
Android Services
Lecture 4

Operating Systems Practical

26 October 2016

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.

OSP Android Services, Lecture 4 1/47

Overview

Started Services

Bound Services

Messenger

AIDL

Foreground Services

OSP Android Services, Lecture 4 2/47

Outline

Overview

Started Services

Bound Services

Messenger

AIDL

Foreground Services

OSP Android Services, Lecture 4 3/47

Android Service

I An Android Service is an application component without a
user interface

I Designed for long-running operations in the background

I Can run even if the user is not in the hosting application
I Can be accessed by external applications directly

I If exported by the hosting application

OSP Android Services, Lecture 4 4/47

Android Service

I By default, runs in the main UI thread of the hosting
application

I CPU intensive work and blocking operations done on a
separate thread

I A service can be configured to run in a separate process

OSP Android Services, Lecture 4 5/47

Declaring a Service

I <service> tag in the AndroidManifest, under the
application tag

I android:name - The class implementing the service
I android:enabled - Set as true or false if the system can /

cannot instantiate the service
I Default value is ”true”

OSP Android Services, Lecture 4 6/47

Declaring a Service

I android:exported - Whether or not other applications can
access the service

I Without intent filter - default is ”false”
I With intent filter - default is ”true”

I android:isolatedProcess - Set to true if the service is to
run in its own separate process

I Has it own set of permissions

I android:permission - Permission that must be given to a
component that wants to interact with the service

OSP Android Services, Lecture 4 7/47

Types of Services

I Started Service
I Performs a single operation
I Does not return the result to the caller directly
I Launched by an application component that calls

Context.startService()
I Once started, it can run indefinitely, even if the caller has

terminated

OSP Android Services, Lecture 4 8/47

Types of Services

I Bound Service
I Can perform multiple operations
I Offers a client-server interface, allowing interactions with it

(send requests, obtain results)
I Communication can be across processes (IPC)
I Launched by an application component that calls

Context.bindService()
I Remains active as long as there is at least one component is

still bound to it (has not called Context.unbindService())

OSP Android Services, Lecture 4 9/47

Service Life Cycle

Source: http://developer.android.com

OSP Android Services, Lecture 4 10/47

Outline

Overview

Started Services

Bound Services

Messenger

AIDL

Foreground Services

OSP Android Services, Lecture 4 11/47

Started Services

I Launched by calling Context.startService(Intent)
I The Intent should contain relevant information for the service

to do it’s work
I Information can be added to the Intent within its Extras

I After the task has been completed, the service will be kept in
the running state

I A started service can be stopped in two ways:
I By another application component which calls

Context.stopService(Intent)
I It can stop itself by calling Service.stopSelf()

OSP Android Services, Lecture 4 12/47

Implementing a Started Service

I Extending the base Service class
I Implement the onStartCommand(Intent, flags, startId)

method
I Need to create (and maintain) a separate thread for intensive /

blocking operations within the service
I Useful when a service needs to be both started and bound
I START STICKY or START NOT STICKY

OSP Android Services, Lecture 4 13/47

Implementing a Started Service

I Extending the IntentService class
I Uses a worker thread to handle start requests, one at a time
I Useful when multiple requests do not need to be handled

simultaneously
I Implement the onHandleIntent(Intent) method and do the

work without worrying about creating a new thread

OSP Android Services, Lecture 4 14/47

Example

pub l i c c l a s s He l l o S e r v i c e extends S e r v i c e {
@Over r ide
pub l i c i n t onStartCommand (I n t e n t i n t e n t , i n t f l a g s , i n t s t a r t I d) {

Toast . makeText (t h i s , ” s e r v i c e s t a r t i n g ” , Toast .LENGTH SHORT) . show () ;
r e t u r n START STICKY ;

}

@Over r ide
pub l i c I B i n d e r onBind (I n t e n t i n t e n t) {

r e t u r n n u l l ;
}

@Over r ide
pub l i c vo id onDest roy () {

Toast . makeText (t h i s , ” s e r v i c e done” , Toast .LENGTH SHORT) . show () ;
}

