A

logecat crunch

Android Services

Lecture 4

Operating Systems Practical

26 October 2016

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.

osP Android Services, Lecture 4 1/47

A

logecat crunch

Overview

Started Services

Bound Services

Messenger

AIDL

Foreground Services

ospP

Android Services, Lecture 4

2/47

A

logecat crunch

QOutline

Overview

ospP

Android Services, Lecture 4

3/47

A

logecat crunch

v

v

v

v

Android Service

An Android Service is an application component without a
user interface

Designed for long-running operations in the background
Can run even if the user is not in the hosting application

Can be accessed by external applications directly
» If exported by the hosting application

ospP

Android Services, Lecture 4 4/47

A

logecat crunch

Android Service

» By default, runs in the main Ul thread of the hosting
application
» CPU intensive work and blocking operations done on a
separate thread
» A service can be configured to run in a separate process

osP Android Services, Lecture 4 5/47

A

logecat crunch

Declaring a Service

> <service> tag in the AndroidManifest, under the
application tag
» android:name - The class implementing the service

» android:enabled - Set as true or false if the system can /
cannot instantiate the service

» Default value is "true”

osP Android Services, Lecture 4 6/47

A

logecat crunch

Declaring a Service

android:exported - Whether or not other applications can
access the service

» Without intent filter - default is "false”

» With intent filter - default is "true”
android:isolatedProcess - Set to true if the service is to
run in 1ts own separate process

» Has it own set of permissions

android:permission - Permission that must be given to a
component that wants to interact with the service

ospP

Android Services, Lecture 4 7/47

OSP Types of Services

logecat crunch

» Started Service
» Performs a single operation
» Does not return the result to the caller directly
» Launched by an application component that calls
Context.startService()
» Once started, it can run indefinitely, even if the caller has
terminated

osP Android Services, Lecture 4 8/47

A

logecat crunch

Types of Services

» Bound Service

» Can perform multiple operations

» Offers a client-server interface, allowing interactions with it
(send requests, obtain results)

» Communication can be across processes (IPC)

» Launched by an application component that calls
Context.bindService()

» Remains active as long as there is at least one component is
still bound to it (has not called Context.unbindService())

osP Android Services, Lecture 4 9/47

ospP

A

logecat crunch

Service Life Cycle

r = = \ V4 g 7-\\
I" Call to ‘II { Call to
| startSes / \ rvice()
onCreate()

onCreate()
onStartCommand()

onBind(}

\ /" Clientsare
| { bound to |
N running v L S /
— senv
The service is stopped
by itself or a client

All elients unbind by calling

unbindService()
onUnbind()
enDestroy() onDestroy()
PR
{ Se \ [Service
shut down shut down ||
Unbounded Bounded
service

service
Source: http://developer.android.com

Android Services, Lecture 4

:
10/47

A

logecat crunch

QOutline

Started Services

ospP

Android Services, Lecture 4

11/47

A

logecat crunch

Started Services

> Launched by calling Context.startService(Intent)
» The Intent should contain relevant information for the service
to do it's work
» Information can be added to the Intent within its Extras
» After the task has been completed, the service will be kept in
the running state
» A started service can be stopped in two ways:

» By another application component which calls
Context.stopService(Intent)
» It can stop itself by calling Service.stopSelf ()

ospP

Android Services, Lecture 4 12/47

SSP Implementing a Started Service

> Extending the base Service class

> Implement the onStartCommand (Intent, flags, startId)
method

» Need to create (and maintain) a separate thread for intensive /
blocking operations within the service

» Useful when a service needs to be both started and bound

» START.STICKY or START_NOT_STICKY

osP Android Services, Lecture 4 13/47

S P Implementing a Started Service

logecat crunch

» Extending the IntentService class
» Uses a worker thread to handle start requests, one at a time
» Useful when multiple requests do not need to be handled

simultaneously
» Implement the onHandleIntent (Intent) method and do the

work without worrying about creating a new thread

osP Android Services, Lecture 4 14/47

A

logecat crunch

Example

public class HelloService extends Service {

@Override

public int onStartCommand(Intent intent, int flags

Toast.makeText(this ,
return START_STICKY;

}

Q@Override
public IBinder onBind(Int
return null;

Q@Override
public void onDestroy() {

"service_starting” , Toast

ent intent) {

, int startld) {
.LENGTH_SHORT) . show ();

Toast.makeText(this, "service_done”, Toast.LENGTH.SHORT).show ();

