
Title: Implementing a User Mode Linux with Minimal
Changes from Original Kernel

Authors: Hans-Jörg Höxer, Kerstin Buchacker, Volkmar Sieh

Published In: 9th International Linux System Technology Conference,
Köln, Germany, September 4-6, 2002

Year: 2002

Pages: 72–82



Implementing a User-Mode Linux with
Minimal Changes from Original Kernel

Hans-Jörg Höxer Kerstin Buchacker Volkmar Sieh

Institut für Informatik 3
Friedrich-Alexander-Universität Erlangen-Nürnberg

Germany

info@umlinux.de

Abstract

This paper presents some aspects of implement-
ing a User-Mode Linux with as few changes to
the original Linux kernel as possible. To port a
Linux kernel to a User-Mode environment, basi-
cally all parts of the kernel directly interacting
with the hardware must be changed. To accom-
plish this, we need an environment which simu-
lates some hardware parts. This includes simu-
lation of interfaces to device controllers such as
keyboard, IDE, graphics or network controller
and other devices such as the real-time-clock.
Secondly a solution must be found for replacing
the assembler code contained within the origi-
nal kernel with functions. The implementation of
the functions, which are called instead of the as-
sembler code, should not become part of the ker-
nel, but be part of the User-Mode environment,
just like the implementation of the assembler in-
structions is not part of the kernel but part of the
CPU.

1 Introduction

Our team is implementing a User-Mode Linux
called UMLinux with three main targets in
mind. The first one is, that the changes needed
to port an original Linux kernel to our User-
Mode environment should be minimal. The
second is, that it should be possible to make
the virtual hardware the User-Mode Linux is
running on fail at will. We plan to use this
capability to test how well fault-tolerant sys-
tems such as the Linux Virtual Server described

at www.linuxvirtualserver.org, can
handle failures of hardware components. And
thirdly, an automatic experiment controller
should make it possible to run lengthy experi-
ments without user interaction.

The first goal, minimal changes from the orig-
inal kernel, is the main topic of this paper. The
advantages are clear. The fewer lines of code we
touch in the original kernel, the fewer errors we
can introduce into the kernel and the less effort
is needed to port the kernel to UMLinux. This
speeds up adapting UMLinux to new kernel re-
leases.

The parts of kernel code that need to be
changed, are those directly interacting with the
hardware. Basically these are all lines contain-
ing inline assembler instructions. Assembler is
used in three main areas of the kernel: for in-
terrupt and exception handling, to access func-
tions of the memory management unit and for
communication with devices via in*/out* in-
structions. Our approach is to replace these lines
of assembler code with functions, which have
the same effect as the original assembler instruc-
tions. Since the implementation of the assem-
bler instructions called in the original kernel are
not part of the kernel itself but of the CPU, the
functions replacing these assembler instructions
should not be part of the kernel either, if changes
and additions to the kernel are to be kept mini-
mal. These functions are therefore provided by
the User-Mode environment.

In UMLinux, signals replace interrupts and
exceptions. Consequently, signal handler func-
tions replace interrupt and exception handlers.



The signal handler functions in UMLinux do not
actually contain code to handle the interrupt. The
signal handler function modifies the stack so the
original kernel’s interrupt handler can work with
it and then calls that handler. Upon return of the
handler, the modifications are undone by a func-
tion implementing the iret assembler instruc-
tion and execution of the User-Mode kernel con-
tinues.

Assembler instructions concerning the mem-
ory management unit are those, for example,
which modify the page-directory base register or
segment registers. We have implemented func-
tions based on the system calls mmap/munmap
to replace these instructions and simulate the
memory management unit.

Communication with a number of devices is
done via interrupts and in*/out* assembler
instructions. UMLinux therefore provides func-
tions to replace the in*/out* instructions.
These functions implement the UMLinux vir-
tual hardware devices, such as the real time
clock, IDE-controller, keyboard-controller and
network-controller. These virtual devices com-
municate with the UMLinux kernel just like real
devices would communicate with the real kernel.
Consequently we can use the device drivers of
the original kernel in UMLinux, too. Changes
necessary to port the Linux kernel to UMLinux
are therefore reduced to changes in the archi-
tecture dependent files in include/asm and
arch only. No new drivers are needed.

