MAGIKMAIDS: Mobile Agents for In-Kernel
Monitoring, Assessment and Intervention in
Distributed Systems

Cristian Dinu
“Politehnica” University of Bucharest
Email: cristian.dinu@cti.pub.ro

Abstract—As distributed systems have begun to play a more
and more central role in modern computing, their size and com-
plexity has increased up to the point where centralized, human-
mediated management of the system nears unfeasibility, and a
need arises to endow these systems with a form of distributed
intelligence so as to allow scalable self-organization and timely
response to changing conditions. Mobile agents are one well-
established method of implementing such versatile distributed
intelligence and many mobile agent platforms have been created
for use in computer networks and distributed systems.

While all such efforts so far have been limited to user
space, our paper takes the novel approach of considering the
implementation of such a platform in kernel space, dubbed
MAGIKMAIDS. We begin by making a case for why a kernel
space implementation would present worthwhile advantages, then
we investigate possible implementation approaches and follow
with the architecture and details of the Java Virtual Machine-
based approach that we have selected. Finally, we show results
regarding the performance, adaptability and ease of use of
our mobile agent platform. Our contribution also includes a
simulation environment that greatly eases the development and
testing of agents for the MAGIKMAIDS platform.

I. INTRODUCTION

It would not be too inappropriate to call our time “the
century of the distributed system”. Indeed, current trends in
computing, as predicted by those such as Nessett[1], indicate
that distributed systems are an increasingly pervasive paradigm
in computing and our everyday lives. The Internet, massively
multiplayer online games (MMPORPGs), wireless sensor net-
works and ambient intelligence are but a few of the numerous
applications of distributed systems, and yet more will likely
emerge as the boundaries of this technology are pushed by
further research.

The increased pervasiveness of distributed systems necessar-
ily leads to great increases in their geographic scale and gran-
ularity, and thus to their complexity. Modern-day distributed
systems may well feature node counts in the thousands or even
hundreds of thousands[1], and it is soon apparent that manual,
centralized, management of such systems is all but impossible.
Solutions are needed by which this task can be delegated to
intelligent automation within the system, likely distributed so
as to still scale with such large node counts.

Mobile agents are one of the technologies by which dis-
tributed systems may be endowed with embedded intelligence.
An agent, by definition, contains all the fledgling ingredients

of intelligence, and a society of well-designed agents may
feature, through emergence, more advanced behavior still,
enabling timely and efficient reactions in a distributed system
in response to an attack, a malfunction or a change in the
nature of the computing task assigned to the system. Mobile
agent societies scale well because they are inherently parallel,
and represent a more efficient use of resources because they
are able to carry functionality where - and only where - it
is needed, instead of it being built into every machine. In
recognition of their potential, mobile agents in distributed
systems have been put to use in tasks such as monitoring[2]
[3], intrusion detection[4], checkpointing[5], and many others.

Although there have been many implementations of mobile
agent platforms so far, to the best of our knowledge none has
considered the possibility of running in the operating system
kernel as opposed to being another user space application.
Though running such a complex subsystem in kernel space
poses considerable challenges of security, safety and CPU and
memory use, we believe that such a scenario would present
several unique advantages that make such an undertaking
worthwhile:

o The kernel environment offers unparalleled levels of
control over the most intimate aspects of the operating
system, a fact useful to agents that go beyond monitoring
and reach into the realm of intervention. One can imagine
an agent being able to tweak the algorithm of the system
scheduler so that a particular load scenario can be most
effectively addressed.

o Some monitoring tasks may require very precise timing or
hardware operations that are the privilege of kernel space
code. Kernel code that responds to a timer does not have
to worry about being unpredictably delayed due to the
scheduler electing a competing user space application.

o Agents in the kernel are well protected against malicious
user space interference. Indeed, the agent platform can be
implemented such that a malicious user space application,
even one with root privileges, cannot even detect the
presence of the agents, let alone interfere with them. The
fact that they have priority over any user space application
also allows agents to police processes and prevent more
indirect attacks such as fork bombs, resource hogging etc.

