
Performance Evaluation for BlobSeer and Hadoop
using Machine Learning Algorithms

Elena Burceanu, Irina Presa
Automatic Control and Computers Faculty

Politehnica University of Bucharest
Emails: {elena.burceanu, irina.presa}@gmail.com

Abstract—Hadoop is a software framework based on the Map-
Reduce programming model. It relies on the Hadoop Distributed
File System (HDFS) as its primary storage system. In order to
improve the data-intensive Map-Reduce applications the orig-
inal HDFS layer of Hadoop can be substituted with a new,
concurrency-optimized data storage layer based on the BlobSeer
data management service. The project aims to evaluate and com-
pare the performance of Hadoop and BlobSeer filesystems. This
will imply implementing different machine learning algorithms
(e.g. Neural Networks) using the map reduce paradigm over each
of the above distributed filesystems.

Index Terms—Hadoop, BlobSeer, Map-Reduce, Cluster, Ma-
chine Learning Algorithms

I. INTRODUCTION

A. Context and motivation of the project

As the virtual storage expands, the need of processing large
data sets across clusters of computer is more overwhelming
each day. Hadoop is with one step ahead of others, as an open
source solution. Many big names in industry developed propri-
etary software starting with this solution, but also contributed
to the open source branch development. Some only use it,
some builds soft on top of it, some implements solutions for
its scheduler and some for its filesystem.

Other file systems integrated with Hadoop, except for
HDFS are Amazon S3, CloudStore, FTP, read-only HTTP
and HTTPS, each optimized in a direction (or more). One is
Blobseer, which was developed in an academical environment.

Because it was designed as a large scale distributed filesys-
tem, it is normal for Blobseer to aim to integrate itself with
a dedicated framework, such as a Map-Reduce one. Map-
Reduce proposes to explicitly exploit parallelism at data level,
by forcing the user to design the application according to a
predefined model. The model is inspired by the ’map’ and
’reduce’ primitives. These were commonly used in functional
programming, but in the case of Map-Reduce frameworks,
they haven’t kept their original significance. Several attempts
(and achievements) were done to integrate Blobseer with
Hadoop, but unfortunately, very poorly documented. Next
logical step after integrating it, was to test it’s performance,
by comparing it with HDFS, on some specific Map-Reduce
algorithms.

B. Contributions

We contribute to this project by trying to find out how the
performance for machine learning algorithms (so, a class of

algorithms) is influenced by the filesystem’s implementation
and also to compare the results for HDFS and BSFS. With this
in mind, we have deployed Mahout over Blobseer. Mahout is
a strong tool built on top of Hadoop, a set of machine learning
algorithms written considering the Map-Reduce paradigm.

II. RELATED WORK

There is a large team of professors, PhDs and masters
students that worked at the Blobseer project [1]. They have
run a complex deployment in order to see how their filesystem
scale in a map-reduce framework. Experiments were done over
Yahoo release of Hadoop v0.20. A set of benchmarks that
write, read and append data to files through Hadoop’s file
system API were implemented and throughput was measured
as more and more concurrent clients accessed the system. In
order to compare with the Blobseer performance, the BSFS
replaced HDFS and the same Hadoop map-reduce framework
was used for testing. This was possible due to the Blobseer
java interface.

The tests were done over 270 machines from the same
cluster of Grid’5000, with x86 64 CPUs and having 2-4GB
RAM of memory. Intracluster bandwidth was 1 Gbit/s. The
control of the clients was directly implemented.

Benchmarks:
• A single process writes a huge distributed file.
• Concurrent readers read different parts of the same huge

file.
• Concurrent writers append data to the same huge file.
Low level tests enabled the precise control of the clients

(as number and action), in order to extract the previously list
access patterns. High level tests were done with real-world
Map-Reduce applications: random text writer (many tasks,
each writing large amount of data, with no interaction between
tasks - concurrent, massively parallel writes), distributed
grep (huge data input that needs to be processed in order
to obtain output - counting the number of lines that matches
an expression - concurrent reads from a shared file) and sort
(concurrent reads from the same file and concurrent writes to
different files).