It is not our goal, to create a complete hard-
ware simulation like Plex86 [6]. We just want
to simulate enough of the hardware, to be able
to use the original Linux device drivers. Enough
of the hardware, in our case, means providing the
hardware interfaces the Linux kernel uses and the
functionality provided by the hardware.

The common problem all User-Mode kernel
implementations have, is how to make compiled
program binaries trap into the User-Mode kernel
when making a system call. Since the binaries
are identical to those running on the real ker-
nel, each time when making a system call, they
would trap directly into the real kernel instead
of the User-Mode kernel. To avoid this, User-
Mode implementations must devise a mecha-
nism to catch all system calls made by bina-
ries running on the User-Mode kernel and divert
them to the User-Mode kernel. How this can
be accomplished is described in some of our pa-
pers [1, 7] and some of Jeff Dike’s papers [4, 5].

The basic idea is to trace the process executing
the User-Mode kernel, stopping it whenever it
makes a system call and having the tracing pro-
cess divert the system call using the functionality
provided by the ptrace system call. The pa-
pers cited above also describe in more detail as is
done here how the basic hardware, such as ran-
dom access memory (RAM), storage devices and
network interfaces can be implemented. To un-
derstand the following discussion, it should suf-
fice to know, that a UMLinux machine’s RAM
is implemented as a memory mapped file, stor-
age devices are files and network interfaces are
sockets.

The rest of the paper is structured as fol-
lows: Section 2 gives an overview of the User-
Mode environment in which the User-Mode ker-
nel runs. Section 3 explains in a little more detail
how the User-Mode kernel interfaces with the
virtual device controllers. Next, exception han-
dling is treated in section 4. Memory manage-
ment functions are the topic of section 5. Sec-
tion 6 explains what can be done about privileged
assembler instructions which occur outside the
kernel and were therefore not replaced by calls
to UMLinux simulator functions. Section 7 con-
cludes the paper.

2 Accessing Simulation
Code from the Kernel

The functions replacing the assembler instruc-
tions used in the original kernel are made avail-
able to the UMLinux kernel in a very roundabout
way. This section explains how this is done and
why we chose this approach. Section 2.1 gives an
overview of the binaries needed in the UMLinux
environment and the role of each of them. Sec-
tion 2.2 treats the processes involved and section
2.3 shows how it is all put together to make the
necessary code available to the UMLinux kernel.

2.1 The Binaries

Three binaries are involved. One is of course
vmlinux, the binary containing the UMLinux
kernel code. The next is simulator, which
contains all the functions replacing the assembler
instructions in the original kernel. Finally there
is node, which includes the code for the graphi-
cal user frontend (GUI), some initialization code
and the tracer.



The most visible part of the GUI is the UM-
Linux machine’s console, which simulates this
machine’s monitor and keyboard. Whenever the
(real) cursor is inside the (virtual) console, input
from the (real) keyboard and mouse is directed to
the UMLinux machine. Apart from that the most
important buttons the GUI provides are those to
power the UMLinux machine on and off.

The initialization code prepares the virtual
hardware of the UMLinux machine. This in-
cludes creating the file used as RAM, open-
ing the sockets for network interfaces, and
creating hardware such as graphics controller
and advanced programmable interrupt controller
(APIC) if available. Both the graphics controller
and APIC have their own memory, which is also
implemented as a memory mapped file. These
memory-files are created and possibly filled with
configuration information at this stage. UM-
Linux machines have a minimal BIOS. The only
BIOS functions provided are a function return-
ing the size of the physical memory of the UM-
Linux machine and a function returning the start
address of the video buffer. Most of the rest of
the memory filled with BIOS functions in a real
machine is taken up with the UMLinux simula-
tor code. The hardware is present even before
the machine is turned on, and some data may be
stored statically on board (e.g. hardware setup
information or read-only memory of extension
cards). When the UMLinux machine is powered
on, the hardware processes are signaled to start
executing their respective tasks.