« Finally, as mobile agents can implement drivers or even

system services in a microkernel, they can form the basis
of an exceptionally flexible upgrade system. Updating a
driver on-the-fly may simply be a question of launching
a mobile agent implementing the improved version and
letting it diffuse throughout the distributed system on its
own, automatically replacing the agent that implemented
the previous version of the driver.

This paper documents our efforts at implementing such
a mobile agent platform - which we have dubbed MAGIK-
MAIDS - in kernel space, more specifically the Linux kernel
space. Before discussing our implementation, we first present
some related work, in section II. Section III describes the main
decisions and assumptions that shaped the ultimate design of
the agent platform, while section IV goes into detail regarding
the implementation of the platform at all levels: general archi-
tecture, API, programming details, etc. Section V presents a
series of results regarding the performance characteristics and
behavior of the MAGIKMAIDS platform under various test
scenarios; and finally, in section VI we draw our conclusions
as to the success of the experiment and any potential future
work.

II. RELATED WORK

Our survey of the available literature shows that while there
has definitely been much research into mobile agent platforms
and applications in distributed systems (of which the afore-
mentioned [2] [3] [4] [5] are but a small part), authors have
steered clear of suggesting a kernel space implementation,
likely because of the daunting challenges inherent to such a
proposition, as well as the fact that it is only recently that
technological advances in CPU speed and architecture have
made it feasible to implement such a complex application in
kernel space.

Nevertheless, there are some projects that touch upon at
least some of the aspects important for a mobile agent platform
in the kernel. Necula and Lee’s "Safe Kernel Extensions
Without Run-Time Checking”’[6], for instance, deals with a
sort of non-mobile “agents” specifically designed to work in
the networking subsystem of the kernel (as packet filters),
and addresses the important problem of ensuring the safety
and security of such code. The problem of mobile agent
security, which is of the utmost importance for a platform
situated in such a sensitive location as kernel space, is further
discussed at length in Jansen and Karygiannis’ "Mobile Agent
Security”[7], which we found to be an invaluable resource
during the design phase for our platform in all matters that
had security implications.

If a JVM-based agent platform implementation is con-
sidered, one work of particular importance in the matter
is Okumura and Childers’ ”Running a Java VM Inside an
Operating System Kernel”’[8], which presents their experience
with implementing a functional Java Virtual Machine in kernel
space, as well as an associated Just-In-Time (JIT) compiler.
Their performance results prove that it is entirely feasible to
run such a virtual machine in the kernel with only minimal
performance degradation with respect to native code, provided

that some reasonable restrictions are imposed upon the pro-
grams run in such a machine. We have also found a similar
open-source project called TeaseMe, but it appears to have
been abandoned for a number of years and the code likely
requires considerable review.

III. DESIGN CONSIDERATIONS

Before we could start work on the details of the platform, a
significant decision had to be made as to the major approach
used for executing custom code, such as agents, in the kernel
environment. There are two possible such approaches, each
with its unique set of advantages and disadvantages. We will
discuss them in the following sections and justify our final
selection for the implementation presented in this paper.

A. Approach I: Agents as native code

This first approach involves treating agents as special LKMs
(Linux Kernel Modules) that, in addition to the standard kernel
functionality, are also provided with access to agent platform
functions that assist in environment discovery, migration,
agent-to-agent cooperation, etc. Agents are coded in C, like
any other LKM, and work somewhat like cpufreq or cpuidle
governors: when the agent is first created - or arrives on a
machine through migration - its module is loaded and the
agent registers its callbacks while in its module initialization
function so that it can receive agent platform-specific events.
Upon migration or termination, the agent module is unloaded,
not before giving the agent an opportunity to save its data to
a binary stream so that it can be available for state restoration
when the agent arrives on another machine.

This solution has several obvious advantages:

o Agent performance is essentially identical to that of the
rest of the kernel, thanks to the use of C code and the
opportunity for compile-time optimizations. Memory and
CPU utilization are optimal provided that the programmer
is capable of producing reasonably efficient code.

e Agent code has a direct interface to all kernel functions
available to a module. This aids in CPU efficiency, but
also has implications for the agent platform complexity:
the latter need only provide code to assist in migration,
agent module loading/unloading, calling agent callbacks
in response to events, and supporting agent communica-
tion.