}

I n t e n t i n t e n t = new I n t e n t (t h i s , H e l l o S e r v i c e . c l a s s) ;
s t a r t S e r v i c e (i n t e n t) ;

OSP Android Services, Lecture 4 15/47

Example

pub l i c c l a s s He l l o I n t e n t S e r v i c e extends I n t e n t S e r v i c e {
pub l i c He l l o I n t e n t S e r v i c e () {

super (” H e l l o I n t e n t S e r v i c e ”) ;
}

@Over r ide
pro tec ted vo id onHand l e I n t en t (I n t e n t i n t e n t) {

// Normal ly we would do some work here , l i k e download a f i l e .
}

}

OSP Android Services, Lecture 4 16/47

Outline

Overview

Started Services

Bound Services

Messenger

AIDL

Foreground Services

OSP Android Services, Lecture 4 17/47

Bound Services

I Launched by calling Context.bindService(Intent)
I If another component calls bindService() after the service

has been launched, the same service instance is given (the
service is not restarted)

I Client-server paradigm
I The server is the running service
I The client is the application component (e.g. the Activity)

bound to the service
I The communication interface is specified by an IBinder

I Can receive requests from external processes / applications

OSP Android Services, Lecture 4 18/47

Implementing a Bound Service

I Extend the Service class
I Implement the onBind() method

I onBind() returns an IBinder object
I The method is called only for the first component binding to

the service
I Subsequent components that bind to the service will receive

the same IBinder object

OSP Android Services, Lecture 4 19/47

Communicating with a Bound Service

I If the client is running in the same process
I Extend the Binder class and return an instance

I For communicating with external processes you can:
I Use a Messenger (that serializes incoming requests) and call

Messenger.getBinder()
I Use AIDL (especially when you need to handle multiple

requests simultaneously)

OSP Android Services, Lecture 4 20/47

Connecting to a Bound Service

I Implement the ServiceConnection interface
I onServiceConnected() callback gives the IBinder used to

call remote methods
I onServiceDisconnected() callback gets called when the

connection to the service has died

I Call bindService() and give it an instance of your
ServiceConnection implementation

I bindService() returns immediately
I The framework will call onServiceConnected() when

connection to the service has been established

OSP Android Services, Lecture 4 21/47

Disconnecting to a Bound Service

I Call unbindService() to end service connection
I If the current component unbinding is the only one who had

been still bound, the service should be destroyed
I The service is kept alive only if it is also a Started Service

(another component has called startService() on it)

OSP Android Services, Lecture 4 22/47

Extending the Binder class

I In the Service class, create a member variable of a class
extending Binder that defines communication with the
service in either of the following manners:

I The Binder instance has public methods that can be called
from the outside

I It can return a reference to the Service class, which itself has
public methods

I It can return a reference to another class, hosted within the
service, which has public methods

I From the Service’s onBind() method return the member
variable

OSP Android Services, Lecture 4 23/47

Using a reference to the Service

pub l i c c l a s s L o c a l S e r v i c e extends S e r v i c e {
p r i v a t e f i n a l I B i n d e r mBinder = new Loca lB i nd e r () ;
p r i v a t e f i n a l Random mGenerator = new Random () ;

pub l i c c l a s s Loca lB i nd e r extends Binde r {
L o c a l S e r v i c e g e t S e r v i c e () {

r e t u r n L o c a l S e r v i c e . t h i s ;
}

}

@Over r ide
pub l i c I B i n d e r onBind (I n t e n t i n t e n t) {

r e t u r n mBinder ;
}

pub l i c i n t getRandomNumber () {
r e t u r n mGenerator . n e x t I n t (1 0 0) ;

}
}

OSP Android Services, Lecture 4 24/47

Using a reference to the Service

pub l i c c l a s s B i n d i n gA c t i v i t y extends A c t i v i t y {
L o c a l S e r v i c e mServ i ce ;
boolean mBound = f a l s e ;
@Over r ide
pro tec ted vo id onS ta r t () {

super . onS ta r t () ;
I n t e n t i n t e n t = new I n t e n t (t h i s , L o c a l S e r v i c e . c l a s s) ;
b i n d S e r v i c e (i n t e n t , mConnection , Context . BIND AUTO CREATE) ;

