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Abstract—Allowing applications to survive hardware failure
is an expensive undertaking, which generally involves reengi-
neering software to include complicated recovery logic as well
as deploying special-purpose hardware. The project implements
mechanism for failure detection, prediction and system recovery.
The system design approach and associated service implemen-
tation ensures that a certain level of operational performance
will be met. VMXL4 microkernel supports High Availability
systems, providing secure domains isolation of systems and
performance monitoring features. Based on these features, we
created an architecture for monitoring the system at different
levels (intrasecure domain and intersecure domain).

Index Terms—High Availability, microkernel, L4 kernel, secure
domains, performance monitoring, fault management

I. INTRODUCTION

High Availability refers to a system or component that
is continuously operational for a desirably long period of
time. The system design approach and associated service
implementation ensures that a certain level of operational
performance will be met. Availability can be measured relative
to 100 percent operational or never failing. Availability is
usually specified over a certain period of time week, year, etc.
A widely-held but difficult-to-achieve standard of availability
for a system or product is known as five 9s (99.999 percent)
availability.

Adding more components to an overall system design
can undermine efforts to achieve high availability. Complex
systems inherently have more potential failure points and are
more difficult to implement correctly.

A failure occurs when the observed behavior differs from
the expected (e.g. a component does not respond within
a certain time frame). The paper proposes a solution for
implementing mechanisms of failure detection and system
recovery.

VMXL4 microkernel supports High Availability systems,
providing secure domain isolation of systems and performance
monitoring features. Based on the fact that a secure domain
failure is not able to influence the execution of the other secure
domains running on the same machine, the high availability
module handles only the possible failures inside a secure
domain. It is devided into two submodules: intrasecure domain
high availability module (handling thread failures such as dead
threads, segmentation fault, infinite loop, deadlocks, processor
overload etc.) and intersecure domain high availability module
(handling operating system failures such as kernel ops and

kernel panic).
This paper proposes a High Availability interface witch

provides the following features:
• Detection - the fault or some failure conditions are

determined using performance monitoring microkernel
features

• Diagnosis - analyzes de cause of the fault
• Isolation - the rest of the system is protected from the

fault
• Recovery - the system is adjusted or re-started so it

functions properly; it involves restoring or delaying the
thread execution

• Repair - a faulty system component is replaced; it in-
volves thread or secure domain restart.

The isolation, recovery or repair levels depend on the
failure’s gravity and the source of failure: it may need to
consider the faulty thread, the faulty thread’s address space
or the entire secure domain.

The paper is structured as followes: Section II presents the
Related Work in the domain of High Availability, Section III
the Environment we have used for testing and developing,
Section IV the Architecture of our proposed solution, Section
V the Implementation details, Section VI the problems we
have encountered and Section VII presents our Future work
and the Conclusions of this paper.

II. RELATED WORK

Software high availability (HA) developed over a micro-
kernel based operating system is not a new concept. QNX
[1] is a POSIX, real time embedded microkernel OS and
offers great fault isolation and dynamic upgradeability not
limited to application level but extended to all elements in the
system. Because everything outside the micro-kernel exists in
memory protected user space, this protection exists not only
for applications but also includes file systems, protocol stacks
and even device drivers. In this model, faults are limited to
the process in which they occur — device drivers, filesystems,
stacks and applications are all processes in the micro-kernel
model). To supplement the high availability inherent to the
QNX architecture, QNX Neutrino [8] offers a high availability
framework whitch enables developers to create custom recov-
ery scenarios. A smart watchdog monitors process status via
heartbeating and in the event of a process failure, user defined
recover scenarios are executed.



Our HA approach considers the posibility of predicting the
program faults before they even occure. In this sense failure
detection and localization, several researchers have studied
various types of program spectra to predict program execution
behavior.