Unfortunately, many more disadvantages spring to mind:

« Given that agents may have to travel across nodes fea-
turing different kernel versions or .configs, a mechanism
is needed in order to re-compile or re-link an agent as it
arrives on a new machine. An agent could travel in the
form of source code (obviously encrypted and signed) and
be recompiled upon arrival, but even the compilation of
a simple module is extremely resource-intensive, and the
compiler toolchain would likely have to be extensively
modified so that it can be invoked by the kernel without
risking userspace interference. Alternatively, compilation
could be offloaded to dedicated 'master’ nodes in the
distributed system, but this complicates the architecture

and introduces numerous security issues (what happens if
a 'master’ is compromised?). Relinking has the potential
to be much faster than recompilation, but it cannot handle
differences in CPU architecture (such as the agent passing
between machines of different endianness).

o Because agent code executes natively, the agent platform
is unable to prevent any bugs or malicious behavior on
part of the agent from bringing down the entire system.
Agents have to be trusted to be friendly and nearly bug-
free.

« For reasons such as the above, agent development would
be very difficult, as the programmer would have to ensure
safety in a language and environment notorious for their
lack of such guarantees.

B. Approach II: Agents as Java bytecode

An alternative approach involves represeting agents as Java
bytecode that is executed in the context of a Java Virtual
Machine (JVM) implemented in the kernel. Agents are written
in Java (or any other language that produces compatible
bytecode) and can access kernel and agent platform functions
through special built-in classes (e.g. Magik, Kernel), while also
providing methods for handling the events sent by the agent
platform.

The disadvantages of this solution come in contrast to the
advantages of the native method:

o Performance is reduced, possibly by several orders of
magnitude, due to the necessity of interpreting the
bytecode, as well as the additional abstraction layers.
However, this may be mitigated by Just-In-Time (JIT)
compilation, as well as by employing specialized JVM
instructions that have begun to appear in modern CPUs
(e.g. the Jazelle mode for ARM-based processors).

e A complex adaptation layer between the Java environ-
ment and the kernel functions needs to be created,
generally as part of the agent platform. This introduces
overhead and generally limits the agent to only that
functionality which has been explicitly included in this
adaptation layer. It is still possible to call arbitrary kernel
functions, albeit in a most unelegant way, by employing
kallsyms trickery.

On the other hand, the virtualization layer resolves many of

the problems that plagued Approach A:

« Agent portability is no longer a problem - Java bytecode
easily transcends differences in kernel versions or ma-
chine architecture.

« Because agent code now runs in a virtual machine and all
calls to the kernel pass through an adaptation layer, it is
possible - and advisable - to perform sanity and security
checks at every opportunity. The potential of a system-
wide crash caused by a malfunctioning or malicious agent
is greatly reduced.

o The Java language makes it easier to produce safe code,
and complex programs can be implemented faster thanks
to the object-oriented approach of the language as well
as the many useful built-in classes.

Having weighed the advantages and disadvantages for both
of these approaches, we decided that it the most promising
method was B), owing to the fact that a less than optimally
efficient agent platform is still preferrable to an insecure and
dangerously unsafe one, and that recent technology offers
several solutions for satisfactorily mitigating the performance
impact characteristic to a JVM-based solution.

C. Founding principles for agents

To further help with limiting the performance impact of
agents, as well as ensuring that potentially fatal programming
flaws are avoided, we also set a number of guiding principles
for designing MAGIKMAIDS agents:

o Agents will perform only brief, non-blocking operations
in their callbacks. Any long-running or complex opera-
tions will be delegated to a tasklet or a separate thread,
for which the MAGIKMAIDS platform should provide
adequate functionality. This paradigm should be rather
familiar to kernel developers (this is the classic way of
writing a driver that responds to interrupts) as well as
Android application programmers.

o Barring the callbacks, which will never be delayed,
agent performance is expendable: their execution will
be forestalled or slowed down if this is necessary for
achieving minimal impact on userspace performance.

