
Ash FS: A Flash Drive File System

Abstract—The recent increase in USB Flash Drive capacities
has triggered a need for a special filesystem that can handle
large files such as the ones encountered in a NTFS environment,
while keeping a good error correction and access speed.

In Ash FS, we are trying to reduce the wear levelling of the
flash drive by storing such large quantity of data in an uniform
way and provide the possibility of using compression, crypting
and error correction techniques.

I. INTRODUCTION

A. Flash

Flash memory is non-volatile computer memory that can
be electrically erased and reprogrammed. During last years
it became a common storage medium in embedded devices,
because it provides solid state storage with high reliability at
a relatively low cost.

Flash is a specific type of EEPROM (Electrically Erasable
Programmable Read-Only Memory) that is erased and
programmed in large blocks; in early flash the entire chip
had to be erased at once. It is available in two major types
- the traditional NOR flash which is directly accessible and
the newer, cheaper NAND flash which is addressable only
through a single 8-bit bus used for both data and addresses,
with separate control lines. This types of flash share their most
important characteristics - each bit in a clean flash chip will be
set to a logical one and can be set to zero by a write operation.

Flash chips are arranged into blocks which are typically
128 kB on NOR flash and 8 kB on NAND flash.Resetting
bits from zero to one cannot be done individually, but only
by resetting or erasing a complete block. The lifetime of a
flash chip is measured in such erase cycles, with the typical
lifetime being 100,000 erases per block. To ensure that no
erase block reaches this limit before the rest of the chip, most
users of flash chips attempt to ensure that erase cycles are
evenly distributed around the flash, process known as ”wear
levelling”.

Aside from the difference in erase block sizes, NAND flash
chips also have other differences from NOR chips. They are
further divided into ”pages” which are typically 512 bytes
in size, each of which has an extra 16 bytes of ”out of

band” storage space, intended to be used for metadata or error
correction. NAND flash is written by loading the required
data into an internal buffer one byte at a time, then issuing
a write command. While NOR flash allows bits to be cleared
individually until thare are none left to be cleared, NAND flash
allows only ten such write cycles to each page before leakage
causes contents to become undefined until the next erase of
the block in which the page resides.

B. Flash Translation Layers

The majority of applications of flash for file storage have
involved using the flash to emulate a block device with
standard 512 byte sectors and then using standard filesystems
on that emulated device.

The simplest method for achieving this is to use a simple
1:1 mapping from the emulated block device to the flash
chip and to simulate the smaller sector size for write requests
by reading the whole erase block, modifying the appropiate
part of the buffer, then erasing and rewriting the entire block.
This approach provides no wear levelling and is extremely
unsafe because of the potential power loss between the erase
before rewrites of the data. However, it is acceptable for use
during development of a filesystem which is intended for
read-only operation in production modules. The mtdblock
Linux driver provides this functionality, slightly optimised to
prevent excessive erase cycles by gathering writes to a single
erase block and only performing the erase/modify/writeback
procedure when a write to a different erase block is requested.

To emulate a block device in a fashion suitable for use
with a writable filesystem, a more sophisticated approach is
required.

To provide wear levelling and reliable operation, sectors
of the emulated block device are stored in various locations
on the physical medium and a ”Translation Layer” is used to
keep track of current location of each sector in the emulated
block device. This translation layer is effectively a form of
journalling filesystem.

The most commmon such translation layer is a component
of PCMCIA specification, the ”Flash Translation Layer”
(FTL). More recently, a variant designed for use with NAND



flash chips has been in widespread use in the popular
DiskOnChip devices produced by M-Systems.

Unfortunately, both FTL and the newer NFTL are
encumbered by patents. M-Systems have granted a license
for FTL to be used on all PCMCIA devices and allow NFTL
to be used only on DiskOnChip devices.

Linux supports both of these translation layers, but their
use is deprecated and intended for backwards compatibility
only. Not only are there patent issues, but the practice of
using a form of journalling filesystem to emulate a block
device on which a ”standard” journalling filesystem is then
used, is unnecessarily inefficient.

