
Lecture 2

2
Yocto Project &
Embedded Linux
18 octombrie 2016

Outline

 Cross-compiling

 Bootloaders

 Linux kernel

 Linux root filesystem

 Yocto Project

18.10.2016 2

Recap: The Yocto Project

18.10.2016 3

GNU Toolchain

What does GNU toolchain means?

 Includes

GNU make

GNU Compiler Collection (GCC)

GNU Binutils

GNU Bison

GNU Debugger (GDB)

GNU m4

GNU build system (autotools)
Autoconf

Autoheader

Automake

Libtool
18.10.2016 4

What is GNU?

GNU is an operating system that is free software

 https://www.gnu.org/

GNU stands for “GNU's Not Unix”

 Free software means that the software's users have
freedom.

 The Free Software Foundation is the principal
organizational sponsor of the GNU Operating System.

 List of maintained and developed packages available
here: https://www.gnu.org/software/software.html

18.10.2016 5

https://www.gnu.org/
https://www.gnu.org/software/software.html

Binutils

 The GNU linker, that is ld

 The GNU assembler, that is as

 A utility that converts addresses into filenames and line numbers, that is
addr2line

 A utility to create, extract, and modify archives, that is ar

 A tool used to listing the symbols available inside object files, that is nm

 Copying and translating object files, that is objcopy

 Displaying information from object files, that is objdump

 Generating an index to for the contents of an archive, that is ranlib

 A compiler for Windows resource files, that is windres

 Displaying information from any ELF format object file, that is readelf

18.10.2016 6

Binutils (2)

 Listing the section sizes of an object or archive file, that is size

 Listing printable strings from files, that is strings

 Discarding the symbols utility that is strip

 Filtering or demangle encoded C++ symbols, that is c++filt

 Creating files that build use DLLs, that is dlltool

 A new, faster, ELF-only linker, which is still in beta testing, that is gold

 Displaying the profiling information tool, that is gprof

 Converting an object code into an NLM, that is nlmconv

 A Windows-compatible message compiler, that is windmc

18.10.2016 7

ABI

 Binary interface between two modules: information on
how functions are called and their information

 Set of rules that offer to the linker the possibility to unite
compiled modules without recompilation

Dependent on the platform

Dependent on the programming language & compiler

 Best example: the citizen of a region/country, if they
move to another region/country they will need to learn a
new language.

18.10.2016 8

GCC

GNU Compiler Collection represents a compiler system

 Initially known as GNU C Compiler now also represents
languages as: Objective C, Fortran, Java, Ada and Go

 Started by Richard Stallman in 1987 but it was a failure

 In 1997 a group of developers gathered as the
Experimental/Enhanced GNU Compiler System (EGCS)
workgroup started merging several GCC forks in one
project with great success, making EGCS the official GCC
version

 They united when GCC 2.95 appeared

18.10.2016 9

GCC functionality

 The frontend generates a tree from the source code

 Initially used LALR parsers (Bison generated), but moved
to recursive-descendent parsers (GENERIC, GIMPLE)

Middle stage involves code analysis and optimization,
starts from GENERIC and continue to the RTL (Register
Transfer Language) representation

 The backend represents preprocessor macros and specific
architecture functions (endianness definition, calling
convention, word size)

 In the end the machine code is obtained.

18.10.2016 10

C library

 There are a number of options available:

 glibc

eglibc

Newlib

bionic

musl

uClibc

dietlibc

Klibc

 The main focus will be the glibc C library

18.10.2016 11

Generating the toolchain

 Toolchain build process has 8 steps

 Inside Yocto Project the toolchain is generated without
notice

 Interaction with the Yocto Project generated toolchain is
done calling meta-ide-support

 The first step is the setup: Create top-level directories
and source subdirectories and define variables such as
TARGET, SYSROOT, ARCH, COMPILER, PATH

 The second step is the source code download: including
the above presented packages together with various
patches

18.10.2016 12

GNU Binutils setup

 The third step:

Unzip the sources available

Patch the sources accordingly

Configure the package accordingly

Compile the sources

 Install the sources in the corresponding location

18.10.2016 13

Linux kernel headers setup

 The fourth step:

Unzip the sources available

Patch the sources accordingly

Configure the kernel for the selected architecture, the
corresponding kernel config file is also generated here