o Agents are completely isolated from each other; an agent
cannot obtain a reference to any other agent running on
the same machine, nor can he directly manipulate other
agents through his interface to the agent platform. Agents
will have to interact through a communication layer that
agent instances may subscribe to voluntarily - thus, agents
can only influence each other if they are specifically
designed to do so, and any such communication can be
adequately checked at the receiver before any action is
performed.

o Agents shall minimize the allocation of objects on the
heap using the new operator, particularly within repetitive
sections. Whenever possible, preallocated objects will be
reused. This reduces the strain on the memory allocation
subsystem in the Linux kernel and minimizes the need for
invocation of the garbage collector. Android application
programmers should be quite familiar with this restric-
tion.

IV. IMPLEMENTATION

A. Overall architecture

The overall architecture for a MAGIKMAIDS agent en-
vironment spanning an entire distributed system is that of
perfect distribution: every node contains a MAGIKMAIDS
agent platform installation (in the form of a LKM), and
all discovery, migration, etc. operations are performed in a
distributed manner. All nodes have the same rank - there are
no ’master’ nodes or other attempts at partial centralization.
Agents may be injected anywhere in the network, provided
that the user has the appropriate security privileges.

Akin to a network of routers self-discovering its own topol-
ogy via neighbor discovery protocols and routing protocols
such as OSPF, a collection of MAGIKMAIDS nodes can main-
tain system-level cohesion by having each node send packets
to discover agent-enabled neighbors and exchange first-hand
or propagated information with them. Communication between
nodes is achieved via TCP connections managed by the Linux
kernel networking subsystem, which has been further modified
so as to enable special behavior for any traffic incoming on
the MAGIKMAIDS ports. All communication is encrypted for
confidentiality following a Diffie-Helman exchange between
every pair of agent-enabled nodes.

B. Per-machine architecture

Going into further detail, the architecture of a MAGIK-
MAIDS instance on any particular node is outlined in figure 1.

Linux Kernel

MAGIKMAIDS Platform LKM

JVM .oo
Context 2

QO
Q2

Fig. 1. The MAGIKMAIDS architecture

Agent
Instance 1

Agent
Instance 2

l
l
[
[

The main components shown are:

o The agent platform LKM, which sits on top of the Linux
kernel and also includes any hooks or modifications
done to the standard kernel infrastructure (e.g. in the
networking subsystem). The LKM is responsible for
directing all functions of the platform, such as agent
environment maintenance, inter-node discovery and in-
formation exchange, implementing agent migration and
communication, etc. The MAGIKMAIDS module also
includes a JVM capable of executing Java bytecode and
maintaining a heap where Java objects can be allocated
and freed.

o The JVM contexts are isolated entitites containing the set
of classes that implement each type of agent (each type
has its own JVM context). JVM contexts are created
as each type of agent first arrives on the machine, and
destroyed as a timer expires after the last agent of a
given type has left the machine (thus, JVM contexts
remain cached for a while in case an agent of that type
returns). In addition to the classes specific to the agent,
JVM contexts also contain a read-only mapping to the
built-in class library that contains native implementations
for system and utility classes such as java.lang.String,

java.util. ArrayList, etc., as well as special classes that act
as interfaces to the kernel or the MAGIKMAIDS agent
platform.

o The agent instances contain state data for each individual
agent instance. All agent instances of a given type are
hosted in the corresponding JVM context, though, as
stated previously, they cannot directly reference each
other. Because each agent instance is isolated and does
not have direct access to any global variables, the heap
as viewed from the context of any particular agent is
private to that agent and part of the agent instance
data structure. This leads to greatly increased efficiency
in garbage collection and fault handling (e.g. when an
agent terminates, all of its particular allocations can be
immediately found and freed).

C. Agent-platform-kernel interaction

Formally, interaction between an agent, the MAGIK-
MAIDS agent platform and the kernel takes places via user-
programmed or automated calls made to a set of Java mehtods
exposed by each entity. A diagram of this interaction is shown
in figure 2.