The tracer has the task of tracing the UMLinux
machine process and catching and diverting the
system calls processes on this machine make to
the UMLinux kernel.

2.2 The Processes

Obviously at least two processes are needed: one
to run the UMLinux machine and one to run
the tracer. Another process is needed to run the
GUI. This is actually the first process started. As
is shown in figure 1, this process forks to cre-
ate the processes simulating the virtual hardware
(solid or dashed arrows in figure1). If present,
the graphics controller and APIC will be cre-
ated as separate processes. The tracer creates
the processes for the virtual processors, as it
needs to trace these processes. It also creates
the APIC-process, because the APIC needs in-
formation about the number and ID of proces-
sors. There is no need to have a separate process

for each (IO-)APIC, a single process — created
as soon as one APIC is present — simulates all
(IO-)APICs. Until the user powers on the UM-
Linux machine, these processes just sit there do-
ing nothing (just like the real hardware before
being powered on). When the user powers on
the UMLinux machine, the original process sig-
nals (dotted or dash-dotted arrows in figure 1) the
hardware processes to start doing whatever they
should be doing. The processors will now finally
load the UMLinux kernel. If the kernel parame-
ters specify an initrd, this will be loaded, also.

Processes shown as boxes with solid lines are
necessary for a minimally configured UMLinux
machine with a single processor. Those shown
as boxes with dashed lines are optional and their
creation depends on the configuration of the UM-
Linux machine. The names given to the pro-
cesses in figure 1 are descriptive of the role, they
are not the name of the binary being executed.
The name of the binary being executed is shown
to the right of the descriptive name. Of course
the CPU# processes also execute any number of
user processes running on the UMLinux machine
in addition to vmlinux and simulator. The
binaries for the UMLinux user processes are
loaded from the UMLinux harddisk.

For some of the processes their exact posi-
tion in memory is important to make UMLinux
work. The following paragraphs therefore di-
gress shortly to explain the memory layout of
physical and virtual memory.

The layout of the physical memory must be
distinguished from the layout of the virtual mem-
ory. Figure 2 shows the layout of a real and a
UMLinux machine’s physical memory (top and
bottom). The address range of physical memory
is from zero to several GB in Intel x86 proces-
sors. Of course, in most cases, only a few hun-
dred MB are indeed installed in the system, i.e.
there is a gap in physical memory. The memory
shown towards the high end of addresses (named
SVGA in figure 2) is usually physically part of
the on board memory of the graphics card. The
box at the bottom of figure 2 shows the layout of
a UMLinux machine’s physical memory, which
is (except for perhaps the size of the available
physcal memory) basically identical to that of the
real machine’s.

The center box of figure 2 shows the lay-
out of the real machine’s virtual memory after
a UMLinux machine has been started. The user
processes (both those of the UMLinux machine



advanced programmable interrupt controller

signal

graphical user interface

graphics controller

processor number #

process creation using fork()

GUI

VGA

CPU#

APIC

separate process

processed being traced

APIC

simulator
vmlinux

simulator
vmlinux

simulator
vmlinux

CPU0

CPU1

CPU2

start

start

start

start

node

GUI

create HW

...

while(GUI−events){

...

power on

...

}

VGA

...