The measured metrics were: the throughput when a single
client perform and then the throughput per client, as the
number is gradually increased. So, for N concurrent clients,
first deploy on HDFS and BSFS and run the benchmark.



III. ARCHITECTURE

A. Hadoop

HDFS has a master/slave architecture. The master is the
NameNode, that manages the filesystem namespace (maps
blocks to DataNodes) and regulates clients access to files
(opening, closing, and renaming files and directories). The
slaves are DataNodes and manage storage (block creation,
deletion and replication upon instruction from the NameNode).
A file is split into one or more blocks and those are stored in
a set of DataNodes. Because there is only one NameNode in
a cluster, the architecture is simplified. User data never flows
through the NameNode. It is the arbitrator and repository for
all HDFS metadata.

B. Blobseer

Data providers (provider/provider) physically store and
manage the pages generated by WRITE and APPEND re-
quests. New data providers are free to join and leave the system
in a dynamic way.

The provider manager (pmanager/pmanager) keeps infor-
mation about the available data providers. When entering the
system, each new joining provider registers with the provider
manager. The provider manager tells the client to store the
generated pages in the appropriate data providers according to
a strategy aiming at global load balancing.

Metadata providers (provider/sdht) physically store the
metadata, allowing clients to find the pages corresponding
to the various BLOB versions. Metadata providers may be
distributed to allow an efficient concurrent access to metadata.

The version manager (vmanager/vmanager) is the key
actor of the system. It registers update requests (APPEND
and WRITE), assigning BLOB version numbers to each of
them. The version manager eventually publishes these updates,
guaranteeing total ordering and atomicity

IV. IMPLEMENTATION

A. Used technologies
1) Apache Hadoop: The Apache Hadoop software library

is a framework that facilitates the distributed processing of
large data sets across clusters of computers using a simple
programming model. Hadoop consists of two key services:
reliable data storage using the Hadoop Distributed File Sys-
tem (HDFS) and high-performance parallel data processing
using MapReduce. Hadoop, is fault-tolerant, you can add
or remove servers in a Hadoop cluster at will, the system
detects and compensates for hardware or system problems on
any server. It can deliver data and can run large-scale, high-
performance processing jobs, in spite of system changes or
failures. Some names that uses Hadoop: Facebook, Yahoo,
AOL, Adobe, Amazon, Twitter, Google, IBM, Microsoft,
Last.fm, LinkedIn.

2) Blobseer: Core principles of Blobseer are: Organizing
data as BLOBs (Binary Large OBjects) Treat data as a set
of huge unstructured data, so that a BLOB can reach 1TB.
This gives scalability since the data can grow as fast as needed
without affecting the performance (the program should manage
only the offset of the in the blob). This is effective because
Blobseer supports an efficient fine-grain access to the BLOBs,
for a large number of concurrent processes.

Modify a file in Blobseer:

Inner nodes labeled with the range they cover represent
metadata and leaves identify the pages. Each node is stored



as a (key, value) pair, where key includes the blob id, the
version number and the covered range delimited by an offset
and a size, while value identifies the left and right child.
Given an initial blob made up of four pages, a subsequent
write generates pages 2 and 3 and also new metadata nodes
represented in gray. These new gray nodes are interleaved with
the white nodes corresponding to the unmodified first page and
forth page respectively. Concurrent writes and appends are also
allowed as they can send data to the storage space providers
independently of each other. Synchronization takes place only
at the version manager level where the updates are serialized
and assigned version numbers in an incremental fashion. Then,
support for metadata enables generating metadata in parallel
too with the assumption that all concurrent updates will be
generated in the future.