Intent intent = new Intent(
startService (intent);

this, HelloService.class);

ospP

Android Services, Lecture 4

15/47

A

logecat crunch

Example

public class HellolntentService extends IntentService {
public HellolntentService () {
super(”" HellolntentService");

Q@Override
protected void onHandlelntent(Intent intent) {

}
}

// Normally we would do some work here, like download a file.

ospP

Android Services, Lecture 4

16/47

A

logecat crunch

QOutline

Bound Services

ospP

Android Services, Lecture 4

17/47

A

logecat crunch

Bound Services

> Launched by calling Context.bindService(Intent)

» If another component calls bindService() after the service
has been launched, the same service instance is given (the
service is not restarted)

» Client-server paradigm
» The server is the running service
» The client is the application component (e.g. the Activity)
bound to the service
» The communication interface is specified by an IBinder

» Can receive requests from external processes / applications

ospP

Android Services, Lecture 4 18/47

A

logecat crunch

Implementing a Bound Service

» Extend the Service class
» Implement the onBind () method
» onBind() returns an IBinder object
» The method is called only for the first component binding to
the service
» Subsequent components that bind to the service will receive
the same IBinder object

osP Android Services, Lecture 4 19/47

A

logecat crunch

Communicating with a Bound Service

» If the client is running in the same process
» Extend the Binder class and return an instance
> For communicating with external processes you can:

» Use a Messenger (that serializes incoming requests) and call
Messenger.getBinder ()

» Use AIDL (especially when you need to handle multiple
requests simultaneously)

ospP Android Services, Lecture 4

20/47

SSP Connecting to a Bound Service

logecat crunch

» Implement the ServiceConnection interface
» onServiceConnected() callback gives the IBinder used to
call remote methods
» onServiceDisconnected() callback gets called when the
connection to the service has died
» Call bindService() and give it an instance of your
ServiceConnection implementation
» bindService() returns immediately
» The framework will call onServiceConnected() when
connection to the service has been established

osP Android Services, Lecture 4 21/47

SSP Disconnecting to a Bound Service

» Call unbindService() to end service connection
» If the current component unbinding is the only one who had
been still bound, the service should be destroyed
» The service is kept alive only if it is also a Started Service
(another component has called startService() on it)

osP Android Services, Lecture 4 22/47

A

logecat crunch

Extending the Binder class

» In the Service class, create a member variable of a class
extending Binder that defines communication with the
service in either of the following manners:

» The Binder instance has public methods that can be called
from the outside

» |t can return a reference to the Service class, which itself has
public methods

» |t can return a reference to another class, hosted within the
service, which has public methods

» From the Service's onBind() method return the member
variable

osP Android Services, Lecture 4 23/47

A

logecat crunch

Using a reference to the Service

public class LocalService extends Service {
private final IBinder mBinder = new LocalBinder();
private final Random mGenerator = new Random();

public class LocalBinder extends Binder {
LocalService getService() {
return LocalService. this;

}

©@Override
public IBinder onBind(Intent intent) {
return mBinder;

public int getRandomNumber()
return mGenerator.nextlnt (1

{
00);

ospP

Android Services, Lecture 4

24/47

A

logecat crunch

Using a reference to the Service

public class BindingActivity extends Activity {
LocalService mService;
boolean mBound = false;
©Override
protected void onStart() {

super.onStart ();
Intent intent = new Intent(this, LocalService.class);
bindService(intent, mConnection, Context.BIND.AUTO_.CREATE);

©@Override
protected void onStop() {

super.onStop ();
if (mBound) {
unbindService (mConnection);

mBound = false;
}
¥
private ServiceConnection mConnection = new ServiceConnection() {
@Override
public void onServiceConnected (ComponentName className, IBinder
LocalBinder binder = (LocalBinder) service;
mService = binder.getService ();
mBound = true;
¥
@Override
public void onServiceDisconnected (ComponentName arg0) {
mBound = false;
}
}s

service) {

ospP

Android Services, Lecture 4

25/47

A

logecat crunch

QOutline

Messenger

ospP

Android Services, Lecture 4

26/47

A

logecat crunch

Communicating through a Messenger

» In the Service class, create a member variable of a class
extending Handler
> Implement the handleMessage (Message) method
» Communication with the service is done by how different
Message types are handled
> Create a Messenger member variable passing it's constructor
an instance of your Handler class

osP Android Services, Lecture 4 27/47

“‘SP Communicating through a Messenger

logecat crunch

> In the onBind () method return Messenger.getBinder ()

