
Little changes, big effects - optimizing Korect

Ioan-Alexandru Eftimie
Computer Science Department,

„Politehnica” University of Bucharest,
Bucharest, Romania

ioan.eftimie@cti.pub.ro

Abstract – Student examination is an important part of the
educational process. Although various electronic testing and
grading solutions have been developed and gained interest in
the last years, classic short answer paper examination is still a
preferred method of examination, due to the simplicity of
implementation and low technical requirements.

Korect is a complete solution for automatic test generation,
processing and grading, with inline answer marks and paper
processing via auto feeder scanners and OCR detection. This
document presents work for optimizing the preprocessing
phase and folder pooling during automatic correction flow.
Results of this work are better stability and performance of the
Korect solution.

I. INTRODUCTION
The evaluation of students using multiple choice test

papers is a very popular method of evaluation in the
academic environment. While this method has some
obvious advantages, correcting tests is a repetitive activity,
taking a considerable amount of time for a large number of
students.

Korect is designed to resolve most of the problems
associated with these types of test papers. It automates the
grading process, necessitating as little human intervention as
possible. Korect handles all the phases of the process,
starting with question management, test generation, test
grading and ending with reports, statistics and archiving.

Although for simple use cases (an exam up to 200
students evaluated using a single scanner and computer), the
current solution performs well, the solution doesn’t scale to
larger exam scenarios, such as multiple scanners and a
distributed processing environment. The initial attempt was
to port Korect to a Hadoop managed infrastructure, but due
to the complexity of the task and after close investigation, it
was dropped for simpler, yet significant improvements.

This paper describes work done improving the
preprocessing module – initially an external tool, called
from within high level main code; a new module that pools
the scanner’s output folder for files is also presented.

The rest of the paper is structured as follows: Section II
presents the related work, Section III contains a detailed
description of Korect, Section IV describes the
implementation of proposed optimizations, Section V
presents the testing results, in Section VI we discuss the

potential problems and possible solutions to them, and also
presents the conclusions of the paper.

II. RELATED WORK
N. Lozano et. al developed a Scoring Tool for Electronic

Paper Exams [1]. Digital ink is used by the students and text
is captured and transmitted to the Paper Architecture server,
where is segmented and analyzed. They take a hybrid
approach, as automatic scoring is used for selection
questions and free text answers can be corrected by teachers
interactively through an interface. The interface is able to
reorganize questions and mark empty questions in order to
optimize marking time. The application also supports
statistics export and automatic result e-mailing to the
students.

N. Nakagawa et. al. extended the scoring tool in order to
run the same application with different pen and paper
devices, without having to re-write the main application [2].
A client has to be developed for each pen and paper device
they want to support. The ink is first obtained from the
device in a proprietary format, it is segmented into pages,
and then the pen-tip coordinates are mapped to a standard
coordinate system and stored in an InkML format. This file
is sent by the client to the server that is able to analyze it.

G. Cen et. al. developed an auto-generated paper
management system based on lightweight J2EE tools [3]. It
includes a set of modules for user, subject, classification,
questions and paper management. An efficient algorithm is
used by the design process to perform analysis and compose
examination papers. The paper will be generated
automatically based on the subject, question type and
difficulty level.

L. Shushu et. al. designed a mathematical model for auto-
generating examination papers based on a genetic algorithm
[4]. The model uses the intelligent search of genetic
arithmetic in order to satisfy a set of requirements. The
theoretical analysis shows that the genetic algorithm has
polynomial time and space complexity and is able to
efficiently generate exam papers in an intelligent manner.

III. KORECT
The evaluation process can be divided into different

stages, each one with their own requirements and needed
features.

The first stage consists of question management. With
normal, manual methods of evaluation question

management is practically inexistent as questions are
usually stored in an unordered manner. Korect permits the
tracking of individual questions, as well as attaching
different quantifiers such as difficulty and chapter.

The next stage, the test paper generation, can be done
with greater control thanks to the advanced question
management. Test papers can be generated using large pools
of questions, using different parameters (what chapters to
use for example) and both the questions and the answers are
randomly arranged to prevent student from copying the
answers from each other.