}
@Over r ide
pro tec ted vo id onStop () {

super . onStop () ;
i f (mBound) {

unb i n dS e r v i c e (mConnection) ;
mBound = f a l s e ;

}
}
p r i v a t e Se r v i c eConne c t i o n mConnection = new Se r v i c eConne c t i o n () {

@Over r ide
pub l i c vo id onSe rv i c eConnec t ed (ComponentName className , IB i n d e r s e r v i c e) {

Loca lB i nd e r b i n d e r = (Loca lB i nde r) s e r v i c e ;
mServ i ce = b i n d e r . g e t S e r v i c e () ;
mBound = t rue ;

}
@Over r ide
pub l i c vo id onSe r v i c eD i s c onne c t e d (ComponentName arg0) {

mBound = f a l s e ;
}

} ;
}

OSP Android Services, Lecture 4 25/47

Outline

Overview

Started Services

Bound Services

Messenger

AIDL

Foreground Services

OSP Android Services, Lecture 4 26/47

Communicating through a Messenger

I In the Service class, create a member variable of a class
extending Handler

I Implement the handleMessage(Message) method
I Communication with the service is done by how different

Message types are handled

I Create a Messenger member variable passing it’s constructor
an instance of your Handler class

OSP Android Services, Lecture 4 27/47

Communicating through a Messenger

I In the onBind() method return Messenger.getBinder()

I The client’s ServiceConnection instance creates a
Messenger object based on the IBinder object passed as a
parameter to the onServiceConnected() method

OSP Android Services, Lecture 4 28/47

Example

pub l i c c l a s s Mes s enge rSe r v i c e extends S e r v i c e {
s t a t i c f i n a l i n t MSG SAY HELLO = 1 ;

c l a s s I ncomingHand le r extends Hand le r {
@Over r ide
pub l i c vo id handleMessage (Message msg) {

sw i tch (msg . what) {
case MSG SAY HELLO :

Toast . makeText (g e tApp l i c a t i o nCon t e x t () , ” h e l l o ! ” ,
Toast .LENGTH SHORT) . show () ;

break ;
d e f a u l t :

super . hand leMessage (msg) ;
}

}
}

f i n a l Messenger mMessenger = new Messenger (new I ncomingHand le r ()) ;

@Over r ide
pub l i c I B i n d e r onBind (I n t e n t i n t e n t) {

r e t u r n mMessenger . g e tB i nde r () ;
}

}

OSP Android Services, Lecture 4 29/47

Example

pub l i c c l a s s Ac t i v i t yMe s s e n g e r extends A c t i v i t y {
Messenger mServ i ce = n u l l ;
boolean mBound ;

p r i v a t e Se r v i c eConne c t i o n mConnection = new Se r v i c eConne c t i o n () {
pub l i c vo id onSe rv i c eConnec t ed (ComponentName className , IB i n d e r s e r v i c e) {

mServ i ce = new Messenger (s e r v i c e) ;
mBound = t rue ;

}

pub l i c vo id onSe r v i c eD i s c onne c t e d (ComponentName className) {
mServ i ce = n u l l ;
mBound = f a l s e ;

}
} ;

pub l i c vo id s a yHe l l o (View v) {
i f (! mBound) r e t u r n ;
Message msg = Message . ob t a i n (nu l l , Me s s enge rSe r v i c e .MSG SAY HELLO , 0 , 0) ;
t r y {

mServ i ce . send (msg) ;
} catch (RemoteExcept ion e) {

e . p r i n t S t a c kT r a c e () ;
}

}

}

OSP Android Services, Lecture 4 30/47

Communicating through a Messenger

I The handleMessage() method returns void
I The service has no readily-available means to respond to the

client

I To have two-way communication you need to implement a
similar Messenger mechanism in the client

I Set the client’s Messenger as the replyTo parameter of the
Message

I The service receives a reference to the client’s Messenger that
can be used to send it’s responses

OSP Android Services, Lecture 4 31/47

Outline

Overview

Started Services

Bound Services

Messenger

AIDL

Foreground Services

OSP Android Services, Lecture 4 32/47

Interface Definition Languages

I Specification languages used to describe a software
component’s interface

I Are commonly used in Remote Procedure Calls (RPC)

