
Portability and Optimizations
Lecture 11

Android Native Development Kit

13 May 2014

NDK Portability and Optimizations, Lecture 11 1/20

Portability

Optimization

Bibliography

Keywords

NDK Portability and Optimizations, Lecture 11 2/20

Outline

Portability

Optimization

Bibliography

Keywords

NDK Portability and Optimizations, Lecture 11 3/20

Portability - Different Operating Systems

I Portability on different operating systems

I Each operating system has its own System API and Libraries
I Possible solutions:

I Standard Libraries (C, C++, etc.)
I Implement a certain standard
I Standard C library implemented after ANSI C standard
I Interaction with the OS

I Wrappers around API (system calls, library calls)
I Identify OS and make appropriate calls

I Use compiler macros
I Identify the OS
I __ANDROID__, __linux__, _WIN32, __MACH__, etc.

NDK Portability and Optimizations, Lecture 11 4/20

Portability - Different Architectures

I Portability on different hardware platforms

I Each architecture has a certain ABI
I ABI:

I Describes data type size, align, calling convention, dealing with
system calls, binary format of object files, etc.

I Also depends on OS

I Solution: compile for a certain ABI with the appropriate
toolchain

I Cross-compilation:
I Compile for a different architecture than the one we are on
I Select the appropriate toolchain for the target architecture and

OS
I Toolchains with correct headers, libraries and ABI

NDK Portability and Optimizations, Lecture 11 5/20

Android toolchain

I Can generate standalone toolchain for an Android version and
ABI

I Easily integrate with build system for other platforms

I $NDK/build/tools/make-standalone-toolchain.sh
--platform=android-<API_VERSION>
--arch=<ARCHITECTURE> --install-dir=<DIRECTORY>

I ARCHITECTURE can be x86, ARM (default) or MIPS

I Contains C++ STL library with exceptions and RTTI

NDK Portability and Optimizations, Lecture 11 6/20

Outline

Portability

Optimization

Bibliography

Keywords

NDK Portability and Optimizations, Lecture 11 7/20

Compiler

I Identify performance problems using profiling

I Compilers can generate optimized code
I APP_OPTIM - differentiate between debug and release versions

I Defined in Application.mk

I For release versions it uses -O2 and defines NDEBUG
I NDEBUG disables assertions and can be used to remove

debugging code

I The compiler may perform (implicit) vectorization =>
increase performance

I Might not do vectorization when appropriate, sometimes it’s
necessary to optimize by hand (but check your algorithm first)

NDK Portability and Optimizations, Lecture 11 8/20

Libraries

I Libraries can provide highly optimized functions
I Some are architecture dependent
I Math:

I Eigen
I C++ template library for linear algebra

I ATLAS
I Linear algebra routines
I C, Fortran

I Image and signal processing:
I Intel Integrated Performance Primitives

I Multimedia processing, data processing, and communications
applications

I OpenCV
I Computational efficiency, real-time applications
I C++, C, Python and Java

I Threading:
I Intel Threading Building Blocks

I C and C++ library for creating high performance, scalable
parallel applications

NDK Portability and Optimizations, Lecture 11 9/20

Low level optimizations

I Optimized algorithm, compiler does not optimize properly, no
optimized libraries are available => low level optimizations

I Use (explicit) vectorization
I Intrinsic compiler functions or assembly

I Not all CPUs have the same capabilities
I At compile time:

I Build different versions of libraries for each architecture
I In Makefile depending on the ABI

I At runtime:
I Execute a certain piece of code only on some architectures
I Choose specific optimizations based on CPU features at

runtime

NDK Portability and Optimizations, Lecture 11 10/20

CPU Features Library

I cpufeatures library on Android

I Identifies processor type and attributes

I Make optimizations at runtime according to the procesor
I Main functions:

I android_getCpuFamily
I ANDROID_CPU_FAMILY_ARM, ANDROID_CPU_FAMILY_X86, etc.

I android_getCpuFeatures
I Returns a set of bits, each representing an attribute
I Floating point, NEON, instruction set, etc.

