Architecture, Springer, 2010, pp. 139-152.

[6] J. John Raybin Jose and E. George Dharma Prakash Raj, A Survey

on the Performance of Parallelized Symmetric Cryptographic
Algorithms,in International Journal of Research and Reviews in

Computer Science (IJRRCS) , June 2012.

[7] Osvaldo Gervasi, Diego Russo, Flavio Vella, The AES
Implementation based on OpenCL for Multi/Many Core

architecture,in International Conference on Computational Science
and Its Applications, 2010.

[8] M. Loukides and J. Gilmore, Eds., Cracking DES: Secrets of
Encryption Research, Wiretap Politics and Chip Design. Sebastopol,

CA, USA: Electronic Frontier Foundation , O'Reilly & Associates,
Inc., 1998.

[9] T. Guneysu, T. Kasper, M. Novotny, C. Paar, and A. Rupp,

Cryptanalysis with COPACOBANA, IEEE, Trans. Comput., vol. 57,
, 2008, pp. 1498-1513 .

[10] Kahraman Akedmir et al, Breakthorugh AES performance with Intel

AES new instructions, Intel, 2010.

[11] Raymond Keith Scott Manley, Program generation for Intel AES
new instructions, thesis submitted for the degree of Doctor in

Philosophy, 2011, pp. 70-80.

[12] Kris Gaj, Pawel Chodowiec , Hardware performance of the AES
finalists - Survey and analysis of results, Technical Report, George

Mason University, 2000.

0

10

20

30

40

1
MB

10
MB

100
MB

500
MB

1,4
GB

Ti
m

e
 in

 s
e

co
n

d
s

File Size

OpenCL
Time

Serial
Time

11.29

30.546

0

5

10

15

20

25

30

1
MB

10
MB

100
MB

500
MB

1,4
GB

Ti
m

e
 in

 s
e

co
n

d
s

File Size

CUDA
Time

Serial
Time