I An external entity (usually called a broker) is responsible for
enabling communication between components exposing their
respective interfaces

OSP Android Services, Lecture 4 33/47

Interface Definition Languages

I Examples of IDLs include:
I AIDL - Android IDL
I OMG IDL (Object Management Group IDL) - implemented in

CORBA for RPC services
I Protocol Buffers - Google’s method of serializing structured

data
I WSDL - Web Services Description Language

OSP Android Services, Lecture 4 34/47

The Need for AIDL

I Android provides security through sandboxing
I An app’s process cannot normally access the memory of

another app’s process

I For two processes to communicate they need to be able to
decompose objects into primitives that can be marshalled
across the system

I The Binder system handles these operations

I Writing the code to marshall / unmarshall objects and call the
framework’s Binder services is considered tedious

I The system does this automatically when using AIDL

OSP Android Services, Lecture 4 35/47

Creating an AIDL File

I Within the hosting app’s src/ folder, create a .aidl file

I In the file, declare a single Java interface containing only
method signatures

I AIDL allows using the following data types as return values
and method parameters:

I Primitive Java types (int, float, boolean, etc.)
I String
I CharSequence
I List (the system will use ArrayList)
I Map (the system will use HashMap)

I All Collections can only have elements from the other
supported data types

OSP Android Services, Lecture 4 36/47

Implementing the AIDL interface

I Building the application will generate a YourInterface.java

file within the project’s gen/ folder

I The generated interface also contains a YourInterface.Stub

subclass which contains all methods declared in the .aidl file

I Within your Service, instantiate the YourInterface.Stub

and implement its methods

I Return the Stub from the Service’s onBind() method

OSP Android Services, Lecture 4 37/47

Connecting to a Service using AIDL

I Make sure that the application from which bindService()

will be called has a copy of the .aidl file in the src/ folder

I Create a ServiceConnection instance within the component
from which binding to the service will be performed

I Within the onServiceConnected() method use the IBinder

parameter to get a reference to the AIDL interface by calling
YourInterface.Stub.asInterface(IBinder)

I It is recommended to guard calls to service methods in a
try{...} catch block

I DeadObjectException should be caught - occurs when the
connection has broken

OSP Android Services, Lecture 4 38/47

Example

pub l i c c l a s s RemoteServ i ce extends S e r v i c e {
@Over r ide
pub l i c vo id onCreate () {

super . onCreate () ;
}

@Over r ide
pub l i c I B i n d e r onBind (I n t e n t i n t e n t) {

r e t u r n mBinder ;
}

p r i v a t e f i n a l IRemoteSe r v i c e . Stub mBinder = new IRemoteSe r v i c e . Stub () {
pub l i c i n t ge tP id (){

r e t u r n Proce s s . myPid () ;
}
pub l i c vo id bas i cType s (i n t an Int , l ong aLong , boolean aBoolean ,

f l o a t aF loat , double aDouble , S t r i n g aS t r i n g) {
}

} ;
}

IRemoteSe r v i c e mIRemoteServ ice ;
p r i v a t e Se r v i c eConne c t i o n mConnection = new Se r v i c eConne c t i o n () {

pub l i c vo id onSe rv i c eConnec t ed (ComponentName className , IB i n d e r s e r v i c e) {
mIRemoteServ ice = IRemoteSe r v i c e . Stub . a s I n t e r f a c e (s e r v i c e) ;

}

pub l i c vo id onSe r v i c eD i s c onne c t e d (ComponentName className) {
mIRemoteServ ice = n u l l ;

}
} ;

OSP Android Services, Lecture 4 39/47

Sending Custom Objects over IPC

I Using custom classes in the context of IPC can be done if we
implement the Parcelable interface

I The method to be implemented is writeToParcel()

I The class must contain a public static final
Parcelable.Creator<YourClass> member variable named
CREATOR

I Implement createFromParcel() and newArray() interface
methods

I Create a YourClass.aidl file in which you declare the class
as parcelable

I Besides the package declaration, the .aidl file should only
contain a parcelable YourClass; line

