
TagFS - A Tag Based Filesystem
Cătălina Macaleţ

Computer Science Department
Politehnica University of Bucharest
Email: catalina.macalet@cti.pub.ro

Eugen Hristev
Computer Science Department

Politehnica University of Bucharest
Email: eugen.hristev@cti.pub.ro

Mihai Dinu
Computer Science Department

Politehnica University of Bucharest
Email: mihai.dinu@cti.pub.ro

Sorin Dumitru
Computer Science Department

Politehnica University of Bucharest
Email: sorin.dumitru@cti.pub.ro

Abstract—File systems are an integral part of every operating
system. Because of the high capacity of modern storing devices
file systems need a better way of organizing and accessing data
in order to be easier for one to retrieve exactly the files he/she
is looking for. Also, the need of users to personalize the content
stored and to find specific data, pushes manufacturers to employ
alternatives for the curent design.

TagFS implements a tag based file system in Linux, using a
user space application which offers support for tagging files and
browsing files by tags, and a kernel module that hooks into the
VFS to keep metadata about files. We present a simple way to
implement such a system and how the regular user can benefit
from file tagging.

Index Terms—File systems, Tags, VFS, metadata

I. INTRODUCTION

In most operating systems the files are hierarchically or-
ganized. This means that there usually is a starting point, or
parent directory. In Windows based systems there are multiple
starting points based on the physical hard drive partitions. In
UNIX-like systems, there is a single root drive with different
mount points available for users to add or remove subtrees
from different drives, partitions, etc. In these filesystems a
user organizes related data by storing it in the same folder
but say that a user, Bob, has two separated folders one for
storing photos taken in the mountains (Mountain-pics) and one
for storing photos in which a certain person appears (Alice-
pics). Two questions arise, one, where should Bob store a
picture taken in the mountains in which Alice appears and
two, how could Bob find the pictures taken in the mountains
in which Alice appears. For current filesystems the answer to
the first question might be storing the photo in either folder
and in the second one creating a link to this photo or, store
it in both folders. The answer to the second one could be
naming the photo in such a way that retrieving them based on
the previously stated criteria would work. TagFS file system
aims to bring a different approach, based on tags rather than
hierarchical system that is rooted for a long time in modern
operating system. For the above example, for a TagFS filesys-
tem the answer to both questions would be adding tags to
photos (<mountains><Alice>) and then search for files that
contain these tags. The question of where to store a specific
photo would not be that important anymore. A pure tag file

system is difficult to implement starting from zero, so we tried
to adapt the current file system in Linux to support tags and
see how the two systems can coexist on an end-user machine.
A tag file system should be able to organize files, data on the
disk regardless of hierarchical logical approach. The position
of the files on the disk is irrelevant and completely transparent
to the user. The file system should be able to put files on disks
and simply recover them on demand based on tags requests. In
our approach, logical directory based organization and file tags
coexist, in order to see how the two systems can fit and how
the user can use alternatives for searching and clustering the
information it has. We implemented a tag layer in the Linux
Virtual File System and tested how this impacts the regular
user. We have added posibilities for the user to manipulate the
tags (add, delete, search) in order to increase the flexibility of
the filesystem and the way it interacts with the user. TagFS
is expected to make it easier to work with files, especially
personal ones.

II. STATE OF THE ART

The idea of tagging files in order to access them in an easier
fashion is not a new one and various attempts to implement
solutions have been made. Some of these are specialized
solutions for special kind of data, such as Calibre1 which
makes ebook management easier, implemented in userspace.
The vast majority of these applications rely on a database
where mappings between files and associated metadata are
stored and expose a set of commands which translate to
specific queries for the database.

A. Nepomuk-KDE2

Nepomuk-KDENepomuk-KDE is an implementation of
Nepomuk which has been integrated with KDE and that allows
adding metadata to items stored on a computer and making
queries based on that metadata. Based on the Nepomuk spec-
ification, Nepomuk- KDE is able to store in a RDF (Resurse
Description Frame- work) semantic data from desktop appli-
cations. For example the Dolphin desktop manager is able
to add simple tags to les or more complicated comments.