Compile the Linux kernel headers and copy them in the
corresponding location

 Install the headers in the corresponding location

18.10.2016 14

Glibc headers setup

 The fifth step:

Unzip the glibc source and headers

Patch the glibc sources if this applies

Configure the glibc sources to the corresponding kernel headers
by enabling the -with-headers variable to link the libraries with
the Linux kernel headers

Compile the glibc headers

 Install the headers in the corresponding location

18.10.2016 15

GCC first stage setup

 The sixth step:

Unzip the gcc sources

Patch the sources accordingly

Configure the gcc sources enabling the necessary features

Compile the C runtime components

 Install the sources in the corresponding location

18.10.2016 16

Build the Glibc sources

 The seventh step:

Configure the glibc library by setting the corresponding march a
mabi variables

Compile the glibc sources

 Install the glibc in the corresponding location

18.10.2016 17

GCC second stage setup

 The eighth and last step:

Configure the gcc sources

Compile the gcc sources

 Install the binaries in the corresponding location

18.10.2016 18

The Yocto Project paradigm

 cd poky

 source oe-init-build-env ../build-test

 bitbake meta-ide-support

 source tmp/environment-setup

18.10.2016 19

Outline

 Cross-compiling

 Bootloaders

 Linux kernel

 Linux root filesystem

 Yocto Project

18.10.2016 20

Bootloaders

 U-Boot: This is also called the Universal Bootloader, and is available mostly for
PowerPC and ARM architectures for embedded Linux systems

 Barebox: This was initially known as U-Boot v2 and was started in 2007 with the
scope to solve the limitations of U-Boot; it changed its name over time because
the design goals and community changed

 RedBoot: This is a RedHat bootloader derived from eCos, an open-source real-
time operating system that is portable and devised for embedded systems

 rrload: This is a bootloader for ARM and is based on embedded Linux systems

 PPCBOOT: A bootloader for PowerPC and is based on embedded Linux systems

 CLR/OHH: This represents a flash bootloader for embedded Linux systems based
on an ARM architecture

 Alios: This is a bootloader that is written mostly in assembler, does ROM and
RAM initializations, and tries to completely remove the need for firmware on
embedded systems

18.10.2016 21

U-boot

 tree -d -L 1

.

├── api

├── arch

├── board

├── common

├── configs

├── disk

├── doc

├── drivers

├── dts

18.10.2016 22

├── examples

├── fs

├── include

├── lib

├── Licenses

├── net

├── post

├── scripts

├── test

└── tools

19 directories

Porting u-boot

 Create a new board directory in board/vendor

 Write your board specific code. It can be split across multiple
headers and C files.

 Create a Makefile referencing your code.

 Create a configuration header file

 Create a Kconfig file defining at least SYS_BOARD, SYS_VENDOR
and SYS_CONFIG_NAME

 Add a target option for your board and source your Kconfig either
from arch/arm/<soc>/Kconfig or arch/arm/Kconfig

 Optional: create a defconfig

 Optional: create a MAINTAINERS file
18.10.2016 23

Yocto Project

 PREFERRED_PROVIDER_virtual/bootloader = "u-boot-
at91"

UBOOT_MACHINE ?=
"sama5d3_xplained_nandflash_config"

UBOOT_ENTRYPOINT = "0x20008000"

UBOOT_LOADADDRESS = "0x20008000"

AT91BOOTSTRAP_MACHINE ?= "sama5d3_xplained"

18.10.2016 24

Outline

 Cross-compiling

 Bootloaders

 Linux kernel

 Linux root filesystem

 Yocto Project

18.10.2016 25

Linux kernel

 Portability and hardware support. Runs on most architectures.

 Scalability. Can run on super computers as well as on tiny devices (4 MB of RAM
is enough).

 Compliance to standards and interoperability.

 Exhaustive networking support.

 Security. It can't hide its flaws. Its code is reviewed by many experts.

 Stability and reliability.

 Modularity. Can include only what a system needs even at run time.

 Easy to program. You can learn from existing code. Many useful resources on the
net.

18.10.2016 26

Main roles

Manage all the hardware resources: CPU, memory, I/O.

