Using Cooperation for Low Power Low Latency Cellular Connectivity

Cătălin Nicuțar, **Dragoș Niculescu**, Costin Raiciu University Politehnica of Bucharest, ROMANIA

"mobile kibbutz"

- GOALS
- lower power
- lower RTT
- higher throughput

Mobile connectivity

• WiFi

- Good bandwidth (20Mbps), low latency (1-5ms)
- Restricted distance (hundreds of meters), patchy coverage
- Proportional energy usage, power save
- 3G/4G
 - Low bandwidth (2-5Mbps), large latency (100-200ms)
 - Long distance (kilometers), good coverage
 - Tail energy

Mobile connectivity

• On smartphones we have: WiFi, Bluetooth, 3G, 4G

- What to use? when? how?
- Tradeoffs
 - coverage capacity cost
 - power RTT

WiFi power save behavior

OLITEH

3G power consumption

OLITEH

Efficiency of a link

POLITEHAVICO BUISCHIMAN DE LA COMPANY TELEVISION DE LA COMPANY TELEVISI

Browsing: tradeoff latency for energy

Figure 1: Cellular links offer a tradeoff between energy consumption and latency after idle

Key insights

- Cellular links work well only in the high power state
 - cellular link draws the same power, regardless of load
- Most users under-utilize cellular links
- Users fare better by pooling resources

Traffic consolidation

- black user listens to Internet radio
- red user browses the Web
- gray portion = wasted energy

Consolidation allows for more efficient energy usage

......

High level overview

- When the cellular link is hot the device advertises to neighbors "*will route for you for X seconds* "
- Neighboring devices choose whether to use offer or not

- This mechanism is inherently unfair:
 - All traffic is consolidated on one link, one user pays the bill
 - Maximum efficiency and zero fairness
- Short-term fairness: Tit-for-tat
 - Each device holds a counter for every neighbor
 - Keep track if we routed for / via a neighbor in a certain time slot
 - Allow neighbors to use link as long as counter > o
 - Initial counter value: trade fairness vs efficiency

Billing & security

- Neighbor = untrusted => use existing WiFi offload solutions
 - Many standardized protocols (3GPP, AnyFi)
 - All traffic encrypted
 - Appropriate billing support

• Kibbutz goal: everyone pays for their own traffic

Implementing the kibbutz

• Use MPTCP to steer traffic onto the right link

- Neighbor link if available or
- Own link otherwise
- MPTCP MP_PRIO
- Prototype running for Samsung Galaxy Nexus
- Can use WiFi or Bluetooth as local link

Experimental setup

Simple TCP "ping-pong"

......

How much energy can we save?

- Depends on combination of cellular and local link
 - \circ 3G + BT (previous graph) ~ 31%
 - \circ LTE + WiFi ~ 29%
 - \circ LTE + BT ~ 35%

How much energy can we save?

• Depends on combination of cellular and local link

Link type	kibbutz	kibbutz	Stand	Power
vertical +	Router	Consumer	alone	Savings
horizontal	[mW]	[mW]	[mW]	
LTE + BT	1095	220	1020	35.5%
LTE + WiFi	1316 / 1080	170 / 320	1020	27.1%/31.4%
3G + BT	740	191	675	31.0%
3G + WiFi	866 / 630	113 / 323	680	28.0% / 29.9%

- Internet radio (MP3) streaming 48Kbps
 - 25% less than standalone consumption

- YouTube
 - \circ 15% less than standalone consumption

Web traffic RTT

Google search mobile

Searching using 3G link vs using local Bluetooth link

- App download, (6MB) using max bandwidth strategy
 - \circ Isolated download time: 31 ± 8 seconds, 41 Joules
 - Kibbutz (different carriers) : 21 ± 5 seconds, 31 Jour
 - Using two interfaces saves energy!
 - Screen is ON

• What happens if the Kibbutz peer suddenly leaves?

• What if the connection is bad?

Simulations

3G gets used less when in a kibbutz

Simulations

RTT decreases with more users

Simulations

Operators want lower signaling

- The idea of tethering is not new
 - Prism, Combine, CoolTether, CoolSpots, Shair, Erdos, 3GOL
 - Kibbutz uses it to save energy
- Reducing mobile energy consumption
 - For background traffic: TailEnder, Stratus, Catnap, MakeIdle, BarTendr
 - Main ideas are batching & fast dormancy
 - **both hurt interactive apps like web browsing.**

Summary

- key observation
 - o cellular links are only efficient when fully used
- mobiles cooperate => reduce energy AND delay
 - By pushing cellular links into more efficient operating points
 - Local connectivity is power proportional, << cellular
- kibbutz is deployable
 - Reuses accounting mechs to guard against malicious users
 - Uses tit-for-tat to ensure short-term energy fairness.
 - No app knowledge, no OS instrumentation, no batching