...

create HW

Tracer

trace

start HW

...
...

wait

...

start

node node

node

Figure 1: Processes

of real machine

physical address space
0x

fff
fff

ff

0x
00

00
00

00

0x
00

0a
00

00

0x
00

0c
00

00

0x
70

00
00

00

B
IO

S

V
G

A
V

G
A

B
IO

S
0x

00
10

00
00

B
C

B
IO

S

V
G

A

K B
C

B
IO

S

V
G

A

S
V

G
A

B
C

0x
80

00
00

00

0x
70

10
00

00

virtual address space

of real machine

physical address space

of UMLinux machine

K B
C

S
V

G
A

S
V

G
A

S
V

G
A

Figure 2: Memory Mapping

and those of the real machine) are mapped into
the lower part of memory, the higher part (de-
pending on the Linux kernel version and com-
pilation parameters usually beginning at address

0x8000000 or 0xc0000000) being reserved for
the kernel (K). As is shown in figure 2, some
hardware-dependent parts of the physical mem-
ory, such as BIOS and VGA, are mapped into



the kernel space. The kernel uses the remaining
memory in kernel space for buffer caches (BC).
The UMLinux kernel space is mapped beginning
at 0x70000000. Its internal layout is similar to
that of the real kernel. The UMLinux machine
loads the UMLinux kernel (vmlinux) to the ap-
propriate address and maps space for BIOS and
VGA as needed.

All processes shown in figure 1 are real user
processes. As such, they start executing in the
real machine’s virtual memory space reserved
for user processes. The CPU#-processes will
load the UMLinux kernel and therefore execute
code in UMLinux kernel space part of the time.
Since these processes simulate a CPU, they will
of course also execute code in user space, too. In
addition, they must be able to access the simula-
tor code whenever necessary.

2.3 Making Simulation Code
Callable from the Kernel

The UMLinux kernel needs to access the simu-
lation code, whenever it wants to execute one of
the set of simulated assembler instructions. This
code must therefore be made available at a fixed
address in memory. For UMLinux, we have de-
cided to put the simulation code with the BIOS,
which is mapped in kernel space at a fixed ad-
dress. We did not want to include the simula-
tion code directly with the kernel, as we believe
it is very important to change the original ker-
nel as little as possible. Nevertheless, the ker-
nel must be told where to find the entry points
to the functions replacing the needed assembler
instructions.

As described in section 2.1, the simulation
code is in a separate binary, simulator. This
binary is converted into a datastructure (which
is simply a character array containing the hex-
data of the binary bytewise). This datastructure
is then in fact compiled into the node binary.
During the hardware creation of a UMLinux
machine, this data is written into the memory
mapped file which simulates the BIOS PROM.
The file is mapped to the correct address during
the power on process of the UMLinux machine.

3 Communicating with
Devices

There are basically two possibilities the proces-
sor has to communicate with devices, memory
mapped I/O and the special I/O space. Ad-
dresses in the I/O space can only be accessed
with in*/out* instructions, whereas addresses
in memory mapped I/O can simply be accessed
via mov* instructions. In both cases, registers
on the device mapped to that address range are
accessed. Devices mapping their I/O ports to the
I/O space include the keyboard, IDE, VGA and
NE2000 network controller as well the real time
clock. The VGA controller uses I/O space only
for control registers. The video buffer is mem-
ory mapped. The APIC and I/O APIC also use
memory mapped I/O.

The following sections explain how commu-
nication with devices is implemented in the two
cases.

3.1 Memory Mapped I/O

The problem with memory mapped I/O is the
fact, that it is accessed with mov, one of the
most commonly used of all assembler instruc-
tions. Unlike the in*/out* instructions, which
are mostly used by the kernel and seldomly by
application programs, mov is also used by basi-
cally all applications programs. Since we do not
touch application code to port it to UMLinux we
cannot replace mov instructions in application
programs. Catching mov instructions in some
way would definitely lead to a massive perfor-
mance loss.

The most important device using memory
mapped I/O is the VGA controller. We de-
cided, to implement the VGA controller as a sep-
arate process (see also figure 1), which continu-
ally scans its memory mapped I/O and displays
any changes on the UMLinux machine’s moni-
tor. Using this method is fine when no immediate
reaction to a change in some byte in the memory
mapped I/O address range is needed and no reply
is expected from the device.

For other devices using memory mapped I/O,
for example the APIC, we have replaced the
macros and inline assembler instructions in the
original code with wrappers calling our replace-
ment functions instead.