Podgurski et al. [11], [10], [2] present a set of techniques
for clustering program executions. Bowring et al. [5] introduce
a technique based on Markov models to distinguish failed
executions from successful executions using branch coverage
information. Haran et al. [6] present several methods for
classifying execution data as belonging to one of several
classes. Brun and Ernst [12] identify dynamically discovered
likely program invariants to reason about program execution
behavior. Agrawal et al. [4] and Jones use statement coverage
information to identify likely causes of failures. Chen et al.
[7] keep track of components exercised during executions to
pinpoint faulty components. Santelices et al. [9] empirically
evaluate the performance of several types of program spectra
in locating defects. Burcu et al. [3] use of a novel, hardware
performance counters-based program spectrum to identify
likely causes of failures.

Our goal is to combine the HA features offered by microker-
nel operating systems like QNX Neutrino with the posibility
of predicting when a software failure will occure based on
hardware counters metrics. In this way we can take recovery
actions before the failure occures and not after that (like in
heartbeating monitoring approach).

III. ENVIRONMENT

The system over which we implemented the high
availability library is based on a L4 microkernel from
Virtual Metrix (VMXL4). VMXL4 is a general purpose, high
performance microkernel which implements the mechanisms
for performance management. It provides a minimal layer
of hardware abstraction on which various operating system
personalities can be built (through paravirtualization). This
abstraction includes interfaces for IPC (message passing
Inter-process Communication), address space (memory)
management, interrupts, virtualized interrupts and managing
system performance resources. It isolates each component in
the system from effects of programming errors or malicious
code contained in other components. Therefore the monitor
is isolated and can’t be corrupted. In case something happens
with the rest of the systems, the monitor can take appropiate
actions.

VMXL4 applies the principle of minimality by providing
mechanisms as opposed to services. As such, a feature is
included in the microkernel only if it is impossible to provide
that service outside the microkernel without sacrificing
security, or if including the feature in the microkernel it
provides significant benefits without increasing the complexity
of the microkernel. For example, there are 12 system calls
in this microkernel comparing to Linux where are over 300.
Therefore it can be guaranteed that the microkernel is bug
free. VMXL4 utilizes a capability-based security model,
where a capability (also called a key) is a un-forgeable token

of authority. Protection domains and security policy are
implemented through capabilities. All IPC depends on having
the capability to send to a particular destination.

A unique aspect of VMXL4 is the concept of Performance
Monitoring. The goal of Performance Monitoring is collect
different type of statistics (cycles, branch count, etc) in
realtime. This is done using a generic interface for the
hardware mechanisms for collecting CPU information. The
interface is implemented through the PerfMon syscall. The
microkernel uses an abstraction for hardware counters called
a PMU, Performance Monitoring Unit. The PMU consists
of PMD (Performance Monitoring Data) - hardware data
registers, PMC (Performance Monitoring Configuration) -
hardware configuration registers, a list of associations between
PMDs and PMCs. Therefore, it offers platform independence
and allows multiple threads to use the Performance Monitoring
facilities. Using PerfMon to collect different counter values,
we are able to detect the system state (eg: infinite loop).

The VMXL4 microkernel is written in C++ and the projects
in user space are written in C. The build system is based on
Scons building suite, written in Python.

The platform we run on the VMXL4 microkernel is based
on an ARMv7 CPU architecture. We use a BeagleBoard as
our hardware platform. The BeagleBoard is a low-power,
low-cost hardware single-board computer which is equiped
with Texas Instrument’s OMAP3530 system-on-a-chip.
OMAP3530 contains an ARM Cortex-A8 processor, with
the ARMv7 instruction set. Alternatively, we used an ARM
emulator from QEMU on top of which we have run the
microkernel succesfully.

IV. ARCHITECTURE

The VMXL4 microkernel includes a virtualization
mechanism that supports running multiple secure domains,
as described in the previous chapter. The main advantage
of having independent secure domains is that a failure
inside a secure domain cannot affect any another secure
domain running on the same machine, at the same time.
Thus the problem of building a high available system (that
is a system able to prevent, detect and repair failures) can
be solved by building a high available secure domain. The
microkernel must provide mechanisms that maintain the
health of the threads inside a secure domain (intrasecure
domain high availability module) and the health of the
services responsible to ensure associated operating system
functionalities (intersecure domains high availability module).
Using this concepts, we have designed the high availability
infrastructure, described bellow.