A far more efficient use of flash technology would be
permitted by the use of a filesystem designed specifically
for use on such devices, with no extra layers of translation
inbetween.

Ash File System is a block device based filesystem and tries
to take in consideration the particular characteristics of flash
memory.

II. VIRTUAL FILE SYSTEM

Before diving into the Ash File System we must have a
short look at the Virtual File System (VFS). A virtual file
system is an abstraction layer on top of a more concrete
filesystem and supports an uniform view of the objects or
files in the filesystem. Even though the meaning of the term
file may appear to be clear, there are many small, often subtle
differences in details due to the underlying implementations
of the individual filesystems. Not all support the same
functions and some operations make no sense when applied
to certain objects (e.g named pipes ).

When working with files, the central objects differ in
kernel space and user space. For user programs, a file is
identified by a file descriptor. This is an integer number used
as a parameter to identify the file in all file-related operations.
The file descriptor is assigned by the kernel when a file is
opened and is valid only within a process. Two different
processes may therefore use the same file descriptor, but it
does not point to the same file in both cases. Shared use of
files on the basis of the same descriptor number is not possible.

The inode is key to the kernel’s work with files. Each
file (and each directory) has just one inode, which contains
metadata such as access rights, date of last change and so on,
including pointers to the file data. However, the inode does
not contain one important item of information - the filename.
Usually, it is assumed that the name of the file is one of its
major characteristics and should therefore be included in the
object (inode) used to manage it.

A. Structure of the VFS

The key idea behind the VFS consists of introducing a
common file model capable of representing all supported
filesystems. This model strictly follows the file model
provided by the traditional Unix filesystem. However, each
specific filesystem implementation must translate its physical
organisation into the VFS’s common file model. For instance,
in the common file model, each directory is regarded as a file
which contains a list of files and other directories. Several
non-Unix disk-based filesystems use a File Allocation Table
(FAT), which stores the position of each file in the directory
tree. In these filesystems, directories are not files. To stick to
the VFS’s common file model, the Linux implemenation of
such FAT-based filesystems must be able to construct on the
fly, when needed, the files corresponding to the directories.
Such files exist only as objects in kernel memory.

Let’s see an example that illustrates this concept by
showing how the read() operation would be translated by
the kernel into a call specific to the MS-DOS filesystem.
The userspace application’s call to read() makes the kernel
invoke the corresponding sys read function, like every other
system call. The file is represented in the kernel by a file data
structure which contains a field called f op that has pointers
to functions specific to MS-DOS files, including a function
that reads a file. sys read() finds the pointer to this function
and invokes it. Thus, the application’s read() is turned into
the rather indirect call: file→f op→read()

The common filesystem model consists of the following
object types:

• superblock object, stores information concerning a
mounted filesystem. For disk-based filesystems, this ob-
ject usually corresponds to a filesystem control block
stored on disk.

• inode object, stores general information about a spe-
cific file. For disk-based filesystems, this object usually
corresponds to a file control block stored on disk. Each
inode object is associated with an inode number, which
uniquely identifies the file within the filesystem.

• file object, stores information about the interaction be-
tween an open file and a process. This information exists
only in kernel memory during the period when a process
has the file opened.

• dentry object, stores information about the linking of a
directory entry (that is, a particular name of the file) with
the corresponding file. Each disk-based filesystem stores
this information in its own particular way on disk.

Besides providing a common interface to all filesystem im-
plementations, the VFS has another important role related to
system performance. The most recently used dentry objects
are contained in a disk cache named the dentry cache, which
speeds up the translation from a file pathname to the inode of
the last pathname component.



B. VFS Data Structures
Now let’s take a look at a detalied description of filesystem’s

objects:
1) The superblock: The superblock object is implemented

by each filesystem and is used to store information describing
the specific filesystem. This object usually corresponds to the
filesystem superblock or the filesystem control block, which
is stored in a special sector on disk. The superblock is read
in memory at filesystem mount time.