1http://calibre-ebook.com/
2http://nepomuk.kde.org/

http://calibre-ebook.com/
http://nepomuk.kde.org/

This solution is not limited to files metadata. Almost every
application can use the RDF store to add semantic metadata
to theire objects. For example KMail can do it for emails,
Amarok can do it for music les, but it is used mostly for
tagging les.

B. TaggedFrog

TaggedFrog1 is a Windows application based on the con-
venint drag’n’drop technique. It allows you to organize your
files, documents and Web links just by adding objects to the
library and tagging them with any keywords. Moreover, you
are able tagging files directly from Windows File Explorer
because the application is integrated with Explorer’s context
menu.

C. pyTAGSfs

pyTAGSfs2 is a FUSE filesystem, written in python for
Linux and Mac OS X systems, that arranges media files in
a virtual directory structure based on the file tags. File tags
can be changed by moving and renaming virtual files and
directories. The virtual files can also be modified directly, and,
of course, can be opened and played just like regular files.

D. TagFS:Bringing Semantic Metadata to the Filesystem

TagFS: Bringing Semantic Metadata to the Filesystem3

is a research projected started at the University of Koblenz
which, as Nepomuk, relies on RDF for defining semantics
and SPARQL. Metadata is stored in a repository having an
associated graph, and various opperations can be performed
on it(additions, updates, etc).

III. TAGFS

TagFS is a software application that implements a tag-based
filesystem in Linux, more specifically, TagFS allows tagging
a file at creation time or at a later time, adding and removing
tags, listing the tags associated to a file at a given time and,
the most important characteristic, TagFS allows browsing for
files having specific tag(s).

What is different from the other implementations is that
the filesystem hierarchy whill remain unchanged but files will
have associated tags (an example is presented in Figure 1).

/
Photos

photo1.jpg:alice:mountains

p2.png:bob:john:alice:sea

...

...

Fig. 1. TagFS hierarchy

The TagFS application architecture is presented in Figure 2.
The CLI is used to issue commands for tag manipulation. In

1 http://lunarfrog.com/
2 http://www.pytagsfs.org/
3 http://www.eswc2006.org/poster-papers/FP31-Schenk.pdf/

CLI

VFS modification

File system

TagFS

Fig. 2. TagFS architecture

order for the transition to this new file system to be as user-
friendly as possible, we have implemented a different way of
manipulating the tags. There are two types of commands. The
first type consists of file manipulation commands available on
every UNIX-like operating system, such as ls, touch, mv, cp
whose behaviour and implementation was slightly changed in
TagFS implementation in order to support tags. The second
type of commands reffers to new TagFS commands imple-
mented in order to provide more tag-related operations - list,
remove, add new tags. The implementation changes are related
to hooks created in VFS and will be detailed in subsection Tag
handling. No implementation changes at filesystem level were
required.

A. Architectural decisions

TagFS started as an idea to create a more user-friendly
file system; remembering tags is easier than remembering the
name of a file or the place where it is stored but, at the
same time a pure tag filesystem might not offer a simpler
way of organizing data in a hierarchical manner, a choice
to implement TagFS as a new filesystem, from scratch, thus
would have been time consuming and would have required a
lot of changes into the kernel and user interface. The other
choice was to implement TagFS as hooks in VFS in order to
store and retrieve needed metadata. Since changes are made
at VFS level there will be an overhead for filesystems that
subsequently are to be used without tag support. A main
concern in implementation was to reduce this overhead to as
little as possible.
From the beginning the focus was on the changes needed at
VFS and file system level and not on storage possibilities of
the mappings between files and associated tags and so these
mappings are stored in a file which is always in RAM memory.

The keyword of entry point was defined in order to designate
a point in the file system hierarchy starting from which a
distinct TagFS begins meaning that only for that part of the
file system tags apply; for a file system multiple entry points
can be declared. This allowed to keep the changes necessary
for tagfs isolated so that the performance for the normal case
is not affected. This way the only difference from a vanilla
kernel is that we do a string comparison for each entry point
dened.

B. Storage

The mapping between a file and its associated tags is
presented in Figure 3. Each file contains a bitmask in which

http://lunarfrog.com/
http://www.pytagsfs.org/
http: //www.eswc2006.org/poster-papers/FP31-Schenk.pdf/

Tags

Files

tag1

tag2

tag3

tag4

file1
file2

file3
file4

file5

Fig. 3. Tag Storage

each bit represents a tag. If the bit is set to 1 than the file has
the tag with that id and if not it does not. The bitmask is static
so we will only be able to have only a limited number of tags.
This defaults to 8192 tags but it is configurable through the
kernel config file with impact on the memory and disk space
used.