3.2 Using the I/O Space

The situation is a little different for devices com-
municating through the special I/O space. Ap-
plications do not normally use the in*/out*
instructions. Most occurrences of these instruc-
tions are in the kernel, where they can easily be
replaced. To keep the assembler code centrally in
one place, there is a file asm/io.h in the orig-
inal kernel sources, which defines a number of
macros in order to access the devices’ I/O ports
via the inb/inw/inl and outb/outw/outl
assembler instructions and their string versions
insb/insw/insl and outsb/outsw/outsl.

To port to UMLinux using our simulation fa-
cilities, we simply change those macros, which
directly use the assembler instructions, to use the
UMLinux simulation functions instead. That’s
all that needs to be changed in the original kernel
sources.

To make it all work, the UMLinux simula-
tor must provide all of the assembler instruc-
tions listed above. We have implemented one
function for each of the assembler instructions
(named after the instruction). These functions
are passed the I/O port as a parameter (just like
the assembler instructions [2]). As is shown in
figure 3, the functions branch internally accord-
ing to the I/O port number to call the function
appropriate to the device accessed via the given
I/O port. The functions implementing the in*
instructions return a value, the functions imple-
menting the out* instructions do not. For a
number of devices (e.g. PIC, IDE, network con-
troller) the specific function is called with addi-
tional parameters depending on the port used to
access the device. There are several branches for
these devices (not shown in figure 3).

The in*/out* functions are the entry points
into the simulator. In a real machine, the de-
vice controllers usually execute asynchronously
to the program being run on the processor. Af-
ter reading/writing data from/to a controller’s I/O
ports the processor continues execution with the
statement following the in*/out* instruction.
Meanwhile the device controller handles the re-
quest. When the data is ready, the controller
makes it available in its I/O ports and an in-
terrupt is generated to let the processor know,
that data has arrived. Figure 4 summarizes the
timing. In some cases, the request is handled
synchronously. An example is reading the time
counter from the real time clock. To do this, the
processor writes a latch request to the real time

clock’s I/O ports and then reads the returned data
with an in* instruction.

In a UMLinux machine things are quite simi-
lar. Executing out*() from somewhere in the
kernel calls the um* out*() for the appropriate
device and control passes to the device controller
simulation code to handle the request. If neces-
sary, the function isa irq() is called to gen-
erate an interrupt. Control is then passed back
to the interrupt handling procedure in the ker-
nel sources in a very roundabout way. Please
refer to section 4 for details on interrupt han-
dling. As is shown in figure 5, control is passed
back and forth between the vmlinux and the
simulator binary during this phase. The no-
table difference between the handling of I/O op-
erations on a real machine and on UMLinux, is
the fact, that in UMLinux I/O operations are han-
dled synchronously. Figure 5 shows, that the ker-
nel is stopped while the device controller code
is executed. The kernel running on a UMLinux
machine is therefore interrupted right at the in-
struction following the out* instruction, where
the kernel running on a real machine will usually
have executed some more code before code be-
fore it receives the interrupt generated by the I/O
request.

Some applications, like the X-server, do use
in*/out* instructions. Since we only port
the Linux kernel to UMLinux and do not touch
application programs and binaries, we cannot
stop the X-server from using in*/out* in-
structions. How we handle these cases is ex-
plained in section 6.

4 Interrupt and Exception
Handling

We can distinguish two mechanisms for inter-
rupting normal program execution, interrupts
and exceptions. Interrupts are asynchronous
events, usually triggered by an I/O device. Ex-
ceptions, on the other hand, are synchronous
events which are generated when the processor
detects a special predefined condition (such as
a division by zero) while executing an instruc-
tion. Interrupts and exceptions are also generi-
cally called traps. In both cases, normal program
execution is interrupted and execution of a han-
dler procedure is started. When the handler pro-
cedure has finished (possibly after being itself in-
terrupted), normal program execution continues



unsigned char inb(unsigned short port) {
if (0x0020 <= port && port <= 0x0021) {

value = umpic_inb(0, port - 0x0020);
} else if (0x0022 <= port && port <= 0x23) {

value = umapic_inb(port - 0x0022);
} else if (0x0060 == port || port == 0x0064) {

value = umkbd_inb(port);
} else if (0x0070 <= port && port <= 0x007f) {

value = umrtc_inb(port);
} else if (0x0160 <= port && port < 0x0168) {

value = umide_inb(5, port - 0x0160);
} else if (0x0280 <= port && port < 0x02a0) {

value = umne2000_inb(1, port - 0x0280);
} else if (0x03c0 <= port && port < 0x03db) {

value = umvga_inb(port);
} else if ...