The superblock object is represented by struct super block
and defined in linux/fs.h. The code for creating, managing and
destroying superblock objects can be found in fs/super.c. A
superblock object is created with the alloc super() function.
When mounted, a filesystem invokes this function, reads its
superblock off the disk and fills in its superblock object.

The most important data member in the superblock
object is s op , which is the superblock operations table.
The superblock operations table is represented by struct
super operations defined in fs.h and it contains pointers to
functions operating on a superblock object. When a filesystem
needs to perform an operation on its superblock, it follows
the pointers from its superblock object to the desired method.
For example if a filesystem wanted to write to its superblock,
it would invoke sb→s op→write super(sb)
where sb is a pointer to the filesystem’s superblock. Following
that pointer into s op yields the superblock operations table
and ultimately the desired write super. It is beyond the scope
of this paper to discuss all superblock operations but it’s
worth pointing out that a specific filesystem can set one or
more superblock operations to NULL in which case the VFS
either calls a generic function or does nothing depending on
the operation.

2) The inode: The inode object represents all the
information needed by the kernel to manipulate a file or a
directory.If a filesystem does not have inodes, the filesystem
must obtain the information from wherever it is stored (
e.g inode is embedded into the files). The inode object is
represented by struct inode defined in linux fs.h and it is
constructed in memory only when the files are accessed.
Some of the entries in struct inode are related to these special
files. For example, i pipe field points to a named pipe data
structure. If the inode does not refer to a named pipe, this
field is set to NULL.

As with the superblock operations, the inode operations
member is very important. It describes the filesystem’s
implemented functions that the VFS invokes on an inode and
their definitions can be found in linux/fs.h file.

3) The file: The file object is used to represent a file
opened by a process. When we think of the VFS from the
perspective of userspace, the file object is what readily comes
to mind. Processes deal directly with files, not superblocks,

inodes or dentries. It is not surprising that the information in
the file object is the most familiar (data such as access mode
and current offset) or that the file operations are familiar
system calls such as read() and write() .

The file object is the in-memory representation of an
open file. The object (but not the physical file) is created in
response to the open() system call and destroyed in response
to the close() system call. All these file-related calls are
actually methods defined in the file operations table. Because
multiple processes can open and manipulate a file at the same
time, there can be multiple file objects in existence for the
same file. This is why when managing file pointers every
process has its own view on the read/write position. The file
object merely represents a process’s view of an open file. The
object points back to the dentry (which in turn points back
to the inode) that actually represents the open file. The inode
and dentry objects, of course, are unique.

The file object is represented by struct file and it is defined
in linux/fs.h. The file object does not actually correspond to
any on-disk data. Therefore, there is no flag in the object to
represent whether the object is dirty and needs to be written
back to disk. The file object points to its associated dentry
object using f dentry pointer. The dentry in turn points to the
associated inode, which reflects if the file is dirty.
As with all the other VFS objects, the file operations table
is very important. The operations associated with struct
file are the familiar system calls that form the basis of the
Unix system calls. The file object methods are specified in
file operations and defined in linux/fs.h.

4) The dentry: The Virtual File System treats directories
as files. An inode object represents both these components.
Despite this useful unification, the VFS often needs to perform
directory-specific operations, such as path name lookup. Path
name lookup involves translating each component of a path,
ensuring it is valid and following it to the next component.
To facilitate this, the VFS employs the concept of a directory
entry (dentry). A dentry is a specific component in a path.
Dentry objects are all components in a path, including files.
Resolving a path and walking its components is a nontrivial
exercise, time-consuming and rife with string comparisons.
The dentry object makes the whole process easier. Dentries
might also include mount points. The VFS constructs dentry
objects on the fly, as needed, when performing directory
operations.

Dentry objects are represented by struct dentry defined
in linux/dcache.h and it does not correspond to any sort
of on-disk data structure. The VFS creates the dentry
from the string representation of a path name. Because
the dentry object is not physically stored on the disk, no
flag in struct dentry specifies whether the object is dirty or not.