Agent / Platform interface

onCreated() Magik.terminate()
onMigrated() Magik.getNeighbors()
onMigrationFailed() Magik.migrate()
onStop() Magik.spawn()
onRestart() Magik.sendData()
onDataPosted() Magik.getData()
onTick()

/ Kernel Interface

Kernel.printk()
Kernel.Sched.[...]
Kernel.Network.][...]
Kernel.ProcFS.[...]
Kernel.executeArbitrary()

Fig. 2. Agent, kernel and platform interfaces

It can be seen that the Kernel and Magik abstract
classes represent an interface to the kernel and agent platform,
respectively, as seen from the agent. An agent that wishes to
terminate itself, for instance, would achieve this by calling the
static function Magik.terminate (), which is ultimately
mapped to an event in the agent platform itself. Similarly, calls
to static functions in the Kernel class are mapped to code
that actually manipulates the corresponding kernel structures
and procedures.

It may be that the agent platform also needs to communicate
with the agent (e.g. to notify it that it has just arrived at
its migration point, or to warn it that it is about to be
terminated and thus should free any resources). For this
purpose, any agent will expose a number of callback methods

(defined the IAgent interface implemented by all agents)
such as onCreated (), onStop () etc., that are called by
the platform whenever an event relevant to the agent occurs. A
similar mechanism allows the agent to register callbacks with
the kernel (for instance, a timer-based task, a tasklet, being
notified that the system is about to suspend, etc.).

A selection of the most important callbacks and functions
exposed by the three parties follows, so as to offer an idea
as to the nature of the programming environment available to
agents:

1) Agent platform functions:

e Magik.terminate (): Requests that the platform ter-
minate this agent instance. Before the agent is actually
terminated, its onStop () callback will be executed so
that there is a uniform way of the agent freeing its
associated resources.

e Magik.getNeighbors (): Obtains an iterator
through the set of direct agent-enabled neighbors of the
current machine. The agent can use this for deciding its
next migration target.

e Magik.migrate (): Requests that the agent be mi-

grated to a target machine of its choice. The platform
will stop the agent and provide it with an opportunity
to save its data in serialized form, then send it to the
destination in a packet containing the agent .class files
and the serialized data. If the agent arrives intact and
is accepted by the target, it will be restarted in its new
environment and provided with the saved state data so
that it can restore its state.
The agent platforms use confirmation messages to verify
that an agent has actually successfully migrated to the
other side. Should an agent be corrupted in transit or
rejected, the migration will be retried a number of times
and aborted if these are unsuccessful as well. Following
an aborted migration, the agent will be restarted on its
original machine and notified of the situation so that it
can perform error recovery.

e Magik.spawn (): Spawns (creates) a new instance of
any desired agent type, which is then fed initialization
data specified by the calling agent. This powerful function
can be used as the basis of many interesting execution
patterns, such as viral replication, master-slave relation-
ships, etc. Access to this function is tightly controlled,
with most agents being restricted with respect to the type
and number - if any - they are allowed to spawn.

e Magik.sendData (): Posts a message (in serialized
format) for any interested agents on the current node.
Messages may be transitory, in which case they are
immediately delivered to other running agents (which can
ignore them or take action), or persistent, in which case
they are stored in the environment and can be retrieved
later by agents that have knowledge of their existence.

e Magik.getData (): Queries the agent platform for
any persistent messages left by a previous agent (possibly
ourselves), optionally removing the message if it is rec-
ognized. The sendData () and getData () functions

working in tandem allow a cooperation effect some-
what similar to that found in the venerable JavaSpaces
paradigm.

2) Agent callbacks:

onCreated(): This is called when an agent has
just been spawned into the MAGIKMAIDS environ-
ment and provides it with the opportunity to perform
initialization of its state. The agent also receives a
DataInputStream object from which it can read any
initialization data provided by its creator.

onStop () : This is called when the agent is about to be
stopped for any reason (i.e. before migration, termination,
hibernation etc.) and provides it with an opportunity to
save its serialized state data to a DataOutputStream
provided by the agent platform. Before stopping, the
agent will also have to free any resources it holds
(memory, handles) and stop any active timers.
onRestart (): This is the converse function that is
called when an agent is restarted and allows it to reload
its state from a provided DataInputStream, as well
as restart timers and reacquire resources.

onMigrated (): This is called after an agent has suc-
cessfully migrated to a new platform and should contain
code directing the next actions of the agent.
onMigrationFailed (): Thisis called when an agent
could not be migrated successfully to its intended desti-
nation (due to network problems, the destination rejecting
the agent etc.). The agent will remain on its current
machine and execute code in this callback so as to recover
from the error.

onDataPosted (): This is called when a new mes-
sage has been broadcast by an agent on the current
platform. The agent can inspect the message using a
DatalInputStream and take action should it find it
relevant.