...
} else {

printf("reading byte from unassigned port 0x%04x\n", port);
value = (unsigned char) in_res++;

}
return value;

}

Figure 3: Simulation of the in*/out* Assembler Instructions

time CPU Device Controller

...

outb ...

... handle

...

make data

request

available

handle
I/O interrupt
inb ...

generate
I/O interrupt

...
......

...

Interrupt Controller

Figure 4: Timing of I/O Operations on a real machine

at the instruction following the one where the
program was interrupted. The entry points into
the trap handling procedures (address of the first
instruction) are stored in the interrupt descriptor
table.

Trap handling is supported by hardware mech-
anisms. When a trap needs to be handled, the
processor does the following [2]:

1. push the current contents of the registers
containing flag information, code segment
selector and instruction pointer onto the

stack.

2. if appropriate, push an error code onto the
stack.

3. load the segment selector for the code seg-
ment containing the trap handling code and
the new instruction pointer into the appro-
priate registers.

4. if the trap was an interrupt, disable inter-
rupts during execution of the handler.



generate
I/O interrupt

I/O interrupt
inb()

...

handle

time

...

outb()

simulator/um*.c simulator/umpic.c

...

vmlinux simulator

um*_outb()

isa_irq()

Figure 5: Timing of I/O Operations on a UMLinux machine

5. begin execution of the handler procedure.

It is possible to use a different stack for the ex-
ecution of trap handling procedures. If this is
the case, a stack switch occurs when switching
from normal program execution to a trap han-
dling routine. The processor then has to tem-
porarily save the registers containing the stack
segment selector and the stack pointer in addi-
tion to those listed in 1. Next, the processor loads
the stack segment selector and stack pointer of
the new stack into the appropriate registers. The
new stack is used in all subsequent operations
involving the stack and the machine proceeds
with steps 1 to 5 (the saved register contents are
pushed in step 1).

To return from a trap handler the assembler in-
struction iret is used. This instruction is sim-
ilar to the ret instruction used to return from a
normal function call, except that it also restores
the flags register for the interrupted function. To
return from a trap handler, the following steps are
necessary:

1. restore the registers containing the code
segment selector, flag register and instruc-
tion pointer to the saved values.

2. pop values saved when entering into trap
handler from stack

3. resume execution of interrupted program.

If the stack was switched when calling the trap
handler, a switch back to the previous stack is
accomplished in step 2 by restoring the previous

values of the stack segment selector and stack
pointer instead of simply popping the stack.

UMLinux interrupts can be of two kinds. One
is a signal. Whenever an interrupt arrives for a
user space process, Linux sends that process the
appropriate signal, e.g. when the UMLinux ma-
chine requests a page not in memory, the hard-
ware (of the real machine) will generate a page
fault exception and the Linux operating system
(of the real machine) will send a SIGSEGV to
the user process that caused the page fault ex-
ception. When the process executes an int3 in-
struction, it is sent a SIGTRAP. The other is an
interrupt generated by the simulator itself using
isa irq() (as was described in section 3.2).
This function simply executes an int3 instruc-
tion (which will raise a SIGTRAP).

Since a UMLinux machine runs as normal
user processes, we do not have access to the
hardware mechanisms of the real machine which
support trap handling. Therefore, we have imple-
mented these mechanisms in our simulator code.
To ensure that our simulator mechanism is called
whenever a trap occurs or a trap handler returns,
we have to be notified whenever such a situation
arises.