Each tag has a list of file pointers to files which have that
tag. This is done so we do not have duplicated information
and so that we will need to do updates in only one place.

C. Tag commands

The idea of tagging files is to be able to add a number of tags
to a file but since the number of tags that will be associated
to a file is not known beforehand we establish a convention
that a filename will be separated from its associated tags by
”:” whenever a command that envolves tags is issued. Also,
one tag is separated by another tag by ”:”.
The behaviour of ls command was changed so that when
issued with an argument beginning with ”:” it lists all the
files that are tagged with the given words.
An existent file can be assigned tags by issueing the tag
command with -a parameter followed by the filename and
the tags that one wants to attach to that file. There are two
constraints that one has to take into account when wanting to
add tags to a file. One is that the implementation of TagFS
limits the maximum number of tags that can be assigned to a
file to 256 and the second one is a limitation imposed by the
kernel implementation and it reffers to the fact that the total
length of filename, tags and separator must be less or equal
to the value of MAX PATH LENGTH(256).
Tags can be removed from a file with tag -d file-
name:tag[:tag*] command taking into consideration the sec-
ond constraint stated above.
The output of tag -l filename command is the list of tags
associated to a file at a given time.
TagFS permits the creation of entry points in the file system

which indicate that starting from that point down the hierarchy
tags may be used. This was introduced in order to reduce the
overhead for file systems where the user does not require to
use tags, limiting it to a couple of comparisons. An entry point
can be created using tag -c command meaning that the current
working directory is a new TagFS entry point.
The available commands as well as a short description is listed
in Table1.

Command Params Args Description
ls - :tag[:tag]* List files having the specified tags
tag -c - Create a new entry point for TagFS
tag -a filename:tag[:tag]* Add tags to file
tag -d filename:tag[:tag]* Remove tags from filename
tag -l filename List all the tags for filename

TABLE I
TAGFS IMPLEMENTED COMMANDS

D. Implementation details

1) Metadata structure:
We hold two hashtables in the memory. One of them keeps the
tags from the system and the other hold the files. Structures
are added in this hashtables when we add tags to a file. If the
file is not tracked, we create a new entry for it in the hashtable.
The same is done for each tag. Each tag from the tag hashtable
holds a list of file pointers, each pointing to a specific file. This
way we dont have to duplicate the information about each file.
To associate a tag to a file, each file will have a bitvector with
enough space for each tag.

2) VFS Hooks:
The VFS hooks allow TagFS to break out of the normal flow
of the kernel and performs certain verifications in order to
determine if a particular file should or not be treated as a tag-
able file and afterwards, if necessary, performing the desired
changes. These will usually strip the tags from the filename so
that normal operations will work as expected(E.g executing
ls dir:tag would try to open the file dir:tag but the file does
not exist so it would fail. Because of this, it is necessary to
strip the tags). After this they will continue to do operation
specic things.

To determine where we would need to insert our hooks,
we did a strace on a command and checked what syscalls it
makes. For example for a ”ls dir” command:

3) Userspace application:
The application in userspace adds the tag layer to the normal
file operations using the tag command. This command is a
normal user space application that can be called by the user.
This way the user can add and remove tags from a file, and also
list the current tags. The application allows creating an entry
point in the file system in a similar way. Tagging application
works in user space and calls the specic api that further sends
the requests to the kernel. The adding and removing of the tags
keep the specified convention, using : as delimitator. The tag
listing keeps the same format as well. The tag user application

Syscall Action
fstat64(path) Remove tags from path
open(path) Remove tags from path and make as-

sociation between <process, fd> and
tags

getdents64(fd) Get the tags associated with the fd
and search the storage. Store the re-
sults in the dents structure passed from
userspace.

close(fd) Remove the association between fd and
tags

TABLE II
LS SYSCALLS

uses fcntl system call in order to send the operation type and
required arguments. New command types have been defined
for fcntl for TagFS operations. From fcntl syscall other kernel-
level tag specific functions are called for adding tags, deleting
tags, searching and creating entry points.