I android_getCpuCount
I Number of cores

NDK Portability and Optimizations, Lecture 11 11/20

ABI: x86

I Android NDK supports 4 ABIs: x86, armeabi,
armeabi-v7a, mips

I x86 supports the instruction set called ’x86’ or ’IA-32’
I Includes:

I Pentium Pro instruction set
I MMX, SSE, SSE2 and SSE3 instruction set extensions

I Code optimized for Atom CPU

I Follows standard Linux x86 32-bit calling convention

NDK Portability and Optimizations, Lecture 11 12/20

ABI: armeabi

I Supports at least ARMv5TE instruction set
I Follows little-endian ARM GNU/Linux ABI

I Least semnificative byte at the smallest address

I No support for hardware-assisted floating point computations
I FP operations through software functions in libgcc.a static

library

I Does not support NEON
I Supports Thumb-1

I Instruction set
I Compact 16-bit encoding for a subset of ARM instruction set
I Used when you have a small amount of memory
I Android generates Thumb code default

NDK Portability and Optimizations, Lecture 11 13/20

ABI: armeabi-v7a

I Extends armeabi to include instruction set extensions

I Supports at least ARMv7A instruction set

I Follows little-endian ARM GNU/Linux ABI
I Supports VFPv3-D16

I 16 dedicated 64-bit floating point registers provided by the
CPU

I Supports Thumb-2
I Extends Thumb with instructions on 32 bits
I Cover more operations

NDK Portability and Optimizations, Lecture 11 14/20

ABI: armeabi-v7a

I Supports NEON
I 128-bit SIMD architecture extension for the ARM CortexTM-A
I Accelerate multimedia and signal processing: video

encode/decode, 2D/3D graphics, image/sound processing
I Set LOCAL_ARM_NEON to true in Android.mk

I All sources are compiled with NEON support
I Use NEON GCC intrinsics in C/C++ code or NEON

instructions in Assembly code

I Add .neon suffix to sources in LOCAL_SRC_FILES
I Compile only those files with NEON support
I LOCAL_SRC_FILES := foo.c.neon bar.c

NDK Portability and Optimizations, Lecture 11 15/20

NEON

de f i n e a s t a t i c l i b r a r y c o n t a i n i n g our NEON code
i f e q ($ (TARGET ARCH ABI) , armeabi−v7a)

i n c l u d e $ (CLEAR VARS)
LOCAL MODULE := neon−example
LOCAL SRC FILES := neon−example . c
LOCAL ARM NEON := t r u e
i n c l u d e $ (BUILD STATIC LIBRARY)

e n d i f # TARGET ARCH ABI == armeabi−v7a

#inc l u d e <cpu−f e a t u r e s . h>
[. .]

i f (and ro i d ge tCpuFami l y () == ANDROID CPU FAMILY ARM &&
(and r o i d g e tCpuFea tu r e s () &
ANDROID CPU ARM FEATURE NEON) != 0){
// use NEON−op t im i z ed r o u t i n e s
[. .]

}
e l s e {

// use non−NEON f a l l b a c k r o u t i n e s i n s t e a d
[. .]

}

NDK Portability and Optimizations, Lecture 11 16/20

Outline

Portability

Optimization

Bibliography

Keywords

NDK Portability and Optimizations, Lecture 11 17/20

Bibliography

I $NDK/docs/STANDALONE-TOOLCHAIN.html

I $NDK/docs/CPU-FEATURES.html

I $NDK/docs/CPU-ARCH-ABIS.html

I $NDK/docs/CPU-ARM-NEON.html

I $NDK/docs/ANDROID-MK.html

I $NDK/docs/APPLICATION-MK.html

I https://gcc.gnu.org/onlinedocs/gcc/
ARM-NEON-Intrinsics.html

NDK Portability and Optimizations, Lecture 11 18/20

https://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html
https://gcc.gnu.org/onlinedocs/gcc/ARM-NEON-Intrinsics.html

Outline

Portability

Optimization

Bibliography

Keywords

NDK Portability and Optimizations, Lecture 11 19/20

I Portability

I Standard Libraries

I Wrappers

I ABI

I Toolchain

I Cross-compilation

I Profiling

I Optimization

I Vectorization

I Optimized libraries

I CPU features

I MMX, SSE

I NEON

I Little-endian

I Thumb

I VFP

NDK Portability and Optimizations, Lecture 11 20/20

	Portability
	Optimization
	Bibliography
	Keywords