The dentry operations structure specifies the methods that



the virtual file system invokes on directory entries on a
given filesystem. The dentry operations structure is defined
in linux/dcache.h

III. ASH FILE SYSTEM

A. Storage Format

The USB flash stick drive is split up into sectors with
the size of 512 bytes and the physical available capacity
is given as a fixed integer number of such units. Linux
/sys/block/sdb/size file usually contains this number of
available sectors for the newly inserted device.

A block of data refers to an area with the length of several
sectors, which is constant throughout the code. We make a
distinction between:

• kernel blocks, which are 4096 bytes in size (8 sectors)
• device blocks, which can be contain any number of

sectors. Device blocks get sized when the device is
formatted, and they never change the size until the next
format operation. Usual sizes for device blocks are 512
bytes, 2048, 4096 and 8192.

The space on the physical drive is split up into a number
of device blocks, like in the table I:

• SB, the Super Block, contains all the information needed
by the VFS to access the rest of the blocks on the
device. The Super Block always resides in block 0 and
is padded with 0 to the next block boundary.

• UBB, the Used Blocks Bitmap, contains a bit for each
block on the disk. The bit will be 0 if the block is
unused, and 1 if it contains useful information. After
formatting the drive, the bits for the SB block, UBB
and BAT blocks will all be equal to 1, because they will
contain file system metadata. The bitmap is padded with
0 up to the next block boundary.

• BAT, the Block Allocation Table, contains a 32 bit entry
for each block on the device, pointing to the next block
in the sequence, if they have data for the same file.
Therefore the device can have up to 232 blocks, because
we use 32 bits entries to address them.

• data blocks are the rest of the device blocks, used to
store any information. The Super Block contains a field
called datastart which points to the first block after the
BAT.

When the device gets formatted with AshFS, we utilise
formulas to compute maxblocks, the number of blocks
occupied by UBB, BAT and datastart and we store this
information in the fields of the Super Block, allowing the
kernel to find out how the files are organised on the disk later
on, at mount time.

For each file, AshFS stores two types of information:

SB UBB BAT blockdatastart . . . blockmaxblocks−1

TABLE I
PHYSICAL DISK LAYOUT

• the directory entry, which is a structure containing file
metadata, such as name, access time, permissions and
file size.

• the file data, stored as a sequence of linked blocks of
data, each block pointing to the next one by using the
entries in the BAT. Last block of the file’s data will be
0 padded to the end and have 0 in the UBB bitmap,
indicating that we have reached the end of the file.

The file’s directory entry is stored in a separate block than
the file’s data, which allows a directory to have the data
organised as an array of directory entries for each file in the
directory. The root directory starts with the first block of data
and contains the directory entries for all the files and subdirs
in the root of the drive. Recursively, adding a new file will
insert a new directory entry in the last block of the directory
we place the file in and put the actual file data in the first block
we find available on the disk by checking the Used Blocks
Bitmap. In a similar way, deleting a file will only erase the
directory information metadata and mark its blocks as unused.

At this moment, AshFS does not provide support for
special files such as pipes or devices, due to the fact that it
will be used for removable drives, as opposed to filesystems
for the hard drives.

B. Mounting

At mount time ash fill super is called to fill the superblock.
The superblock is read in memory from the sector 0 of the flash
and some consistency checks are performed (e.g magic number
, which actually identifyes the AshFS). After that the root
inode is read from the disk and a directory entry is allocated
for it. At mount time, if the root directory on the local hard
drive contains the /root/ashkey.hex file, the content will be read
into memory and used as a crypting key for further operations.
If the file is not found but crypting is enabled in the filesystem,
a null key shall be used.

C. Compression

To reduce flash space usage compression can be used at the
cost of speed. We use zlib to achieve compression. Typically
data is compressed using the zlib header as this provides
error detection. When data is written without a header the
result is raw DEFLATE data with no error detection and it
is up to the caller of decompression software to know where
compressed data ends.