 Provide a set of portable, architecture and hardware
independent APIs to allow user space applications and
libraries to use the hardware resources.

Handle concurrent accesses and usage of hardware
resources from different applications.

Example: a single network interface is used by multiple user
space applications through various network connections. The
kernel is responsible to ``multiplex'' the hardware resource.

18.10.2016 27

System calls

 The main interface between the userspace and kernel

About 300 system calls

 The interface is stable: only new system calls can be
added by the developers

 Is wrapped by the C library and user space applications
which usually never make the system call directly but
rather use the corresponding glibc function

18.10.2016 28

Inside the Linux kernel

18.10.2016 29

Linux kernel size

As of kernel version 4.6 (in lines).

18.10.2016 30

New development model

Using merge and bug fixing windows

18.10.2016 31

New development model details

After the release of 4.x version, a two weeks merge
windows opens, during which major additions are
merged

 The merge window is closed by the release of test version
4.(x+1)-rc1s

 The bug fixing period opens, for 6 to 10 weeks

At regular intervals during the bug fixing period, 4.(x+1)-
rcY test versions are released

When considered sufficiently stable, kernel 4.(x+1) is
released and the process starts again

18.10.2016 32

Yocto Project

 KERNEL_DEVICETREE = " at91-sama5d3_xplained.dtb “

 SERIAL_CONSOLES ?= "115200;ttyS0 115200;ttyGS0“

 SOC_FAMILY = "sama5:sama5d3“

 PREFERRED_PROVIDER_virtual/kernel_sama5 ?= "linux-
at91"

18.10.2016 33

Outline

 Cross-compiling

 Bootloaders

 Linux kernel

 Linux root filesystem

 Yocto Project

18.10.2016 34

Filesystems

Organize data in directories and files on network storage
or a storage devices

A single global hierarchy is used, based on FSH

 Root filesystem is identified by /

 The global hierarchy can be composed of multiple
filesystems

 Filesystems are mounted in a specific location (called
mount point)

The content of this directory reflects the content of the storage
device

When the unmount operation is done the mount point is free
again

18.10.2016 35

Important directories

 /bin Basic programs

 /boot Kernel image

 /dev Device files

 /etc System-wide configuration

 /home Directory for users home directories and files

 /lib Basic libraries

 /media Mount point for removal media

 /mnt Mount point for static media

 /proc Mount point for the proc virtual filesystem
18.10.2016 36

Important directories

 /root Home directory for the root user

 /sbin Basic system programs

 /sys Mount point for the sysfs virtual filesystem

 /tmp Temporary files

 /usr User specific files

 /usr/bin Non-basic programs

 /usr/lib Non-basic libraries

 /usr/sbin Non-basic system programs

 /var System variable data files, including logging
 data and administrative files

18.10.2016 37

Basic applications

An init application which is the first userspace application
started by the kernel after mounting the root filesystem

A shell, to allow a user to interact with the system

The kernel tries to execute /sbin/init, /bin/init, /etc/init and
/bin/sh.

 If none of them is found the kernel panics and the boot process
is stopped

 Basic Unix applications for file interation (commands like
mv, cp, mkdir, cat, etc.)

18.10.2016 38

Busybox

 In normal Linux system each of the previously presented
components would be provided by a different project:

 coreutils, bash, grep, sed, tar, wget, modutils etc.

A lot of components to integrate

Not all designed with embedded systems constrains in mind

 Busybox is an alternative solution

 Integrates all in a single project, all utilities are compiled
into a single executable /bin/busybox

The rest of the applications are only symbolic links to it

 Really common in the embedded world

18.10.2016 39

Minimal rootfs

 ldd /sbin/init

 /lib

 /bin

 /etc

 /dev

minimal size is below 2 MB and around 80 percent of its
size is due to the C library package

18.10.2016 40

Yocto Project

meta/recipes-core/images/core-image-minimal.bb

 bitbake core-image-minimal

18.10.2016 41

Things to remember

 Embedded Linux is easier with Yocto Project

 Linux is easier to standardize

also

 Test next lecture: will cover the first two lectures

 End of lecture 3 deadline for project selection

Recommended the use of a versioning system

 Integration with Yocto Project is a plus

Personal ideas/project are appreciated

18.10.2016 42

The End

?
18.10.2016 43