» The client's ServiceConnection instance creates a
Messenger object based on the IBinder object passed as a
parameter to the onServiceConnected() method

osP Android Services, Lecture 4 28/47

A

logecat crunch

Example

public class MessengerService extends Service {
static final int MSG.SAY_HELLO = 1;
class IncomingHandler extends Handler {
@Override
public void handleMessage(Message msg) {
switch (msg.what)
case MSG_SAY_HELLO:

Toast.makeText(getApplicationContext (), "hello!”,
Toast.LENGTH.SHORT). show ();
break ;
default :

super.handleMessage (msg);

}

final Messenger mMessenger

©Override
public IBinder onBind(Intent intent) {
return mMessenger. getBinder ();

new Messenger(new IncomingHandler());

ospP

Android Services, Lecture 4

29/47

A

logecat crunch

Example
public class ActivityMessenger extends Activity {
Messenger mService = null;
boolean mBound;
private ServiceConnection mConnection = new ServiceConnection() {
public void onServiceConnected (ComponentName className, IBinder service) {
mService = new Messenger(service);
mBound = true;
¥
public void onServiceDisconnected (ComponentName className) {
mService = null;
mBound = false;
}
I

public void sayHello(View v) {
if (!mBound) return;
Message msg = Message.obtain(null, MessengerService . MSG_SAY_HELLO,
try {
mService.send (msg);
} catch (RemoteException e) {
e.printStackTrace ();

0,

0);

ospP

Android Services, Lecture 4

30/47

A

logecat crunch

Communicating through a Messenger

» The handleMessage () method returns void
» The service has no readily-available means to respond to the
client
» To have two-way communication you need to implement a
similar Messenger mechanism in the client
> Set the client’s Messenger as the replyTo parameter of the
Message
» The service receives a reference to the client’s Messenger that
can be used to send it's responses

osP Android Services, Lecture 4 31/47

A

logecat crunch

AIDL

QOutline

ospP

Android Services, Lecture 4

32/47

A

logecat crunch

Interface Definition Languages

» Specification languages used to describe a software
component's interface

» Are commonly used in Remote Procedure Calls (RPC)

» An external entity (usually called a broker) is responsible for
enabling communication between components exposing their
respective interfaces

ospP Android Services, Lecture 4

33/47

SP Interface Definition Languages

» Examples of IDLs include:
» AIDL - Android IDL
» OMG IDL (Object Management Group IDL) - implemented in
CORBA for RPC services
» Protocol Buffers - Google's method of serializing structured
data
» WSDL - Web Services Description Language

ospP

Android Services, Lecture 4 34/47

&SP The Need for AIDL

logecat crunch

» Android provides security through sandboxing
» An app's process cannot normally access the memory of
another app's process

» For two processes to communicate they need to be able to
decompose objects into primitives that can be marshalled
across the system

» The Binder system handles these operations

» Writing the code to marshall / unmarshall objects and call the

framework’s Binder services is considered tedious
» The system does this automatically when using AIDL

osP Android Services, Lecture 4 35/47

A

logecat crunch

Creating an AIDL File

Within the hosting app’s src/ folder, create a .aidl file

In the file, declare a single Java interface containing only
method signatures

AIDL allows using the following data types as return values
and method parameters:
» Primitive Java types (int, float, boolean, etc.)
String
CharSequence
List (the system will use ArrayList)
Map (the system will use HashMap)

vV vy vyy

All Collections can only have elements from the other
supported data types

ospP

Android Services, Lecture 4 36/47

Implementing the AIDL interface

Building the application will generate a YourInterface. java
file within the project’'s gen/ folder

The generated interface also contains a YourInterface.Stub
subclass which contains all methods declared in the .aid1 file

Within your Service, instantiate the YourInterface.Stub
and implement its methods

Return the Stub from the Service's onBind () method

ospP

Android Services, Lecture 4 37/47

Connecting to a Service using AIDL

Make sure that the application from which bindService()
will be called has a copy of the .aid1l file in the src/ folder

Create a ServiceConnection instance within the component
from which binding to the service will be performed

Within the onServiceConnected() method use the IBinder
parameter to get a reference to the AIDL interface by calling
YourInterface.Stub.asInterface(IBinder)