Currently zlib only supports one algorithm called DEFLATE
which is a variation of Lempel-Ziv 1977. This algorithm



provides good compression on a wide variety of data with
minimal use of system resources. This is also the algorithm
almost invariably used nowadays in zip file format. It is
unlikely that the zlib format will ever be extended to use
any other algorithms, although the header allows for this
possibility.

We use the default strategy of compression although the
library offers strategies tailored to the specific type of data that
are being compressed. For example, if the data contains long
lengths of repeated bytes then the RLE (run-length encoding)
strategy may give better results. There is no limit to the length
of data that can be compressed or decompressed but we will
always use 4k blocks for compression.

D. Cryptography

There are situations when we want to protect important
data written on flash drive. We implemented Rijndael’s
cryptography algorithm (AES-128, AES-192, AES-256). The
algorithm operates on plaintext blocks of 16 bytes. Encryption
of shorter blocks is possible only by padding the source bytes,
usually with null bytes. This can be accomplished via several
methods, the simplest of which assumes that the final byte of
the cipher identifies the number of null bytes of padding added.

Careful choice must be made in selecting the mode of
operation of the cipher. The simplest mode encrypts and
decrypts each 128-bit block separately. In this mode that is
called electronic code book (ECB), blocks that are identical
will be encrypted identically. This will make some of the
plaintext structure visible in the ciphertext. Selecting other
modes such as empressing a sequential counter over the
block prior to encryption (CTR mode) and removing it after
decryption avoids this problem.

Rijndael was designed on big-endian systems, therefore on
little-endian systems such as ours will return correct test vector
results only through considerable byte-swapping, having the
efficiency reduced as a result.

E. Performance tests

For our comparison tests we use 4 other file systems:
vfat, ext2, ext3, minix. We test write speed, read speed,
compression speed and encryption speed.

The tests have been conducted on VMware Workstation
6.5.0 build 118166, running a Debian 2.6.24.19 generic
kernel version on a Windows Vista Business 32 bit, CPU
Core 2 Duo T9300 2.5 GHz and 4 GB RAM, having 1 GB
mapped by the virtual machine. The drive used for the file
system was a lowcost HP made 1GB pen drive. The reason
for choosing to run VMware for tests is because the tests
cannot model any sort of traffic the user might have for a
flash drive, therefore we wished to insert as many latencies
as possible and get the worst case scenario.

Fig. 1. Write Speed Test

Fig. 2. Read Speed Test

Fig. 3. Crypting and Compression Speed Test

The tests are conducted for exponentially increasing file
sizes of test files, from 1 kB to 100 MB, in powers of 10.
The reason for stopping at 100 MB and not going further to
test 1GB is that the biggest files a normal user stores on such



drives are mainly DivX encoded movies, which are always
trimmed down to files of 700 MB in size, that can be fitted
on a CD.

Each test suite will create a file of the given size and
attempt 100 cycles of writing it, reading all the file content
from disk and erasing it. During each of the cycles, we
measure the speed of the write operation, the read operation
and at the end we obtain the average time in microseconds.

Due to the fact that the results increase exponentially along
with the file size, the charts used to present them are done in
logarithmic scale for the time, using the base 10 logarithm.

IV. FUTURE WORK

A. Combine compression with encryption

In the current version both compression and encryption are
supported but separately. At any time you can have enabled
either compression or encryption but not both at the same time.
We must analyse the possibility of integrating compression
with encryption and see the possible benefits. At a first glance
there is one question arising - which of them should be done
first.

B. eXecute In Place

One very nice and useful feature would be eXecute In
Place (XIP) which assumes that the code is directly executed
from the flash drive. When a program residing on AshFS
is run, the executable code is copied from flash into RAM
before the CPU can execute it. Even when the mmap() system
call is used, data are not accessed directly from the flash, but
are copied into RAM.

It is clear that XIP and compression are mutually exclusive:
if data are compressed they cannot be used directly in place.
It is interesting to see then what is the optimal solution:
saving an amount of RAM by using XIP or saving an amount
of flash space by using compression. By choosing the latter
option, the cost for saving will generally be greater than
for the former option, because flash is more expensive than
RAM. The operating system is more flexible in its use of the
available RAM, discarding file buffers during the periods of
high memory pressure. Furthermore, because write operations
to flash chips are slower, compressing the data is faster in
most cases.