The third stage is represented by test evaluation. One of
the advantages of Korect is that it does not need any special
hardware. The tests are scanned with a scanner at a normal
resolution (300 DPI or more) and then they are processed by
the application. After the tests are evaluated by the
application, the teacher can overview the corrected tests and
make minor corrections (for example answers changed by
the student). This is also the stage in which the student's
name is filled in.

A. Architecture

Figure 1: Application Architecture

Korect consists of a backend module containing specific
modules for each stage, various services, independent user
interface code, and the main application tying everything
together, and also managing the configuration and database.

B. Functionality
The application’s functionality can be divided into the

following modules:
• Question management. This component is actually
divided in 2 subcomponents, a question importer that
reads a text file written using a simple format and the
question management interface. Using these interfaces
questions can be added, edited.
• Test generation. The test generation component
receives any number of questions and answers and is
able to create a PDF file containing the necessary
markers, the bar code needed for the identification of the
test paper and the respective questions. This PDF will be
then printed, filled out by the test takers and then
scanned and evaluated. This component also saves the

geometry of the page, which is needed later in the data
extraction process.

Figure 2: Generated test paper

• Test paper preprocessing. As the test papers are
scanned the image is not always straight so test papers
need to be prepared for data extraction. This is done by
the preprocessing component, a program written in C
using an optimized image processing library that takes
the input image, detects special markers (Fig. 3) that are
present on the paper, rotates it so that it is straight and
removes the margins.

Figure 3: Markers used for alignment detection

• Test evaluation. The program detects the answers
from each scanned paper and computes the grade of each
student. It uses the geometry information that was stored
in the first phase of the process to detect if the question
was answered and which answer was selected if it was.
If more answers were selected than they should have
been, then the program marks it for manual inspection in
the next stage.
• Test paper examination. After reading the answers
from the test paper Korect provides an easy to use
interface to examine each corrected test paper for
evaluation errors. The test paper is shown along with an
overlay with additional information such as selected
answer, whether the answer was correct or not and total
grade. In this interface the person who is correcting the
test papers can make adjustments to the test paper.

C. Implementation

The “Preprocessing” component is one of the most

important elements of the checking process. Since all the
checks that are done in the later stages of the application are
based on the geometry of the page, the proper alignment of
the page is crucial to the correct operation of the application.
The “Preprocessing” component uses the special markers
that are created by the PDF generator to align and crop the

scanned image. The output image will be later used to detect
and extract the needed information from the corrected test
papers.

The “Preprocessing” component is implemented as a
standalone executable and is built using cross-platform
code. It uses functions from the OpenCV library, a high
performance open source imaging library that implements a
number of useful algorithms.

To properly detect the markers the program looks at a
region in each corner of the image, and identifies all the
contours in that region. It then checks the size of that
contour and if it is big enough it compares the contour with
the markers using a function in the OpenCV library,
cvMatchShapes, which uses Hu moments.

After detecting the contours the program computes the
bounding boxes of each marker. The markers are shapes
composed of straight lines that can be inscribed in a
rectangle. This solution was chosen because in this way the
markers are different enough to be properly detected by the
contour matching algorithm. By being able to inscribe the
marker in a rectangle using the library functions the
application can compute the corners (limits) of the image.
This further allows to easily compute the center of the
image (will be used for rotation) and the difference in angle
by using the leftmost contours. The application then rotates
the image and repeats the contour detection, this time
extracting the extremities of the contours to compute the
crop zone.

IV. OPTIMIZATIONS

A. Preprocessing module
Although the existing solution confers a good

performance (preprocessing phase takes 250 ms per image),
due to the OpenCV usage and compiled bytecode speed, the
solution, external tool called via subprocess.Popen, isn’t
flexible enough.

A better solution will use C code for processing, but
wrap it up inside a Python module – so that high level
language features, such as exceptions, are available.

Simplified Wrapper and Interface Generator, or
SWIG[5] for short, is a tool that provides a way to interface
C/C++ with a variety of high level programming
languages (notably Python, R but not Matlab – which has
its own way of linking to C). It generates wrapper methods
that allow the two languages to talk to each other.