It is recommended to guard calls to service methods in a
try{...} catch block

» DeadObjectException should be caught - occurs when the
connection has broken

ospP

Android Services, Lecture 4

38/47

A

logecat crunch

Example

public class RemoteService extends Service {
@Override
public void onCreate() {
super.onCreate ();

©Override

public IBinder onBind(Intent intent) {
return mBinder;

¥

private final IRemoteService.Stub mBinder = new IRemoteService.Stub() {
public int getPid(){
return Process.myPid();

public void basicTypes(int anlnt, long along, boolean aBoolean,
float aFloat, double aDouble, String aString) {
}
b
}
IRemoteService mlIRemoteService;
private ServiceConnection mConnection = new ServiceConnection () {
public void onServiceConnected (ComponentName className, IBinder service) {
mlIRemoteService = IRemoteService.Stub.aslnterface(service);
}

public void onServiceDisconnected (ComponentName className) {
mlRemoteService = null;

ospP

Android Services, Lecture 4

39/47

“‘SP Sending Custom Objects over IPC

logecat crunch

» Using custom classes in the context of IPC can be done if we
implement the Parcelable interface

» The method to be implemented is writeToParcel ()

» The class must contain a public static final
Parcelable.Creator<YourClass> member variable named
CREATOR

» Implement createFromParcel() and newArray() interface
methods

» Create a YourClass.aidl file in which you declare the class
as parcelable

» Besides the package declaration, the .aidl file should only
contain a parcelable YourClass; line

ospP Android Services, Lecture 4

40/47

A

logecat crunch

Example

public class MyParcelable implements Parcelable {

private int mData;

public void writeToParcel(Parcel out, int flags) {
out.writelnt (mData);

public static final Parcelable.Creator<MyParcelable> CREATOR
= new Parcelable.Creator<MyParcelable >() {
public MyParcelable createFromParcel(Parcel in) {
return new MyParcelable(in);

public MyParcelable [] newArray(int size) {
return new MyParcelable[size];

+

private MyParcelable(Parcel in) {
mData = in.readlnt ();

}

ospP

Android Services, Lecture 4

41/47

A

logecat crunch

QOutline

Foreground Services

ospP

Android Services, Lecture 4

42/47

A

logecat crunch

Foreground Services

» A foreground service is a service that the user is aware of in
some manner (E.g. - a music app playing music even when
the user is within another app)

» Due to it considered as relevant to the user, it will not be
killed as fast by the system in low-memory situations

» A foreground service needs to present an on-going notification
(that cannot be dismissed) while it is running

osP Android Services, Lecture 4 43/47

A

logecat crunch

Foreground Services

» Started by calling startForeground(notificationld,
Notification)
» Called from within the service itself
» Specifying which component (Activity) to start is done in the
creation of the Notification

» Stopped by calling stopForeground ()

OosP Android Services, Lecture 4 44/47

A

logecat crunch

Example

Notification

Intent notificationlntent = new Intent(this, ExampleActivity.class);
Pendinglintent pendinglntent = Pendinglntent. getActivity (this, 0,

notification .

startForeground (ONGOING_NOTIFICATION_ID, notification);

notification = new Notification(R.drawable.icon,
getText(R.string.ticker_text), System.currentTimeMillis());

notificationlntent , 0);
setLatestEventinfo (this, getText(R.string.notification_title),
getText(R.string.notification_message), pendinglntent);

ospP

Android Services, Lecture 4 45/47

A

logecat crunch

http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/reference/android/app/Service.html

vyVvyvyyVvyy

http:
//developer.android.com/reference/android/app/IntentService.html

v

http://developer.android.com/reference/android/content/
ServiceConnection.html

http://developer.android.com/reference/android/os/Messenger.html

» http://developer.android.com/reference/android/os/Message.html

osP Android Services, Lecture 4 46/47

http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/IntentService.html
http://developer.android.com/reference/android/app/IntentService.html
http://developer.android.com/reference/android/content/ServiceConnection.html
http://developer.android.com/reference/android/content/ServiceConnection.html
http://developer.android.com/reference/android/os/Messenger.html
http://developer.android.com/reference/android/os/Message.html

A

logecat crunch

Keywords

v

Android Services

v

Started Services

v

Foreground Services

v

IntentService
Bound Services
IBinder

v

v

v

v

v

v

v

v

ServiceConnection
Handler
Messenger
Message

AIDL

Parcelable

ospP

Android Services, Lecture 4

47/47

	Overview
	Started Services
	Bound Services
	Messenger
	AIDL
	Foreground Services

