In the last lecture we saw that Android provides several cryptographic providers for
hashing, message authentication codes, encryption, and so on. They can be used in
order to ensure secure communication.

However, in order to avoid vulnerabilities, it is better to use standardized security
protocols, that have been specified and used for securing network communication.
The most used security protocols are TLS and its predecessor SSL.

These are protocols for point-to-point secure communication that provide
authentication, confidentiality and integrity to the messages sent between these two
entities that communicate over TCP/IP.

They use a combination between symmetrical and asymmetrical encryption in order
to provide confidentiality and integrity, and use certificates for authentication.

Usually, a client that wants to communicate with a server through SSL, initiates the
communication by sending the supported version of SSL and a list of cipher suites.
A cipher suite is a set of algorithms used for key agreement, authentication, integrity
protection and encryption.

The client and server will negotiate a cipher suite that is supported by both of them.

After that, they will authenticate (verify each other’s identity) through certificates.

In general, only the server authenticates itself to the client. However, client
authentication is also supported by SSL.

If authentication is successful, they will compute a shared symmetric key that is used
for securing the communication.

(Authentication is implemented using public key cryptography and certificates. Each
entity will offer its certificate and the other entity, if it trusts the certificate, will
negotiate a shared key for encrypting communications by using public and private
keys.)

The subsequent communication will be secured by using a symmetric encryption
algorithm and the negotiated key.

A public key certificate is used for associating an identity to a public key.

SSL uses a X.509 certificates for authentication

X.509 certificates include a large number of fields: Signature Algorithm, Issuer,
Validity, Subject, etc.

The subiject is represented by a set of attributes including the common name (CN),
location and organization, which form the distinguished name (DN)

The issuer is described by similar attributes

This is a part of Google’s certificate



10.

11.

13.

14.

If the SSL client communicates with a small number of servers, it can be configured
with the set of trusted server certificates (trust anchors).

These certificates can be self-signed.

A server is trusted if its certificate is part of that set.

The advantage is that you have a good control over the trusted servers

The disadvantage is that is harder to update the server key and certificate, you have
to modify/reconfigure the client.

Another option is to use a private Certificate Authority (CA) to sign the certificate of
the server. The private CA is used as trust anchor. The client will trust any certificate
that is issued by this CA.

The advantage is that you can easily upgrade the server key and certificate, without
updating the client.

The disadvantage is that the CA becomes a single point of failure. If the CA is
compromised, an attacker can generate certificates that will be automatically trusted
by clients.

An SSL client (like a web browser, email client) that does not know in advance which
are going to be the target servers, is usually configured with a set of trust anchors,
which are well-known, public CAs.

Most web browsers include a set of more 100 CA certificates as trust anchors.

Android provides support for SSL/TLS through the implementation of Java Secure
Sockets Extension (JSSE).

The JSSE API is available in the javax.net and javax.net.ssl packages

And provides:

SSL client sockets and SSL server sockets

Socket factories

SSLEngine - producing and consuming SSL streams

Secure socket context - SSLContext - creates socket factories and engines
Key managers and factories to create them

Trust managers and factories to create them

HttpsURLConnection - for HTTPS connections

O O O O O O O

This image includes the JSSE classes and the interaction between them.

In JSSE, the endpoint classes of a connection are SSLSocket and SSLEngine.
The figure shows which are the main classes that are used for creating
SSLSocket/SSLENgine.



15.

16.

17.

18.

19.

20.

An SSLSocket is created either through SSLSocketFactory, or by accepting a
connection on an SSLServerSocket.

An SSLServerSocket is created through SSLServerSocketFactory.

An SSLEngine is created directly by the SSLContext and relies on the application to
handle the 1/O operations.

An SSLContext can be obtained in two ways:

o Calling getDefault() method of SSLServerSocketFactory or
SSLSocketFactory - this provides a default context initialized with the default
KeyManager, the default TrustManager and a secure random generator. The
key material found in the default keystore and truststore is obtained from the
system properties.

o Obtain an SSLContext instance by calling the static method getinstance() of
SSLContext. Then, the context is initialized by giving as parameters: an array
of KeyManager objects, an array of TrustManager objects and a
SecureRandom. The KeyManager and TrustManager objects can be obtained
through KeyManagerFactory and TrustManagerFactory. These factories can
be initialized with KeyStore containing the key material. We will see a code
example later.

After a connection is established between an SSL client and server, an SSLSession
object is created.

SSLSession includes information like the endpoint identities, the negotiated cipher
suite, etc.

Each SSL connection has an associated SSLSession, but an SSLSession can be
used in multiple connections between the same entities.

JSSE will delegate the decisions regarding trust in certificates to the TrustManager
class and the key selection for authentication to the KeyManager class.

Each instance of SSLSocket created through JSSE will have access to those classes
through the associated SSLContext instance.

