
Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems

Yuanzhong Xu, Weidong Cui, Marcus Peinado

Goal

• Protect the data of applications running on remote hardware

Controlled-Channel Attacks 2

New tech

• Trusted Platform Modules – Limited use cases
• Secure counters and signatures (trInc)

• Undeniable access to data (Pasture)

• State continuity (Memoir)

• Problems:
• Need special hardware (costly)

• Lack of flexibility – Need to redevelop applications (costly)

3 Controlled-Channel Attacks

Intel Software Guard Extensions

• SGX

• New trusted hardware from Intel

• Tamper proof processor with burned in cryptographic keys for
signing and encryption

• Protects user applications from adversarial operating systems
• Cloud applications

• Protecting users from themselves (Internet banking on compromised
devices)

4 Controlled-Channel Attacks

SGX Enclaves

• Enclave = Secure execution context
• Run a piece of code in encrypted memory

5

Source: Software Guard Extensions Reference Manual

Controlled-Channel Attacks

SGX Enclaves

• Enclaves run directly on top of hardware

• Applications build the Enclave address space(ECREATE, EINIT)
• The processor performs cryptographical checks to verify that the created

enclave matches the developer’s intention

• Control is eventually passed to the enclave (EENTRY)

• The Enclave then executes on its own

6

Enclave

Hardware

Operating System

App App

Controlled-Channel Attacks

SGX Enclaves

• Why are enclaves “secure”?
• Enclave memory is stored within the Enclave Page Cache

7

CPU

Physical
Memory

EPC

Load/Store
(encrypted data)

Load/Store
(cleartext data)

Memory BUS

Decryption happens
inside the

tamper-proof chip

Controlled-Channel Attacks

SGX

• As an enclave, you can ask the processor to sign your execution
context
• Enclaves first prove themselves to third parties

• You pass secure data to the enclave only after it has “proven
itself”
• So you only pass data to (hopefully) secure code

8

“I am unchanged, running on
SGX, and here is the proof”

“Everything OK, have some
secret data”

Cloud user,
Bank, etc.

Remote
Enclave

Controlled-Channel Attacks

Haven

• So we can run programs directly on top of secure hardware

• Next step?
• Run entire operating systems on top of secure hardware

• Final goal: Run generic, legacy applications, securely

• Major issue: operating system is needed to manage input and
output

• Compromise: Run a user mode variant of an entire operating
system

• Haven – The Windows API in a single process

9 Controlled-Channel Attacks

Haven

• Run any legacy application on top of a library version of the
Windows API

10

Image source: Baumann, A., Peinado, M. and Hunt, G., 2014, October. Shielding applications from an
untrusted cloud with haven. In USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

Controlled-Channel Attacks

Job done?

• We can now run secure applications with encrypted data on
remote hardware

• As long as the keys within the SGX processor remain safe, the
data remains encrypted

• SGX processor is also (according to Intel) resilient against side-
channel attacks:
• No power analysis

• No timing analysis

• No interesting radio waves

• Turns out it’s not…

11 Controlled-Channel Attacks

Intermission: Virtual Memory

12 Controlled-Channel Attacks

Virtual Memory

• Each process has access to its own virtual address space

• Separate physical memory from application memory

• Advantages:
• Shared memory

• Copy-on-write

• Map files in memory

• Demand paging

13

Translated from: Operating Systems lecture slides, Faculty of Automatic Control and
Computer Science, University POLITEHNICA of Bucharest

Controlled-Channel Attacks

Virtual Memory – Pages

• No external fragmentation

• Smallest unit of allocation from
the OS point of view

• Virtual pages (pages)

• Physical pages (frames)

• Map memory: associate frames
to pages

• Memory Management Unit
(MMU) handles translation

14

Translated from: Operating Systems lecture slides, Faculty of Automatic Control and
Computer Science, University POLITEHNICA of Bucharest
Image from: http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory/

Controlled-Channel Attacks

Virtual Memory – Page Tables

• Managed by the operating system

• Used by the MMU to perform translation

• Contain Page Table Entries that:
• Point virtual memory addresses to physical memory addresses

• Contain access rights (read, write, execute)

• If the MMU finds a problem → page fault

15

Translated from: Operating Systems lecture slides, Faculty of Automatic Control and
Computer Science, University POLITEHNICA of Bucharest

Controlled-Channel Attacks

Virtual Memory – Page Fault

• Access to a page that is
• Unmapped

• Invalid

• Wrong access rights

• Exception is generated → Run page fault handler

• Page fault handler = Operating system

• Red flag: operating system was untrusted!

• However: operating system is managing pages with encrypted
data, it can only perform denial of service attacks (?)

16

Translated from: Operating Systems lecture slides, Faculty of Automatic Control and
Computer Science, University POLITEHNICA of Bucharest

Controlled-Channel Attacks

Virtual Memory – Page Fault

17

Image source: OSCE, Chapter 8, pg. 325, Figure 8.6

Controlled-Channel Attacks

Controlled-Channel Attacks

18 Controlled-Channel Attacks

Overview

19

• Problem: Page tables on SGX processors are still handled by the
untrusted operating system

• In normal operation, the running enclave will cause a “small”
amount of page faults
• The MMU then reveals the required page to the operating system, so

that the page fault handler can retrieve it

• The operating system can obtain valuable information from
here

• Important assumption: Application code is public

Controlled-Channel Attacks

Why it works

20

Char* WelcomeMessage(GENDER s) {

 char *mesg;

 //GENDER is an enum of MALE and FEMALE

 if (s == MALE) {

 mesg = WelcomeMessageForMale();

 } else {

 mesg = WelcomeMessageForFemale();

 }

 return mesg;

}

Void CountLogin(GENDER s) {

 if (s == MALE) {

 gMaleCount ++;