Remember that the CPU# processes, which
execute the code in the simulator binary, are
traced (figure 1). This means, the CPU# pro-
cesses are stopped every time they execute a trap
instruction (such as int3, int n [2]), receive
a signal or enter/return from a system call, and
the tracer then gains control.

To implement interrupt handling support in
UMLinux hardware, we just have to be able to



2
sighandler() {

}

io_handler(){

iret
}

...

1

3

stop on return
of signal handler

4

sighandler() {

}
stop on return
of signal handler

...
int3

continue

continue

stop on signal

continue with USR2

continue with USR2

stop on TRAP

Tracer
CPU#

original kernel simulator

separate process processed being traced

signal

Figure 6: Interrupt Handling

stop the CPU# process in the right places and
have the tracer manipulate the CPU# process to
execute the simulator code that prepares the stack
for the handler procedure and rebuilds it for re-
suming the normal program code. A somewhat
simplified flow of control during interrupt han-
dling on a UMLinux machine is shown in figure
6.

When an interrupt arrives, it can either be
one generated by the function isa irq from
section 3 or a signal (number 1 in figure 6).
To stop on return of a trap handler, we have
changed arch/i386/kernel/entry.S to
call int3 instead of iret (number 3 in figure
6. (arch/i386/kernel/entry.S contains
system-call and low level fault handling code.)
When the tracer gains control it checks whether
the CPU# process is really stopped because of
an interrupt/return of an interrupt handler. If
this is the case, it lets the CPU# continue with
a SIG-USR2. The SIGUSR2 signal handler is
part of the simulator code and implements the
mechanisms to jump into/out of an interrupt han-
dler. The SIGUSR2 signal handler is the core
of UMLinux trap handling and contains code to
handle entering and leaving interrupt handlers.
At number 2 in figure 6 the stack is prepared for
entering a trap handler, at number 4 the stack is
prepared for resuming normal program execution
after returning from a trap handler. The CPU#
process stops on return from a normal signal han-

dling routine like the SIGUSR2 signal handler
from our simulator, because a sigreturn sys-
tem call is automatically executed when return-
ing from a signal handler (to clean up the stack
frame). The execution of a system call causes a
traced process to stop.

Of course figure 6 is somewhat simplified and
does not show, for example, what happens, when
other interrupts arrive while the kernel is execut-
ing a trap handler or how the changing of privi-
lege levels is implemented.

5 Memory Management

The Intel system architecture supports virtual
memory through paging. This means, that the
linear virtual address space is divided into fixed
size pages that can be mapped to physical mem-
ory or disk storage. When a process accesses a
virtual memory location, this is translated into
a physical address using the paging mechanism.
If the page containing the virtual memory loca-
tion is not currently in physical memory, a page
fault exception is generated. The exception han-
dler must load the missing page. On return of
the handler, the operation which caused the page
fault exception is restarted. The information nec-
essary to map virtual memory locations to ad-
dresses in physical memory and (if necessary)
to generate page fault exceptions is located in



page directories and page tables stored in physi-
cal memory.

The base physical address of the page direc-
tory is contained in control register 3 [3] (page
directory base register). Only the operating sys-
tem is allowed to load new values into the control
registers, using the mov cr instructions. We
have therefore replaced all reads and writes of
the page directory base register with simulator
functions. Since the UMLinux machine runs as
a normal user process without special privileges,
it cannot write the real machine’s page directory
base register. The current value of the UMLinux
machine’s page directory base register is there-
fore stored in a data structure kept by the simu-
lator. It is this value that the kernel running on a
UMLinux machine accesses.

