Portability and Optimizations
Lecture 11

Android Native Development Kit

13 May 2014

NDK Portability and Optimizations, Lecture 11 1/20

Portability

Optimization

Bibliography

Keywords

NDK Portability and Optimizations, Lecture 11

2/20

""""""

QOutline

Portability

NDK

Portability and Optimizations, Lecture 11

3/20

NOK

Portability on different operating systems

Each operating system has its own System API and Libraries

Possible solutions:
Standard Libraries (C, C++, etc.)

Implement a certain standard
Standard C library implemented after ANSI C standard
Interaction with the OS

Wrappers around API (system calls, library calls)
Identify OS and make appropriate calls
Use compiler macros

Identify the OS

__ANDROID linux WIN32 MACH etc.

_ == —_ =) - -

NOK

Portability on different hardware platforms

Each architecture has a certain ABI
ABI:

Describes data type size, align, calling convention, dealing with
system calls, binary format of object files, etc.
Also depends on OS

Solution: compile for a certain ABI with the appropriate
toolchain
Cross-compilation:
Compile for a different architecture than the one we are on
Select the appropriate toolchain for the target architecture and

0S

Toolchains with correct headers, libraries and ABI

NOK

Can generate standalone toolchain for an Android version and
ABI

Easily integrate with build system for other platforms

$NDK/build/tools/make-standalone-toolchain.sh
--platform=android-<API_VERSION>
—-arch=<ARCHITECTURE> --install-dir=<DIRECTORY>

ARCHITECTURE can be x86, ARM (default) or MIPS
Contains C4++ STL library with exceptions and RTTI

""""""

QOutline

Optimization

NDK

Portability and Optimizations, Lecture 11

7/20

NOK

Identify performance problems using profiling

Compilers can generate optimized code

APP_QPTIM - differentiate between debug and release versions
Defined in Application.mk

For release versions it uses -02 and defines NDEBUG
NDEBUG disables assertions and can be used to remove
debugging code

The compiler may perform (implicit) vectorization =>

increase performance

Might not do vectorization when appropriate, sometimes it's

necessary to optimize by hand (but check your algorithm first)

NOK

Libraries can provide highly optimized functions
Some are architecture dependent

Math:
Eigen
C++ template library for linear algebra
ATLAS
Linear algebra routines
C, Fortran

Image and signal processing:
Intel Integrated Performance Primitives
Multimedia processing, data processing, and communications
applications
OpenCV
Computational efficiency, real-time applications
C++, C, Python and Java
Threading:
Intel Threading Building Blocks
C and C++ library for creating high performance, scalable
parallel applications

NOK

Optimized algorithm, compiler does not optimize properly, no
optimized libraries are available => low level optimizations

Use (explicit) vectorization
Intrinsic compiler functions or assembly
Not all CPUs have the same capabilities

At compile time:
Build different versions of libraries for each architecture
In Makefile depending on the ABI

At runtime:

Execute a certain piece of code only on some architectures
Choose specific optimizations based on CPU features at
runtime

NOK

cpufeatures library on Android
Identifies processor type and attributes

Make optimizations at runtime according to the procesor
Main functions:
android_getCpuFamily
ANDROID_CPU_FAMILY_ARM, ANDROID_CPU_FAMILY_X86, etc.
android_getCpuFeatures

Returns a set of bits, each representing an attribute

Floating point, NEON, instruction set, etc.
android_getCpuCount

Number of cores

NOK

Android NDK supports 4 ABIs: x86, armeabi,
armeabi-v7a, mips

x86 supports the instruction set called 'x86" or 'lA-32'
Includes:

Pentium Pro instruction set
MMX, SSE, SSE2 and SSES3 instruction set extensions

Code optimized for Atom CPU

Follows standard Linux x86 32-bit calling convention

NOK

Supports at least ARMvV5TE instruction set

Follows little-endian ARM GNU/Linux ABI
Least semnificative byte at the smallest address

No support for hardware-assisted floating point computations
FP operations through software functions in libgcc.a static
library

Does not support NEON

Supports Thumb-1
Instruction set
Compact 16-bit encoding for a subset of ARM instruction set

Used when you have a small amount of memory
Android generates Thumb code default

NOK

Extends armeabi to include instruction set extensions
Supports at least ARMVTA instruction set

Follows little-endian ARM GNU/Linux ABI

Supports VFPv3-D16
16 dedicated 64-bit floating point registers provided by the
CPU
Supports Thumb-2
Extends Thumb with instructions on 32 bits
Cover more operations

NOK

Supports NEON
128-bit SIMD architecture extension for the ARM Cortex ™-A
Accelerate multimedia and signal processing: video
encode/decode, 2D /3D graphics, image/sound processing
Set LOCAL_ARM_NEON to true in Android.mk
All sources are compiled with NEON support
Use NEON GCC intrinsics in C/C++ code or NEON
instructions in Assembly code
Add .neon suffix to sources in LOCAL_SRC_FILES
Compile only those files with NEON support
LOCAL_SRC_FILES := foo.c.neon bar.c

NOK

define a static library containing our NEON code
ifeq ($(TARGET_ARCH_ABI),h armeabi—v7a)
include $(CLEAR._VARS)

LOCAL_MODULE := neon—example

LOCAL_SRC_FILES := neon—example.c

LOCAL. ARM_NEON := true

include $(BUILD_STATIC_LIBRARY)
endif # TARGET_ARCH_ABI — armeabi—v7a

#include <cpu—features.h>

(-]

if (android_getCpuFamily () = ANDROID_CPU_FAMILY_ARM &&
(android_getCpuFeatures () &
ANDROID_CPU_ARM_FEATURE_NEON) != 0){
// use NEON-optimized routines
(]

else {
// use non—NEON fallback routines instead

(-]

""""""

QOutline

Bibliography

NDK

Portability and Optimizations, Lecture 11

17/20

NOK

$NDK /docs/STANDALONE-TOOLCHAIN. html
$NDK /docs/CPU-FEATURES. html

$NDK /docs/CPU-ARCH-ABIS html

$NDK /docs/CPU-ARM-NEON.html

$NDK /docs/ANDROID-MK.html

$NDK /docs/APPLICATION-MK html

https://gcc.gnu.org/onlinedocs/gecc/
ARM-NEON-Intrinsics.html

https://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html
https://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

""""""

QOutline

Keywords

NDK

Portability and Optimizations, Lecture 11

19/20

NOK

Portability
Standard Libraries
Wrappers

ABI

Toolchain
Cross-compilation
Profiling

Optimization

Vectorization
Optimized libraries
CPU features
MMX, SSE
NEON
Little-endian
Thumb

VFP

	Portability
	Optimization
	Bibliography
	Keywords