Data striping is the operation of splitting BLOBs into
chunks that are distributed on the nodes that provide storage
space. At this level the space from storage providers is
configurable, so that various objectives could be reached:
low energy consumption, high data localization, etc. The size
of the chunks is dynamically adjustable, so that based on
system loading or other heuristics, the way the computation is
partitioned and scheduled can be optimized.

The minus of versioning is that it needs extra space, but
the space becomes cheaper and cheaper, so versioning has the
potential to bring high benefits for a low price: enhanced data
access parallelism (clients access different versions of the file),
overlapped data acquisition with data processing (one step
older data can be processed, while the new ones are acquired,
with no synchronization), asynchronous operations (read-write
can be concurrent on different versions of the files), differential
updates (the updates are kept as difference between versions).

3) Apache Mahout: The Apache Mahout is a scalable
machine learning library for map-reduce, built on top of
Hadoop. There are four main directions that Mahout supports:
recommendation mining (takes users’ behavior and from that
tries to find items users might like), clustering (takes text
documents and groups them into groups of topically related
documents), classification (learns from existing categorized
documents what documents of a specific category look like
and is able to assign labels of the correct category to the
documents), frequent item set mining (takes a set of item
groups (terms in a query session, shopping cart content) and
identifies, which individual items usually appear together).
Core algorithms for clustering, classification and batch based
collaborative filtering are implemented on top of Apache
Hadoop using the Map-Reduce paradigm.

4) Map-Reduce: Map-Reduce paradigm can be resumed in
two steps:

Map step - The master node takes the input, partitions it
up into smaller sub-problems, and distributes them to worker
nodes. A worker node may do this again in turn, leading to
a multi-level tree structure. The worker node processes the
smaller problem, and passes the answer back to its master
node.

Reduce step - The master node then collects the answers

to all the sub-problems and combines them in some way to
form the output (the answer to the problem it was originally
trying to solve). Map-Reduce allows for distributed processing
of the map and reduction operations. Provided each mapping
operation is independent of the others, all maps can be
performed in parallel (though in practice it is limited by the
number of independent data sources and/or the number of
CPUs near each source).

B. Our Deployment Architecture evolution:
Significant effort was invested in preparing the experimental

setup. We had to overcome nontrivial node management
and configuration issues to reach this objective. Hadoop and
Blobseer are available for both Windows and Linux. We
have chosen Ubuntu 10.10 as operating system for the virtual
machines. First we have deployed Hadoop, Blobseer and
Mahout on localhost, then we have extended to 4 and 8 nodes.
The architecture evolved as it follows:

On a single node:
• Deploy Hadoop, with namenode and datanode function-

alities.
• Add the Mahout library over Hadoop and prepare its test

datasets (20 newspapers, wikipedia, netflix).
• Install Blobseer on localhost (not connected with

Hadoop). Components of Blobseer are: 2 managers (ver-
sion, provider), metadata provider and data node.

• Add a fifth component to Blobseer, the Namespace Man-
ager in order to replace the Hadoop filesystem.

• Integrate Blobseer in Hadoop.
Multiple nodes (4 and 8):
• Multiply the previously configured virtual machine on the

CS grid: fep.grid.pub.ro.
• From Hadoop’s point of view there are: 1 master-

namenode and 3 slaves-datanodes (1 master and 7 slaves).
• From Blobseer’s point of view there are: 1 node (keeps

the administrative part) with manager (version, provider
and namespace) and metadata provider roles and 3 nodes
as data provider (one node for each manager (3) + 1
metadata provider + 4 data provider).