The translation of most recent virtual memory
locations accessed are cached in so called trans-
lation lookaside buffers. Whenever the page di-
rectory base register is loaded with a new value,
these buffers are invalidated. In UMLinux ma-
chine, the simulator uses munmap to unmap all
pages from memory. All subsequent accesses to
this address range will generate invalid memory
references (page faults). The CPU# process will
therefore be stopped with a SIGSEGV basically
on the next instruction. The tracer simply lets
the CPU# process continue and the CPU# pro-
cess’ handler for SIGSEGV is executed. This
handler checks which virtual address was ac-
cessed and uses mmap to map a page from the
appropriate file (e.g. UMLinux machine’s physi-
cal memory file or UMLinux video memory file)
into memory. In this way, only those pages really
needed are mapped and unnecessary overhead is
avoided.

6 Treatment of Assembler
Instructions In the Wild

In the previous chapters we have explained,
which assembler instructions we have replaced
with special UMLinux simulator functions. To
make sure, that the kernel running on top of the
UMLinux machine uses our simulator functions
instead of the original assembler instructions, we
have modified the original kernel source files
containing such instructions.

What about code external to the kernel which
uses such assembler instructions? We have men-
tioned the X-server in section 3, another proba-

ble candidate are kernel modules. Sources other
than the original kernel sources are not modi-
fied and may therefore contain assembler instruc-
tions which should really be replaced. When the
CPU# process tries to execute such an instruc-
tion, a general protection fault will be generated
instead. The (real) Linux will send a SIGSEGV
to the CPU# process, which will stop. The tracer
lets it continue so it can execute the SIGSEGV
handler.

This handler checks, whether the SIGSEGV
is due to a page fault (see memory management
section 5) or a general protection fault. This can
be distinguished by the error code pushed onto
the stack (see also section 4). If it is a general
protection fault, the handler has a closer look at
the instruction which caused this fault. If it is one
of the instructions which should be replaced with
the corresponding simulator function, this func-
tion is called. On return from the function, the
(previously saved) instruction pointer is set to the
instruction after the one that caused the general
protection fault. The SIGSEGV handler then re-
turns and normal program execution can resume.
In case it is another instruction, the SIGSEGV
is a real (UMLinux) hardware interrupt and the
stack is prepared to call the appropriate interrupt
handler of the original kernel (as described in
section 4).

To run a completely unmodified kernel
on UMLinux (such as is possible with
VMwareTM[8]), the method described here
would have to be refined. What we are currently
doing by hand in the kernel sources would then
be done automatically in the binary, before
actually executing the code.

7 Conclusion

This technical paper explains which features a
User-Mode simulator must provide to minimize
modifications when porting the original Linux
kernel to this User-Mode environment. Cur-
rently, our UMLinux simulator only runs on the
Linux operating system. Once the kernel is
solely dependent on the simulator interface, the
User-Mode environment can be ported to other
operating systems. We are planning to port it to
the Microsoft Windows family of operating sys-
tems.



Acknowledgement

The research presented in this paper is supported
by the European Community (DBench project,
IST-2000-25425).

References

[1] K. Buchacker and V. Sieh. Framework for
testing the fault-tolerance of systems includ-
ing OS and network aspects. In Proceedings
Sixth IEEE International High-Assurance
Systems Engineering Symposium, pages 95–
105, 2001.

[2] Intel Corporation. Intel architecture software
developer’s manual (volume 1: Basic archi-
tecture), 1999.

[3] Intel Corporation. Intel architecture software
developer’s manual (volume 3: System pro-
gramming guide), 1999.

[4] J. Dike. A user-mode port of the Linux ker-
nel. In 4th Annual Linux Showcase & Con-
ference, Atlanta, 2000.

[5] J. Dike. A user-mode port of the Linux ker-
nel. In 5th Annual Linux Showcase & Con-
ference, Oakland, California, 2001.

[6] K. Lawton. Plex86. URL:
http://www.plex86.org/, 2001.

[7] V. Sieh and K. Buchacker. Testing
the fault-tolerance of networked systems.
In U. Brinkschulte, K.-E. Grosspietsch,
C. Hochberger, and E. W. Mayr, editors,
International Conference on Architecture of
Computing Systems ARCS 2002, Workshop
Proceedings, pages 37–46, 2002.

[8] VMware Inc. VMware. URL:
http://www.vmware.com/, 2001.


