
Lecture 4

4
ADT Eclipse Plug-ins
1 noiembrie 2016



Outline

 Environment setup 

 Eclipse IDE

QEMU Emulator

Debugging

 Profiling and Tracing

1.11.2016 2



Recap: Yocto Project development model

1. System development workflow

2. Application development workflow

3. Modify temporary source code

4. Image development

5. Using the devshell

1.11.2016 3



Recap: Yocto Project getting started

Get the source code

 git clone https://git.yoctoproject.org/git/poky

 cd poky

 Build the demo image

 source oe-init-build-env 

 vim conf/local.conf
MACHINE=qemuarm

bitbake core-image-minimal

 Run the demo into an emulator

 runqemu qemuarm

1.11.2016 4

https://git.yoctoproject.org/git/poky


Application development Toolkit

Application development = create an application for a 
target hardware.

 The target hardware runs a kernel image created using 
the OE build system. 

 The Yocto Project provides:

Application Development Toolkit (ADT) 

The possibility to use stand-alone cross-development toolchains

Optional Eclipse Yocto Plug-in to develop, deploy and test your 
application all from within Eclipse. 

1.11.2016 5



Remember ADT?

 Provides a standalone cross-compiler, debugger, tool-
profilers, emulators and even development board 
interaction

 Platform independent

What else do you remember from last course?

1.11.2016 6



Environment setup

1. Using an ADT install script

 Recommended method. Mostly because it is a completely 
automated process

2. Using the ADT tarball

 Involves a tarball selection process and an automate setup 
process with the help of a script

 The tarball can also be manually built with the help of Bitbake

 Can have features limitation

3. Using a toolchain from the build directory

 Takes advantage of the already available build directory

 Cross-toolchain setup is really easy

 Same limitation as the method described above
1.11.2016 7



ADT installer script

 bitbake adt-installer

 tar –xjf adt_installer.tar.bz2

 vim adt_installer.conf

YOCTOADT_REPO

YOCTOADT_TARGET

YOCTOADT_QEMU

YOCTOADT_ROOTFS_<arch>

YOCTOADT_TARGET_SYSROOT_IMAGE_<arch>

YOCTOADT_TARGET_MACHINE_<arch>

YOCTOADT_TARGET_SYSROOT_LOC_<arch> 

 ./adt_installer
1.11.2016 8



ADT installer .conf example

1.11.2016 9



Other options
 runqemu-extract-sdk

wget
http://downloads.yoctoproject.org/releases/yocto/yocto-
2.1/toolchain/x86_64/poky-glibc-x86_64-core-image-
sato-armv7a-neon-toolchain-2.1.sh

 bitbake meta-toolchain

 bitbake –c populate-sdk <image-name>

 ./poky-glibc-x86_64-core-image-sato-armv7a-vfp-neon-
toolchain-1.7.sh 

 bitbake meta-ide-support 

1.11.2016 10

http://downloads.yoctoproject.org/releases/yocto/yocto-2.1/toolchain/x86_64/poky-glibc-x86_64-core-image-sato-armv7a-neon-toolchain-2.1.sh


Eclipse IDE

 https://www.youtube.com/watch?v=3ZlOu-gLsh0

Alternative solution for developers not keen on using vim 
and command line interaction

 Support for Luna SR2 (4.4.2) and Kepler (4.3.2): 
http://www.eclipse.org/downloads/

 tar -xzvf ~/Downloads/eclipse-cpp-luna-SR2-linux-gtk-
x86_64.tar.gz

 Info also available here: 
http://www.yoctoproject.org/docs/2.1/mega-
manual/mega-manual.html#setting-up-the-eclipse-ide

1.11.2016 11

https://www.youtube.com/watch?v=3ZlOu-gLsh0
http://www.eclipse.org/downloads/


Qemu emulator

Used as virtualization machine and emulator

Useful for tests executions

One of Yocto Project selling points

 Started in Eclipse using External tools option from Run
menu

1.11.2016 12



Debugging

 Started in Eclipse using Remote Application from Run
menu

Name <project-name>_gdb_- <suffix> syntax

 For shared libraries debugging extra steps are required:

 Select Add | Path Mapping option from the Source tab to make 
available a path mapping

 Select Load shared libraries symbols automatically from the 
Debug/Shared Library tab and indicate the path of the shared 
libraries.

 In the Arguments tab pass libraries arguments if required 
during execution

1.11.2016 13



Profiling and tracing

• Yocto Tools: oprofile, perf, LTTng, PowerTop, LatencyTop, 
SystemTap, KGDB

– LTTng: offers the possibility of tracing a target session and 
analyzing the results. 

– LatencyTop: identify the latencies available within the kernel 
and also their root cause. 

– PowerTop: used to measure the consumption of electrical 
power. 

– SystemTap: enables the use of scripts to get results from a 
running Linux. 

• Can you please help with the rest of them?

1.11.2016 14



Student presentation

1.11.2016 15



Project Documentation

Define functionalities and features

Define used technologies

What are the use cases you have in mind for this project

 Is it Yocto Project integrated or not?

Document file should be ready by lecture 5.

Documentation is part of the project score.

1.11.2016 16



Students proposed project

Optimize boot time & size for a Yocto Project Linux 
distribution

Reduce busybox functionalities support.

Reduce resulting rootfs size.

Minimize Linux kernel configuration.

Optimize bootloader if possible.

Resulting output should be able to run a graphical application 
similar to glxgears.

Boot time required under 10 sec.

 If done in teams of 2, boot time under 7 sec.

Use case: boot the target/qemu and check the time at which 
glxgears appears.

1.11.2016 17



The End

?
1.11.2016 18