IV. EXPERIMENTAL RESULTS

Because of the way TagFS is implemented there will be
two major testing scenarios. The first scenario will consist of
testing the UNIX-based commands, while the second one will
test the tag manipulation commands. There may be an extra
scenario for performance testing, but this is not the scope of
this article as the main goal of TagFS is to prove that a tag
based file system is implementable and it is more intuitive than
the hierarchical one. The testing process will be concluded
by executing a series of commands, noting the output of the
commands and comparing it with the expected results.
The test platform is represented by Fedora 14 OS with a
2.6.35.10 kernel compiled with the changes for TagFS. At the
moment the ls command is the only UNIX-based command
hacked to allow the use of tags and three TagFS commands
(tag -c tag -a, tag -d) are fully implemented and tested. We
started with ls because it is the command with the most
importance, the main use of tags being to search by them,
and we did not have enough time to implement the other
commands.

A first test scenario was to add tags to a file and browse
the file based on one or more of its associated tags

$ cd ˜/tagFS
$ ls
tag_test untagged
$ tag -c
$ tag -a tag_test:soa:tag:fs
$ ls :soa
tag_test
$ ls :fs:soa:tag
tag_test
$ tag -d tag_test:soa
$ ls :fs:soa:tag
$

A second test scenario is having more tagged files and to
browse by various combinations of these tags.

$ ls
tag_test untagged
$ tag -a untagged:soa:fs:test
$ tag -a tag_test:second:soa:test
$ ls :soa:test
tag_test untagged

V. CONCLUSION

There are still a couple of common UNIX commands whose
behaviour we want to modify in order to issue them with tags.
Also we would like to add a tag-specific command for listing
the tags associated with a file.

Command Description VFS
function

touch Add tags to a file at creation
time

do sys open

mv The new file keeps tag infor-
mation

rename

cp The new file copies tag infor-
mation from the old one

unlink

tag -l TagFS new command for list-
ing tags associated to a file

-

TABLE III
LS SYSCALLS

Possible future work
In a pure tag file system, the disk mechanism could be
improved in the following way: We know that tags can be
added to some files, we have no hierarchical structure of the
files. This way we can find blocks of files based on tags
which could reduce disk fragmentation. Clustering tag data
can give insight on how much space there is required of a
certain tag type files and how accessible this should be to the
user. This could lower the external fragmentation of the disk if
properly used. However more tests should be done regarding
this problem.

Given the fact that Linux implements Extended Attributes(also
called xattrs) which are name/value pairs associated with files
as an extension to normal inode-based attributes, tags could
be inserted in xattrs and could be easily displayed of graphical
file browsers.

The current implementation, where we add hooks in the
kernel syscall so that existing applications can use TagFS, can
be augmented by adding new syscalls or fcntl options so that
new application can use the system better.

REFERENCES

[1] Stephan Bloehdorn and Max Volkel,Tagfs-tag semantics for hierarchical
file systems,

[2] Yuan-Liang Tai1, Shang-Rong Tsai, Guang-Hung Huang, Chia-Ming Lee,
Lian-Jou Tsai, Kuo-Feng Ssu and Shou-Jen Wey, A Label-Based File
System

[3] Nepomuk-KDE http://nepomuk.kde.org/
[4] TaggedFron http://lunarfrog.com/
[5] pyTAGSfs http://www.pytagsfs.org/
[6] TagFS: Bringing Semantic Metadata to the Filesystem http://www.

eswc2006.org/poster-papers/FP31-Schenk.pdf/

http://nepomuk.kde.org/
http://lunarfrog.com/
http://www.pytagsfs.org/
http://www.eswc2006.org/poster-papers/FP31-Schenk.pdf/
http://www.eswc2006.org/poster-papers/FP31-Schenk.pdf/

	I Introduction
	II State of the art
	II-A Nepomuk-KDE
	II-B TaggedFrog
	II-C pyTAGSfs
	II-D TagFS:Bringing Semantic Metadata to the Filesystem

	III Tagfs
	III-A Architectural decisions
	III-B Storage
	III-C Tag commands
	III-D Implementation details
	III-D1 medatada
	III-D2 VFS Hooks
	III-D3 Userspace application

	IV Experimental results
	V Conclusion
	References