The main problem with XIP is the interaction with the
memory management software. Firstly, for all known memory
management units, each page of data must be page-aligned
on the flash in order for it to be mapped into processes
address space, which makes such a filesystem to waste space.
Secondly, while giving write or erase commands to a flash
chip, it may return status words on all read cycles, therefore
all currently valid mappings would have to be found and
invalidated for the duration of operation.

C. Fault Tolerance Support

We can integrate a 32-bit CRC in every block of data,
but this only gives error detection - it does not allow the
filesystem to correct errors. We need more sophisticated
methods of dealing with single-bit errors in flash chips.
Possible solutions are using Hamming code, BCH Code or
low-density parity-check codes.

We can use redundancy to improve fault tolerance. Every
critical and high used portion of data must have a back up
storage. This, of course, will decrease the storage capacity but
it can be very useful in case of forced unplugging or system
crashes.

D. Use linux kernel CryptoAPI

In the current version we have used a custom
implementation of the encryption functions. The linux
kernel provides an extensible way of using cryptography by
the means of CryptoAPI. The Scatterlist Crypto API takes
page vectors (scatterlist) as arguments and works directly
on pages. In some cases, this will allow for pages to be
encrypted in-place with no copying.

At the lowest level are the algorithms which register dynam-
ically with the API. Transforms are user-instantiated objects,
which maintain state, handle all of the implementation logic,
manipulate page vectors and provide an abstraction to the
underlying algorithms.

E. Transaction Support

For storing database information in AshFS filesystem, it
may be desirable to expose transactions to userspace. Of
course, the userspace can implement transactions itself, using
only the file system functionality required by POSIX but
implementing a transaction-based system on top of AshFS
would be far less efficient than using the internal functions
of the filesystem.

V. CONCLUSIONS

Our tests have revealed that Linux VFS offers a framework
that supports costly operations such as crypting and
compression to be implemented as an intermediate layer in a
filesystem without affecting performance to a very large scale.

Across different filesystem implementations, the speed
test for the Read operation yielded uniform results. The
difference between implementations is more important for
the Write operation, where timings differ to a greater extent.
Writing timings grow in a liniar way in respect to the file
size, because flash drives have constant lookup latency and
zero spin time.

Using an official library for the crypting algorithm
instead of a custom tailored implementation will improve
performance considerably. Symmetric crypting algorithms are
also the fastest algorithms available for the needed level of



security, which can be increased by selecting a proper length
for the used key, between 128, 192 and 256 bits variants.
The compression algorithms can be chosen from a larger
number of available implementations but using more complex
algorithms than zlib will add higher latencies to the Write
operation.

Overall, the AshFS project demonstrates how compression
and crypting can be combined in order to achieve higher
functionality in the operating system. It is also a proof of
concept for how a new filesystem can be integrated with the
existing VFS functionality.

REFERENCES

[1] Wolfgang Mauer, Proffesional Linux Kernel Architecture, Wiley Publish-
ing Inc.

[2] Daniel Bovet , Understanding the Linux Kernel, O’Reilley Publishing Inc.
[3] Sreekrishnan Venkateswaran, Essential Linux Device Drivers, Prentice

Hall Publishing
[4] David Woodhouse, JFFS: The Journaling Flash File System, Ottawa

Linux Symposium,2001
[5] Han-Joon Kim, Sang-Goo Lee, A new flash memory management for flash

storage system, COMPSAC ’99
[6] Charles Manning, YAFFS: the NAND-specific flash file system, Linuxde-

vices.org, September 20th 2002
[7] Eran Gal, Sivan Toledo, A Transactional Flash File System for Micro-

controllers, USENIX ’05
[8] Seung-Ho Lim, Kyu-Ho Park, An efficient NAND flash file system for

flash memory storage, IEEE Transaction on Computers, 55th Vol., July
2006