C. Configuration Steps:

Cluster Configuration [9] [10]
1) Create a big hda in LustreFS (should be large enough

for Hadoop, Blobseer, Mahout and the datasets).
qemu-img create -f qcow2 hda.qcow2 200G

2) Boot the virtual machine from an Ubuntu iso mounted
on cdrom and pick a queue from the cluster (qstat -f).
apprun.sh kvm --queue all.q@opteron
-wn08.grid.pub.ro --vmname master
--cpu 8 --memory 8G --hda hda.qcow2
--cdrom ubuntu.iso --status stat.txt
--mac aa:bb:01:12:34:12 --vncport 7
--master --boot d

3) Launch the virtual machine.
apprun.sh kvm --queue all.q@opteron
-wn08.grid.pub.ro --vmname master
--cpu 8 --memory 8G --hda hda.qcow2
--mac aa:bb:01:12:34:12 --vncport 7
--master

4) Test if your machine is running (qstat).
5) Attach to the virtual machine.

vncviewer all.q@opteron...grid.pub.ro
ssh user@ip

6) In order to create the slave copies, use the same hda -
uses copy on write, so no need to replicate the entire
hda, since most of the configurations are identical.
apprun.sh kvm --queue all.q@opteron
-wn08.grid.pub.ro --vmname slave
--cpu 8 --memory 8G --hda hda.qcow2
--mac aa:bb:01:12:34:12 --vncport 7
--slave

Hadoop Configuration
1) For a single node deployment, follow this tutorial [5].
2) For cluster deployment use this tutorial [4].
3) Possible problem: If the datanode doesn’t start, remove

all the content from /tmp (*.pid and hadoop-*) you
can configure the the path of hadoop tmp files from
hadoop-dir/conf/core-sites.xml, by adding a property
named ’hadoop.tmp.dir’ with the value of the new path
’/home/user/tmp’.

4) Possible problem:If the namenode doesn’t start, hadoop
namenode -format.

Blobseer Configuration
1) Download the sources from github [3].
2) Install and deploy on localhost from this tutorial [1] (use

the configuration file blobseer dir/test/test.cfg from the
sources, not from the tutorial) (Possible problem: Pay

attention to Boost version, should be between 0.40 and
1.47).

3) Possible problem: If you have problemes with the space
from blobs (cannot append to blob), try modifying
in the provider configuration, ’space = 1024’ in the
configuration file (test.cfg).

4) Download sources for Hadoop integration (namespace
manager) [2].
Here starts the main part of the configuration:

5) Copy bshadoop in Hadoop’s filesystem sources (fs/bsfs).
6) Create directory named blobseer in Hadoop’s core and

copy the java interface of blobseer here.
7) Build Hadoop using ant.
8) Copy libblobseer.so and libblobseer-java.so in the archi-

tecture dependent folder (Linux-arch/) of Hadoop.
9) Override Hadoop’s core-site.xml with bshadoop/core-

site.xml.
10) Start the namespace-node (the one needed for integrating

with Hadoop).
11) Build the Blobseer’s java namespace manager. Link it

to filesystem client and to the java Blobseer’s interface.
Then run ant.
Hint: Run commands detached from the user/terminal
with nohup bash cmd.

12) While running the namespace manager, test it by exe-
cuting bin/hadoop dfs -mkdir /newdir or bin/hadoop dfs
-ls.

Mahout Configuration

1) To install it, follow this tutorial [6].
2) To start a classification example, read from here [7].

V. SCENARIOS AND RESULTS

For our first tests we have used different machine learning
algorithms from Mahout (e.g. k-means, naive bayes) or clas-
sical map-reduce problems, such as Word Count or Grep. But
for most of them we only had small data sets, so the results
weren’t quite relevant.

More accurate results were obtained after applying Naive
Bayes classification algorithm over a big dataset (33GB)
consisting in a Wikipedia articles database [8]. First, the test
splits the input into chunks. Further, the data is grouped by
the country of origin of each article. Finally, the classifier
is trained to predict what country an unseen article should
be categorized into. The algorithm was also a good choice
regarding the intensive usage of the filesystem: doing lots of
readings of the input data for the map operations and writing
back the results in the reduce phases.

The image bellow illustrates a comparison between Hadoop
and BlobSeer after running the Naive Bayes algorithm on
different cluster configurations: single node and master/slave
deployments with 4 and 8 nodes.