3) Kernel functions:

Kernel.printk (): Prints formatted messages to the
console. The severity parameter present in the original
printk () function is also implemented.
Kernel.executeArbitrary (): executes an arbi-
trary kernel function given by name and parameter signa-
ture. This dangerous but very powerful function internally
makes use of the kallsyms kernel facility whereby the
kernel stores a table containing the name of every public
symbol and its address so that it can be looked up at
runtime.

Kernel.Work and Kernel.Timer: these classes rep-
resent interfaces to the workqueue and timer callback
mechanisms in the Linux kernel and are designed for
use in a manner similar to java.util.Thread and
java.util.Timer respectively.

Kernel.Sched. [...]: a 'namespace’ for all func-
tions related to the scheduler subsystem in the Linux
kernel

Kernel.Network.[...]: a ’namespace’ for all

functions related to the networking subsystem in the
Linux kernel

e Kernel.ProcFS. [...]:a namespace’ for all func-
tions related to the procFS subsystem in the Linux kernel

D. JVM implementation details

1) Class loading and representation: The MAGIKMAIDS
JVM accepts agent code in the form of a collection of inter-
related .class files. The collection must be stand-alone and
complete, i.e. a class may only reference either another in
the same collection or a built-in class, and all of the classes
required by the agent must be present, as new classes cannot be
loaded after the JVM context has been initialized. The JVM
will perform a summary verification of the agent class files
and perform an integration step whereby the constants (scalars,
strings, class/method references) in each class file are merged
into a unified index and linked to the built-in implementations.

The resulting internal class representation is far more com-
pact and easier to parse and execute than the aggregated
class files. Redundant information is eliminated, methods are
referenced by offsets in the object data block and virtual table
respectively instead of strings (in fact, class/method names
are not stored at all, as the JVM does not provide reflection
facilities), and the method code is pasted into a unified address
space.

The internal class representation also contains vtables (vir-
tual function tables) for each class, as well as a map of every
location where a reference may be stored in that particular
object (for use by the garbage collector). User-supplied func-
tions are generally implemented in bytecode and referenced by
a pointer in the bytecode array, while methods in the built-in
classes (System, Magik, etc.) are implemented using native
code and may feature special behavior.

2) Object representation: Objects are generally represented
as in most implementations of C++, i.e. as raw blocks of
data containing field data at well-known offsets, plus a pointer
to the RTTI block of the class the object belongs to, where
important information such as the vtable may be accessed.
Object references are direct pointers to such data blocks -
no double indirection is needed as in most modern JVM
implementations due to the use of a simple garbage collector
as opposed to a Copy-Collection variant.

It is obvious that this representation is highly compact and
has only minimal overhead with respect to the C structures
used in the kernel.

3) Built-in classes: The
provides special native code implementations for
both MAGIKMAIDS-specific interfaces (Kernel,
Magik) and typical built-in classes, such as arrays,
java.lang.String, java.lang.Number descendants,
java.util.List/Map/Set collections, etc. Objects
belonging to such classes typically have custom memory
representations and native code functionality that goes beyond
the power of bytecode.

Collection classes are internally mapped to the efficient
implementations already present in the Linux kernel for that

MAGIKMAIDS JVM

particular concept, i.e. Java.util.LinkedList to linked
lists, java.util.TreeMap and java.util.TreeSet
to red-black trees, etc.