OSP Android Services, Lecture 4 40/47

Example

pub l i c c l a s s MyParce lab l e implements Pa r c e l a b l e {
p r i v a t e i n t mData ;

pub l i c vo id wr i t eToPa r c e l (Pa r c e l out , i n t f l a g s) {
out . w r i t e I n t (mData) ;

}

pub l i c s t a t i c f i n a l Pa r c e l a b l e . Creato r<MyParce lab le> CREATOR
= new Pa r c e l a b l e . Creato r<MyParce lab le >() {

pub l i c MyParce lab l e c r e a t eF romPar c e l (Pa r c e l i n) {
r e t u r n new MyParce lab l e (i n) ;

}

pub l i c MyParce lab l e [] newArray (i n t s i z e) {
r e t u r n new MyParce lab l e [s i z e] ;

}
} ;

p r i v a t e MyParce lab l e (Pa r c e l i n) {
mData = i n . r e a d I n t () ;

}
}

OSP Android Services, Lecture 4 41/47

Outline

Overview

Started Services

Bound Services

Messenger

AIDL

Foreground Services

OSP Android Services, Lecture 4 42/47

Foreground Services

I A foreground service is a service that the user is aware of in
some manner (E.g. - a music app playing music even when
the user is within another app)

I Due to it considered as relevant to the user, it will not be
killed as fast by the system in low-memory situations

I A foreground service needs to present an on-going notification
(that cannot be dismissed) while it is running

OSP Android Services, Lecture 4 43/47

Foreground Services

I Started by calling startForeground(notificationId,
Notification)

I Called from within the service itself
I Specifying which component (Activity) to start is done in the

creation of the Notification

I Stopped by calling stopForeground()

OSP Android Services, Lecture 4 44/47

Example

No t i f i c a t i o n n o t i f i c a t i o n = new No t i f i c a t i o n (R . d rawab le . i con ,
getText (R . s t r i n g . t i c k e r t e x t) , System . c u r r e n tT im eM i l l i s ()) ;

I n t e n t n o t i f i c a t i o n I n t e n t = new I n t e n t (t h i s , E x amp l eAc t i v i t y . c l a s s) ;
Pend i ng I n t en t p e nd i n g I n t e n t = Pend i ng I n t en t . g e t A c t i v i t y (t h i s , 0 ,

n o t i f i c a t i o n I n t e n t , 0) ;
n o t i f i c a t i o n . s e t L a t e s t E v e n t I n f o (t h i s , ge tText (R . s t r i n g . n o t i f i c a t i o n t i t l e) ,

getText (R . s t r i n g . n o t i f i c a t i o n m e s s a g e) , p e nd i n g I n t e n t) ;

s t a r t Fo r e g r ound (ONGOING NOTIFICATION ID , n o t i f i c a t i o n) ;

OSP Android Services, Lecture 4 45/47

I http://developer.android.com/guide/components/services.html

I http://developer.android.com/guide/components/bound-services.html

I http://developer.android.com/guide/components/aidl.html

I http://developer.android.com/reference/android/app/Service.html

I http:

//developer.android.com/reference/android/app/IntentService.html

I http://developer.android.com/reference/android/content/

ServiceConnection.html

I http://developer.android.com/reference/android/os/Messenger.html

I http://developer.android.com/reference/android/os/Message.html

OSP Android Services, Lecture 4 46/47

http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/bound-services.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/app/IntentService.html
http://developer.android.com/reference/android/app/IntentService.html
http://developer.android.com/reference/android/content/ServiceConnection.html
http://developer.android.com/reference/android/content/ServiceConnection.html
http://developer.android.com/reference/android/os/Messenger.html
http://developer.android.com/reference/android/os/Message.html

Keywords

I Android Services

I Started Services

I Foreground Services

I IntentService

I Bound Services

I IBinder

I ServiceConnection

I Handler

I Messenger

I Message

I AIDL

I Parcelable

OSP Android Services, Lecture 4 47/47

	Overview
	Started Services
	Bound Services
	Messenger
	AIDL
	Foreground Services