The second image shows the results of running the same
algorithm as above, on a 8 nodes master/slaves deployment,
this time alternating the size of the input data set.

VI. POSSIBLE SOURCES OF ERRORS

While setting up the testing environments, we’ve encoun-
tered various factors that could have affected our results.

1) Isolate file system operations
In order to obtain a better comparison between Hadoop
and BlobSeer filesystems, we need to isolate and closely
monitor the filesystem operations. In this case, the cpu
intensive jobs wouldn’t come with relevant information
for our tests. For example, for more accurate results, it
would be better to only watch for the read operations
of the map phases, and the write operations in the final
reduce phase.

2) Small datasets
We also need to use larger data sets in order to increase
the number of file system accesses.

3) Cluster loading and intracluster bandwidth
A very important factor that can affect the test results
would be the cluster’s state. Causes like the cluster’s
load or bandwidth can have a strong influence on the
communication between the master node and the slaves.
For example, after testing in different times of the day on
the same data sets, we obtained substantial differences
between the results.

4) Suboptimal Blobseer Configuration
Another problem we’ve encountered while deploying the
master/slave nodes was finding the optimal configuration

for BlobSeer. As opposed to Hadoop, a highly used
and documented system, BlobSeer is rather a newer
system which lacks proper documentation. For example,
adding an extra Metadata Provider node would have
increased the speed for finding the requested data, while
adding the overhead of a new node. Also, adding another
version manager would have improved the concurrent
coordination of the filesystem’s operations - e.g. writes
and appends. Such decisions might have increased the
overall performance of the BlobSeer deployment.

5) The relevance of the testing algorithms
The algorithms chosen for the testing scenarios also pay
an important role on the relevance of the results. We’ve
tested using several machine learning algorithms that
were provided by Mahout library and also with some
simple algorithms from the Hadoop framework. From
among them we had to select only the ones that were
intensively using the file system, e.g. lots of read/write
operations.

VII. CONCLUSION AND FURTHER WORK

So far, from our test results, Hadoop seems to have a
better performance. But given the facts that the performance
differences were quite small, the weak configuration of Blob-
Seer and all the possible error sources described above, the
configurations of the deployed systems might still be improved
in order to obtain more relevant results.

For our future tests, we plan to:
• Expand our distributed environments by adding more

processing nodes.
• Use larger data sets as testing input.
• Closely monitorize the filesystem operations. One possi-

ble method to achieve this would be using the MonALISA
Distributed Monitoring Framework.

ACKNOWLEDGMENT

The authors would like to thank the cluster team for their
technical support.

REFERENCES

[1] Blobseer configuration. http://blobseer.gforge.inria.fr/doku.php.
[2] Blobseer integration with hadoop module.

https://github.com/acarpena/blobseer/tree/4416a8c141cf03fc8
0a0c9bc7980ea72dcc58d8a/contrib/bshadoop.

[3] Blobseer sources. https://github.com/acarpena/blobseer/.
[4] Hadoop cluster deployment tutorial. https://ncit-

cluster.grid.pub.ro/trac/PP2010/wiki/Multi-Node.
[5] Hadoop one node deployment tutorial. https://ncit-

cluster.grid.pub.ro/trac/PP2010/wiki/Hadoop.
[6] Mahout. https://cwiki.apache.org/MAHOUT/buildingmahout.html.
[7] Mahout runclasification example. https://cwiki.apache.org/MAHOUT/twenty-

newsgroups.html.
[8] Mahout wikipedia classification example.

https://cwiki.apache.org/MAHOUT/wikipedia-bayes-example.html.
[9] Manual for configure virtual machines on cluster.

http://cluster.grid.pub.ro/images/clusterguide-v3.1.pdf .
[10] Virtual machines configuration scripts.

http://swarm.cs.pub.ro/ irinap/cluster-kvm/start machines.sh.