4) Garbage collection: The garbage collector used in the
MAGIKMAIDS JVM is of the mark-and-sweep variety. It is
worth noting that the garbage collector is only invoked when:

o Control is transferred between the agent and the agent
platform (i.e. at the end of a callback) or
o The agent explicitly requests garbage collection

Thus, agents can execute code without having to worry
that they will be interrupted in the middle of an important
operation by a stop-the-world garbage colllection process. The
fact that each agent has a private heap also helps minimize the
performance impact of garbage collection.

E. The agent simulation and compilation environment

MAGIKMAIDS features an innovative method of devel-
oping and testing agents in an accessible and productive
manner. The MAGIKMAIDS kit features a Java library that
contains the TAgent definition as well as mock userspace
implementations of the Kernel. [...] and Magik. [...]
services. Agents are compiled against this library and a series
of standalone .class files are produced, that can then be fed to
the agent platform so as to spawn a corresponding agent.

Simulation environment

Kernel

MAGIKMAIDS LKM I

Simulation library l

))

Platform
interface

Kernel
interface

Kernel
interface

Platform
interface

Agent ' Agent '
REAL SIMULATION
Fig. 3. Interfacing with the simulated environment

While in the real” kernel, calls to the Magik and Kernel
services map naturally to events in the actual kernel and
agent platform LKM. However, agents can also be executed
in userspace within an agent-enabled distributed system sim-
ulation environment that we have created for this purpose. In
that situation, the ”dummy” functions in the simulation library
map to virtual calls to the simulated machine in the context of

that agent instance. Thus, agent developers can use the exact
same code to readily test their designs within a safe simulated
environment before actually deploying the agents in the field.

V. RESULTS
A. Speed

Our first test involved estimating the execution speed for
Java bytecode as achieved by the JVM implementation used
in MAGIKMAIDS. The test was performed by randomly exe-
cuting the handler functions for both a regular MAGIKMAIDS
agent, and an equivalent "agent” implemented as a LKM in C.
An average execution time was computed for each case after
a sufficient number of runs had been performed. Additionally,
we computed an “extrapolated JIT performance” by which we
mean the performance that would likely be obtained if we
implemented a JIT stage as in [8]. Finally, all values were
normalized with respect to the fastest time (corresponding
to the native LKM solution) so that the relative performance
impact of interpretation and virtualization is easily apparent.

The results are shown in table L.

Approach Rel.time
Traditional LKM (native) 1x
MAGIKMAIDS JVM (interpreted) 18.6x
MAGIKMAIDS JVM+IIT (estimation) 1.8x

TABLE 1
MAGIKMAIDS EXECUTION TIME

The one-order-of-magnitude difference between interpreted
code in the MAGIKMAIDS JVM and native code may seem
worrying, but it is worth noting that compliant agents will
only execute short sections of code in the callbacks themselves
(which are blocking). Agents will carry out more intensive
processing using a work queue or a kernel thread, where they
can be preempted so as not to use up too much of the system
resources. Additionally, one can see that by adding a JIT stage
to the platform, one may substantially increase performance up
to a level close to that of native code, such that the differences
are hardly noticeable.

B. Memory usage

We next examined the memory impact of the agents and the
agent platform itself. Memory efficiency is just as important
at CPU efficiency as the kernel needs to leave as much space
as possible for the userspace applications; however, it is worth
noting that if the comparison is made with respect to a user
space agent platform, some memory is going to be used for
that purpose whichever space is used (user or kernel), therefore
MAGIKMAIDS only needs to meet a relative standard of
efficiency, i.e. not use much more memory than an equivalent
userspace platform.

Key memory footprint measurements are listed in table II.
Note that the figures are estimates because the exact sizes
depend on the architecture for which the module is compiled,
as well as other factors (topology, state etc.).

MAGIKMAIDS platform footprint
LKM code size (excludes classlib native code) 200KB
Agent-independent state data 50KB
Class library (+ native code) 350KB
Typical agent footprint
Agent classes (instance-independent) 50KB
Per-instance state data 10KB

TABLE 11
PLATFORM MEMORY USAGE

It can be seen that, while large for a kernel component, the
memory footprints are hardly noticeable in a modern system
equipped with gigabytes of RAM, and certainly much less than
those typical of a Java-based userspace agent platform.