Intrasecure domain high availability module is used for
monitoring address spaces modifications, invalid accesses
and thread execution. Its functionality is provided using a
centralized architecture: the central monitoring thread and
multiple worker threads (see Figure 1). Each worker thread
is responsible with predicting and/or detecting one or more
thread failures (dead threads, segmentation fault, infinite loop,



deadlocks, processor overload, etc.). It is also responsible with
notifying the central monitoring thread about the (possible)
failure. Based on this notifications, central monitoring thread
must take a decision and execute the necessary actions in
order to recover the faulty thread (restart, restore or delay
execution). In case of memory errors or interdependent
threads may require to recover the entire address space. Thus,
the central monitoring thread acts as a reincarnation server
(see Figure 2).

Figure 1. Intrasecure domain workers

Figure 2. Intrasecure domain high availability module

Intersecure domain high availability module monitors
the activity of the secure domains. It must be placed in a
separate secure domain (called SecDom0) and it has a similar
architecture with intrasecure domain module (see Figure 3).
Unlike the faulty threads, recovering a faulty secure domain
actually means restarting it. The decision of not restoring
a secure domain relies on the high costs of saving its state
(the content of the address spaces and threads’ state). This
repeated operation may result in a system overload that may
damage the system’s health instead of healing it.

Figure 3. Intersecure domain high availability module (SecDom0)

V. IMPLEMENTATION

As described in the architecture section, we are trying to
offer high availability at two levels: intrasecure domain (the
monitor runs in the same secure domain as the monitored
processes) and intersecure domain (the monitor is in another
secure domain).

A. Intrasecure Domain High Availability

1) High Availability Library: We designed and imple-
mented a high Availability module that is available throug a
library called High Availability Library that provides an API
for thread monitoring. The functions below are available:

/* Start HA module. */
int HA_start(void);

/* Stop HA module. */
int HA_stop(void);

/* Checks if HA module is started. */
int HA_is_started(void);

/* Monitor a thread. */
int HA_monitor(L4_Word_t, L4_ThreadId_t,

void *, int);

/* Stop monitoring a thread. */
int HA_unmonitor(L4_Word_t);

Using the first two functions the HA module can be started
and stopped. HA monitor is used by a thread to add another
thread or itself to the HA module list of monitored threads.
When a thread decides that another one will be monitored it
is named supervisor. HA unmonitor can be used only by the
related supervisor.

2) Monitor thread and communication with worker threads:
The monitor thread is responsible with receiving notifications
from workers threads and decide what to do accordingly to
those messages. Worker threads send a notification when they
realize something wrong happened with one of the monitored
threads.

The communication between the monitor and the workers
is done through a queue where workers put messages serving
as producers and monitor has the consumer role. The queue
is used with a mutex such as only a thread can access the
structure at a certain moment and a condition variable to signal
when notifications are available in the queue. A notification
is a structure through which a worker announces monitor that
one of the monitored threads doesn’t work properly or is dead.
It contains a label that signals the type of failure (deadlock,
infinite loop or the thread isn’t alive) and the global identifier
of the thread (a thread has two identifiers: a global identifier,
unique in the system, and L4 ThreadId t identifier unique in
the secure domain).

Monitor thread is running in root space and workers in
other space address. Root space is the address space where
root task, the thread responsible with resources allocation,



and the pager, the thread handling page faults, are running. In
consequence, if something wrong happens with the monitor,
the whole secure domain is compromised. We chose another
address space for the worker threads in order to protect the
root space if something happens with the workers. We chose
this design, with multiple worker threads, to allow an easy
extension of the architecture and to avoid overloading the root
space.

3) Worker threads: In the initial design, there were three
workers: one responsible with detecting dead threads, another
with deadlocks and the last with infinite loops. Due to the fact
that deadlocks and infinite loop detection is performed using
PerfMon, we combined last two threads in a single one.