TrustManager has a set of trusted certificates generated by certification authorities,
and will make decisions based on them. If a certificate is issued by a trusted
certification authority, then that certificate will be considered trustworthy.

The default TrustManager is initialized with the system trust store, which includes a
set of major commercial and government CA certificates.

The system trust store is found for example in /system/etc/security/cacerts.bks
Here you have an example on how to obtain all certificates from the system trust
store.

First of all, we obtain an instance of TrustManagerFactory, which is initialized (if we
give it null, it will take the default/system trust store automatically).



21.

22.

23.

24-25.

Then we obtain the first TrustManager (which is the default one) and cast it to
X509TrustManager.

Then through the method getAcceptedlissuers() we obtain the list of CA certificates
from the system trust store.

For each certificate, some information is displayed (the subject DN and the issuer
DN).

Until Android 4.0, the system trust store was represented by a single file
/system/etc/security/cacerts.bks. However, the system partition is read-only, so the
file cannot be modified (not even by system applications).

From Android 4.0, in addition to the /system/etc/security/cacerts.bks file, we have two
additional directories: /data/misc/keychain/cacerts-added and
/data/misc/keychain/cacerts-removed. The first one includes CA certificates that are
added to the system trust store, and the second one includes CA certificates that are
removed from the system trust store.

Only the system user can add or remove CA certificates from the system trust store.
The trust anchors can be added through the TrustCertificateStore class, which is
accessible through the JCA KeyStore API.

This is an example on how to manually validate a server certificate using the system
trust store.

First of all, we obtain an instance of the TrustManagerFactory. We initialize it with the
system trust store by passing null to the init method.

Then we obtain the array of TrustManagers. We take the first one and cast it to
X509TrustManager.

We build a certificate chain including the server certificate and any intermediate
issuers.

Finally, we validate the certificate chain using the method checkServerTrusted() of
the X509TrustManager object.

SSLSocket and HttpsURLConnection perform such validation automatically.

HttpURLConnection is the preferred method for connecting to a HTTPS server. It
uses the default SSLSocketFactory in order to create secure SSL sockets.

When we need to use a custom trust store or authentication keys, the default
SSLSocketFactory can be replaced through the static method
setDefaultSSLSocketFactory() of HttpsURLConnection.

Another method is to configure the socket factory for the current
HttpsURLConnection though the method setSSLSocketFactory().

Sometimes you may want to use your own trust store instead of the system trust
store.



26.

28.

29.

For this you need to load your own trust store (containing trust anchors) in a
KeyStore object. Then you obtain a TrustManagerFactory using the static method
getinstance(). Then initialize the TrustManagerFactory using the trust store.

If you need to perform client authentication, you have to load the key material in a
KeyStore object. Then you can obtain a KeyManagerFactory using the static method
getinstance(). Then initialize KeyManagerFactory using the key store.

Then you obtain the SSLContext using the static method getinstance(). Then
initialize the context based on TrustManager and KeyManager obtained from the
factories.

Finally, create an URL object, obtain the HttpsURLConnection and associate the
SSLSocketFactory of the SSLContext to the HttpsURLConnection.

(An API very used for HTTPS is HttpsURLConnection, that connects to HTTPS
through JSSE. In order to use our own trust store, we need to create and initialize a
SSLContext (practically this is what SSLSocketFactory makes in the back).)

Here you have a more specific example in which we load our own trust store.

We can generate the trust store from the command line using Bouncy Castle and
openSSL.

We place the trust store file in /res/raw.

First of all, we obtain an instance of the KeyStore in Bouncy Castle format, in which
we can load our trust store (we need to specify the password).

Then obtain an instance of the TrustManagerFactory and initialize it with our trust
store.

Then obtain an instance of SSLContext and initialize it with the TrustManager
obtained from the factory. We observe that the KeyManager is null because we do
not perform client authentication in this example.

Similar to JCA cryptographic providers, we have JSSE providers that implement the
functionality for the engine classes defined in the API that was described in the
previous slides.

The functionality implemented by providers include: secure sockets, trust managers,
key managers, etc. The application developer will not work directly with the
implementation classes, but with the engine classes.

On Android, we have two JSSE providers: Harmony JSSE, that is implemented in
Java, and AndroidOpenSSL, which is implemented in native code, and accessed
through JNI.

HarmonyJSSE is based on Java sockets and uses JCA cryptographic classes for
implementing SSL.

It provides only SSLv3 and TLSv1 support

It is considered deprecated and not actively maintained.



30.

AndroidOpenSSL implements most functionality by making calls into the OpenSSL
native library (through JNI).

It supports TLSv1.1 and TLSv1.2

It also supports the TLS extension called Server Name Indication (SNI) - this means
that the SSL clients can specify the target hostname, in case the server has multiple
virtual hosts.

SNl is used by default when establishing a connection with HitpsURLConnection
Both providers share the same TrustManager and KeyManager code, but the SSL
socket implementation is different