C. Productivity

One final test of our platform involved estimating the
productivity benefits introduced by MAGIKMAIDS userspace
testbed for agents. The same kind of agent - a topology discov-
ery agent that hopped from machine to machine and returned
with a map of the entire system - was implemented using two
paradigms: first, that of a traditional LKM written in C, which
directly called internal MAGIKMAIDS functions to achieve
migration and was tested and debugged in a virtual machine;
and second, that of a MAGIKMAIDS agent written in Java
and debugged using the testbed provided by MAGIKMAIDS.
Key metrics measured were: the average number of bugs per
thousand lines of code (bugs/KLOC), the estimated first-draft
development time, and the estimated debug time (from first
draft to apparently bug-free solution).

The results are shown in table III.

Approach Bugs/KLOC | Dev time | Dbg time

Traditional LKM 17.1 1h30m 30m

MAGIKMAIDS agent 8.8 20m Sm
TABLE I

PRODUCTIVITY TEST

While this test is more subjective than the others, we be-
lieve the relative benefits of the MAGIKMAIDS development
approach to be evident in the presented data.

VI. CONCLUSION

We believe we have proven the feasibility of an agent
platform in the space of the Linux kernel. The MAGIKMAIDS
environment offers a rich enough API to enable a limitless
variety of monitoring and intervention tasks to be performed
using mobile agents. At the same time, the CPU efficiency and
memory footprint of the platform are well within acceptable
limits provided minimal care is taken in the design of the
agents. Finally, a major advantage of our solution is repre-
sented by the simulation environment that greatly facilitates
the development and testing of agents in a productive and
safe manner.

Future work may yet be performed in the direction of
improving the efficiency of the JVM component of MAGIK-
MAIDS. An obvious first step would be the integration of

a JIT compilation component akin to that in [8] - a task
made easier by the fact that the current JVM already performs
some key steps such as establishing the binary layout of
objects and building virtual tables. Another possible approach
involves making use of advanced CPU instructions specifically
designed for implementing JVM operations, as many recent
ARM chips feature these.

REFERENCES

[1] D. Nessett, “Massively distributed systems: Design issues and
challenges,” in Proceedings of the Workshop on Embedded Systems on
Workshop on Embedded Systems. USENIX Association, 1999, pp. 8-8.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267143

[2] J. Ahn, “Fault-tolerant Mobile Agent-based Monitoring Mechanism for
Highly Dynamic Distributed Networks,” IJCSI International Journal
of Computer Science, vol. 7, no. 7, p. 3, 2010. [Online]. Available:
http://ijcsi.org/papers/7-3-3-1-7.pdf

[3] S. THlarri, E. Mena, and a. Illarramendi, “Using cooperative mobile
agents to monitor distributed and dynamic environments,” Information
Sciences, vol. 178, no. 9, pp. 2105-2127, May 2008. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S002002550700583X

[4] P. Mell, M. McLarnon, and MD., “Mobile agent attack resistant dis-
tributed hierarchical intrusion detection systems,” Information Systems
Security, no. A294193, pp. 1-8, 1999.

[5] P. S. Mandal and K. Mukhopadhyaya, “Checkpointing Using
Mobile Agents in Distributed Systems,” in 2007 Interna-
tional ~ Conference on Computing: Theory and Applications
(ICCTA’07). 1EEE, Mar. 2007, pp. 39-45. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4127340

[6] G. C. Necula and P. Lee, “Safe kernel extensions without
run-time checking,” in Proceedings of the second USENIX
symposium on Operating systems design and implementation
- OSDI 96, wvol. 30, no. SIL New York, New York,
USA: ACM Press, 1996, pp. 229-243. [Online]. Avail-
able: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.142.6054
http://portal.acm.org/citation.cfm?doid=238721.238781

[71 W. Jansen and T. Karygiannis, “Mobile Agent Security,” NIST Special
Publication, vol. 14, no. 5, pp. 211-218, 2000.

[8] T. Okumura and B. Childers, “Running a Java VM inside an operating
system kernel,” Proceedings of the fourth ACM, pp. 161-169, 2008.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1346279