The thread responsible with detecting dead threads uses
IPC mechanism provided by the microkernel. Inter-process
communication (IPC) is the central component of the VMXL4
system design. VMXL4 facilitates both communication be-
tween threads residing in different address spaces and threads
within the same address space. The IPC system call provides
the means for the exchange of short messages between two
threads in the system. Using IPC call error code, the worker
thread can find out if the monitored thread is still alive. If the
monitored thread died, an error will be sent announcing that
the destination doesn’t exist.

The second worker is responsible with detecting deadlocks
and infinite loops using PerfMon. We choose three events to
monitor:

1) Instruction fetch that causes a refill at the lowest level
of instruction or unified cache. Each instruction fetch
from normal cacheable memory that causes a refill from
outside of the cache is counted. Accesses that do not
cause a new cache refill, but are satisfied from refilling
data of a previous miss are not counted. This counter
increments for speculative instruction fetches and for
fetches of instructions that reach execution.

2) Immediate branch architecturally executed, taken or not
taken. This counter counts for all immediate branch
instructions that are architecturally executed, including
conditional instructions that fail their condition codes.

3) Software change of PC (Program Counter), except by
an exception, architecturally executed. This counter only
increments for instructions that are unconditional or that
pass their condition codes.

Detecting deadlocks is made by interrogating the software
change of PC. A thread in a deadlock is blocked in an IPC
call so no instructions are executed. If PC remains unchanged
for a period of time (defined by the programmer), the worker
considers that monitored thread is in a deadlock and notifies
the monitor thread.

Infinite loop detection is more complex. A loop is a se-
quence of instructions that is continually repeated until a
certain condition is reached. In order to detect an infinite
loop, the assigned worker must analyze the monitored thread
execution for a certain period of time using the below recursive
formula:

• Pn = αn ∗ Pn−1 + (1− αn) ∗ In, P0 = 0
• αn = β ∗ αn−1 + (1− β) ∗ In, α0 = 0, β a very small

value (e.g. 0.05).
P > L for the last T steps, Pn, αn, In, β, L ∈ [0, 1], where
Pn is the general prediction infinite loop factor at moment
n based on all the infinite loop prediction up to moment n,
In is the instant prediction infinite loop factor at moment n
based only on the thread’s state at moment n, state resulted
from the values obtained from the hardware registers. A thread
can be considered to be in an infinite loop, if its associated
general prediction infinite loop P value is a higher or equal to
threshold L for the last T steps.

B. Intersecure Domain High Availability

In order to ensure high availability if the local monitor
from one secure domain crashes, we created a special secure
domain which runs a global monitor. As you have seen in the
architecture, we call this special secure domain the SecDom0.
The monitor running here is responsible for monitoring the
root task from each secure domain. There is no reason to
monitor all threads in each secure domain because if the root
task, the thread which is responsible with resource allocation,
fails, the entire secure domain is compromised.

The detection is done by using PerfMon syscall to interro-
gate the different root task counters. Usually when the system
running in a secure domain, panics, it enters an infinite loop
and no action is taken (for example in linux is executed a
NOP opperation. We can use the loop detection mechanisms
implemented in the intrasecure domain to detect the panic
of the system and then restart that secure domain. As we
mentioned before, checkpointing an entire secure domain
would take too much time and resources. This would be
unacceptable for a real time system.

SecDom0 and any another secure domain are logically
separated, doesn’t have access to each other resources. How
can we do PerfMon? The VMXL4 microkernel is based on
capabilities for resource access. We used this mechanism to
make connection between secure domains and implemented a
new capability for PerfMon syscall. Therefore, a root thread
from one secure domain can make PerfMon syscall on another
secure domain root thread’s if it has the PerfMon capability.
This capability is given at build time. Based on what capabil-
ities the monitor has, it will determine what secure domains
to monitor.

VI. DISCUSSION

In the current implementation, HA library provides the
possibility to start and stop the HA module, to monitor
or unmonitor threads. HA module detects dead threads and
threads in a deadlock.