 } else {

 gFemaleCount ++;

 }

}

Page fault for address of
WelcomeMessageForMale
reveals s is MALE

Controlled-Channel Attacks

Why it’s not trivial

• SGX tries to hide true page fault addresses by rounding them
off to page boundaries
• Page faults caused by accesses to multiple addresses (different functions,

variables, etc.) look the same

• Attack is still possible, only harder

21

Page

FunctionFoo()

FunctionBar()

FunctionFoo()

//do some work

FunctionBar()

//do some more work

Controlled-Channel Attacks

Sources of information

• Control transfers
• Different function are called, depending on the value of some variable

• Data accesses
• Different variables are accessed, depending on the value of some other

variable

• Data accesses are monitored by looking at nearby code page faults

• the instructions that use the data

• Even dynamically allocated data accesses can be identified

• the instruction patterns around them are the same

22 Controlled-Channel Attacks

Overview

• Step 1: Build an collection of page fault sequences to
use as reference

• Step 2: After enclave start, remove access from all
process pages

• Step 3: Record the pattern of page fault addresses

• Step 4: From the pattern, deduce information about
data within the program

• Three attacks on common libraries:
• Libjpeg

• Hunspell

• FreeType

23

Before

During

After

Controlled-Channel Attacks

Step 1

• Build an collection of page fault sequences to use as reference

• Record page faults of code pages

• Collect a set of page-fault traces 𝑃𝑖 = 𝑝𝑖
𝑗

• For each trace 𝑃𝑖, generate a new trace 𝑄𝑖 = 𝑞𝑖
𝑗

 that contains

page base addresses
• 𝑄𝑖 will be similar to the page faults provided by SGX

• For each s, t s.t. 𝑝𝑠
𝑡 = 𝑓, search for the minimum 𝑘 ≥ 1 such

that for any sequence 𝑞𝑖
𝑗−𝑘+1

, 𝑞𝑖
𝑗−𝑘+2

, … , 𝑞𝑖
𝑗

 that matches

with the sequence (𝑞𝑠
𝑡−𝑘+1, 𝑞𝑠

𝑡−𝑘+2, … , 𝑞𝑠
𝑡), 𝑝𝑖

𝑗
equals to 𝑓

• Finally, use the set of unique sequences 𝑞𝑠
𝑡−𝑘+1, … , 𝑞𝑠

𝑡 to
find the control transfer

24 Controlled-Channel Attacks

Example – Control Transfers

25

𝑷𝟏 f1 f2 f4 f2 f1 f3 f5 f3 f1

𝑸𝟏 A B D B A C D C A

Image source: Xu, Y., Cui, W. and Peinado, M., 2015. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems.

Controlled-Channel Attacks

Example – Control Transfers

• Suppose we are searching for a jump to f4

• At position 3

• For position 3, search for the smallest 𝐾 ≥ 1 such that all 𝐾-length
sequences in 𝑄1 matching the 𝐾-length sequence ending at position 3 in
𝑄1 end on f4

• 𝐾 = 1 doesn’t work; why?

• 𝐾 = 2 is ok; why?

26

𝑷𝟏 f1 f2 f4 f2 f1 f3 f5 f3 f1

𝑸𝟏 A B D B A C D C A

𝑷𝟏 f1 f2 f4 f2 f1 f3 f5 f3 f1

𝑸𝟏 A B D B A C D C A

Same sequence (D)
ends on f5

𝑷𝟏 f1 f2 f4 f2 f1 f3 f5 f3 f1

𝑸𝟏 A B D B A C D C A

This sequence (B, D) is only found here

Controlled-Channel Attacks

Steps 2 & 3

• After enclave start, remove access from all process pages
• Access will cause a page fault

• Tracking all pages is too expensive → Track a subset of pages
• Details on the algorithm are in the paper

• Upon receiving a fault, the handler:
• Logs the requested page

• Enables access to the page

• Removes access to the previous page

27 Controlled-Channel Attacks

Step 4

• Analyze the logs and find the desired control transfers

• This can be performed offline, after the online portion of the
attack

• We search for the control transfer (i.e. calls to a certain
function), and can finally extract data

• Attacks on real libraries are feasible, but require some thought
on how to recover relevant information

28

if (x != 0) {

 f1();

} else {

 f2();

}

If found control transfer for
f1, then x != 0

If found control transfer for
f2, then x != 0

Controlled-Channel Attacks

What about ASLR?

• Address Space Layout Randomization
• Randomly arrange the address space of the process

• Could be implemented in the shielding system (e.g. Haven)

• Possible solution?

29 Controlled-Channel Attacks

What about ASLR?

• Attack still possible:
• Look at the first few code page faults on application start in an offline

setting

• In the live setting, try to match the new page fault addresses to the
original ones, based on the corresponding sequence

• Keep building the mapping between randomized pages and the original
ones; eventually the heap, stack and libraries will be located

30 Controlled-Channel Attacks

Results

• Demo applications using the targeted libraries

• FreeType font library:
• The demo application rendered a book (taken as input in ASCII format)

onto a bitmap

• Result: The attack managed to extract the exact ASCII input

• Hunspell spellchecker:
• The demo application spellchecked the same book

• Result: The attack recovered approximately 75% of the words in the
input, without punctuation

• Libjpeg library:
• The demo application loaded jpeg images and saved them as bitmaps

• Result: Recovered features of the input images

31 Controlled-Channel Attacks

Results

• Frame of reference for colors could not be obtained, but
contours could be observed

32

Image source: Xu, Y., Cui, W. and Peinado, M., 2015. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems.

Controlled-Channel Attacks

Conclusion

• Take home message: encryption on its own is not enough to
protect executable code
• Information can leak from many places

33 Controlled-Channel Attacks