Two modules were created using SWIG:
preprocessing and imageprocessing. While the first
does what the name says, the second one implements checks
detection (student’s answers) – a feature formerly
implemented in Python, with poor results. Initially checks
were detected by calculating the coverage percent; scanned
image was loaded into memory, converted to a bitmap, then
black dots were counted. A percent of black covering is
calculated, and if this surpasses a given limit (constant), the
check is considered valid. The new implementation makes

use of specific computer vision API, called from within the
C code; image agnostic results (Boolean answer values) are
passed to higher level Python code.

Due to the fact that SWIG makes use of Cmake, a new
build systems has been developed – using both Cmake and
make for seamless and crossplatform configuration and
building.

B. Folder pooling
Another part of Korect worth improving is the correcting

process. Current limitations include the need to keep the
GUI window open, after the process has started, the
impossibility to stop/pause/resume it, lack of sensitivity to
file system changes.

A new system, GUI independent, which can watch the
folder for new files, stateful and fail safe was needed. The
approach we have taken in this work was to develop a
service (running as a different process), which manages the
correcting process. Synchronization and communication
with the main thread is done manually, using methods like
an @on_idle decorator – assuring exclusive access – on
the methods.

inotify is an event-driven notifier, its notifications are
exported from kernel space to user space through three
system calls. Pyinotify relies on inotify for monitoring
filesystems changes. It binds these system calls and
provides an implementation on top of them offering a
generic and abstract way to manipulate those functionalities.
We used pyinotify to watch the user selected folder for new
files.

V. TESTING
The newly developed preprocessing module has been

tested using a real exam of 200 students, each test spanning
over 2 pages.

The results show both speed and stability improvements:

 Original New
Average preprocessing speed 250 ms 220 ms
Average correcting speed 2 sec/test 0.9 sec/test
Failed tests (on a 200 set) 8 3

Table 1: Testing results.

Average correcting speed improvement relies on moving

the black coverage to from Python to C.
Failed tests number decrease is justified by better error

handling – less papers show up in the manual review dialog,
being automatically handled (discarded or moved to queue).

VI. CONCLUSIONS
Shape recognition and computer vision represent

interesting fields in computer science. Automated test
generation, correction and grading, may offer the subject for
complex applications, such as Korect; fault tolerant flows,
accuracy and speed, responsive graphical user interfaces are

aspects raising challenges and permitting various
optimizations.

This paper’s work reflects how little changes confer
significant performance improvements. Using the right tool
in the right place – or the right programming paradigm in
the right scenario, assures best results.

By improving two key parts of correcting process – the
preprocessing phase and checks detection, a significant gain
of performance has been obtained.

Future work may involve applying the same approach
for freeform extraction (i.e. student’s signature) and report
generation.

REFERENCES
[1] N. Lozano, K. Hirosawa, and M. Nakagawa, “A Scoring

Tool for Electronic Paper Exams,” Seventh IEEE International
Conference on Advanced Learning Technologies (ICALT 2007),
Jul. 2007, pp. 120-121.

[2] M. Nakagawa, N. Lozano, and H. Oda, “Paper
Architecture and an Exam Scoring Application,” First International
Workshop on Pen-Based Learning Technologies (PLT 2007), May.
2007, pp. 1-6.

[3] G. Cen, Y. Dong, W. Gao, L. Yu, S. See, Q. Wang, Y.
Yang, and H. Jiang, “A implementation of an automatic
examination paper generation system,” Mathematical and
Computer Modelling, vol. 51, Jun. 2010, pp. 1339-1342.

[4] L. Shushu and W. Fengying, “Strategy and Realization of
Auto-generating Exam Paper Based on Genetic Algorithm,” 2010
International Conference on Artificial Intelligence and
Computational Intelligence, Oct. 2010, pp. 478-482.

[5] P. Ramachandran. “Wrapping with SWIG and
Boost.Python: a comparison” in SciPy'03 - Python for
Scientific Computing Workshop CalTech, Pasadena, CA