Microkernel provides fast means for detection: IPC mecha-
nism and PerfMon. The main problem is that the microkernel
provides only mechanisms, not services. For testing purposes,
we had to implement minimal requirements for memory man-
agement, address space management and thread management.
For example, we had to maintain a list with all allocated thread



identification numbers (called ids), for that secure domain, in
userspace. In order to restart a thread, the monitor needs the
thread id. To continue with the example, we will describe a
little of the microkernel internals. The microkernel, assigns
two ids for a thread in the system. One is used at the secure
domain level for management purposes (create thread, kill
thread, etc.) and one is used at the microkernel level, for reply
IPC calls (when the pager needs to announce the thread that
have made a page-fault and is waiting for that mapping). If
the mapping couldn’t be done, it would appear a segmentation
fault and, in consequence, the thread that generated the page
fault, needed to be restarted. In order to accomplish this, we
needed the thread id (secure domain level) to be able to free
resources (kill the thread) and to recreate it. But at the pager
level, where we detected the segmentation fault, we had only
the global id. To solve this problem we had to maintain an
association between global id and secure domain level id.

The current implementation starts only the faulty thread
because we can’t test the restart of an address space. We can’t
create a new address space with its own mapped physical
segments (not sharing physicals segments with root space).
This problem is a consequence of the fact that microkernel
provides mechanisms and not services.

We had difficulties when using sleep functions, timer func-
tions and read write lock mechanism. All of them used the
hardware counter. Because it is used simultaneous by lots of
applications, we used a synchronization server that runs in
a separated secure domain to control access to the hardware
register.

PerfMon brings an important limitation: there are only four
hardware registers so we can monitor maximum four events si-
multaneously. For infinite loop detection, we use the number of
cache refills, the number of immediate branch architecturally
executed and PC (program counter) changes (this register is
used by deadlock detection, too). We need more events to
have a better detection such as branch misprediction, number
of taken branches that are executed, predicted branches that
are predicted taken, etc. Another useful event, that is not
implemented in hardware would have been the number of
backward jumps. This value and the number of branches would
have been necessary to determine more accurately if a program
is in an infinite loop.

For intersecure domain architecture, we managed to detect
a panic in the system running on a secure domain. The next
step is restarting the secure domain. This involves freeing
up the resources (allocated memory, delete created threads),
reseting hardware registers (e.g. IP, SP, etc). Due to the
microkernel architecture, the monitor is running in user-space
and it isn’t able to access the microkernel memory for resource
management. We have to find some workaroung to do this,
without adding new system calls.

VII. CONCLUSION AND FURTHER WORK

We have designed and implemented a library with methods
to start and stop HA module, to register and unregister a
thread for been monitored. The workers detect dead threads

and those in deadlock (infinite loop detection is in progress).
As future work, the HA library, will provide methods to start
only some types of monitoring, for example the case when
the programmer doesn’t want to start infinite loop monitoring
because the detection is expensive and it isn’t necessary.

Continuing with intrasecure domain high availability, we
have to restart an address space when something went wrong
with one of threads. The current implementation starts only
the faulty thread because we can’t test the restart of an
address space. We can’t create a new address space with
its own mapped physical segments (not sharing physicals
segments with root space). As a further work, it’s necessary
to implement a system to track physical segments associated
with root space in order to duplicate and map them in the new
address space.

About fault detection, more tests must be performed in order
to determine the values of parameters of the equations when
we can tell with big precision that we are dealing with an
infinite loop. There are two actions that can be done when
something went wrong in the system: restarting the address
space/secure domain or restoring the address space. In the
future, HA library will provide methods to save the state of
an address space when the programmer wants, such that, if a
fault occurs, that address space will be restored to a stable state
which was indicated by the programmer (e.g. a cpu intensive
program such as calculating PI decimals, avoiding loose all
work that has been done till the restore point).

In the intersecure domains high availability we manage to
detect panic errors based on infinite loop detection. To use this
module, we had implemented special capability for PerfMon
syscall. As future work, we have to implement the restarting
of a paniced secure domain. As we described in the previous
section, this implies freeing resources, clearing the registers
and start execution from the begining.
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