
Lecture 2 

2 
Yocto Project & 
Embedded Linux 
18 octombrie 2016 



Outline 

 Cross-compiling 

 Bootloaders 

 Linux kernel 

 Linux root filesystem 

 Yocto Project 

 

18.10.2016 2 



Recap: The Yocto Project 

18.10.2016 3 



GNU Toolchain 

What does GNU toolchain means? 

 Includes 

GNU make 

GNU Compiler Collection (GCC) 

GNU Binutils 

GNU Bison 

GNU Debugger (GDB) 

GNU m4 

GNU build system (autotools) 
Autoconf 

Autoheader 

Automake 

Libtool 
18.10.2016 4 



What is GNU? 

GNU is an operating system that is free software 

 https://www.gnu.org/ 

GNU stands for “GNU's Not Unix” 

 Free software means that the software's users have 
freedom. 

 The Free Software Foundation is the principal 
organizational sponsor of the GNU Operating System. 

 List of maintained and developed packages available 
here: https://www.gnu.org/software/software.html 

18.10.2016 5 

https://www.gnu.org/
https://www.gnu.org/software/software.html


Binutils 

 The GNU linker, that is ld 

 The GNU assembler, that is as 

 A utility that converts addresses into filenames and line numbers, that is 
addr2line 

 A utility to create, extract, and modify archives, that is ar 

 A tool used to listing the symbols available inside object files, that is nm 

 Copying and translating object files, that is objcopy 

 Displaying information from object files, that is objdump 

 Generating an index to for the contents of an archive, that is ranlib 

 A compiler for Windows resource files, that is windres 

 Displaying information from any ELF format object file, that is readelf 

18.10.2016 6 



Binutils (2) 

 Listing the section sizes of an object or archive file, that is size 

 Listing printable strings from files, that is strings 

 Discarding the symbols utility that is strip 

 Filtering or demangle encoded C++ symbols, that is c++filt 

 Creating files that build use DLLs, that is dlltool 

 A new, faster, ELF-only linker, which is still in beta testing, that is gold 

 Displaying the profiling information tool, that is gprof 

 Converting an object code into an NLM, that is nlmconv 

 A Windows-compatible message compiler, that is windmc 

 

18.10.2016 7 



ABI 

 Binary interface between two modules: information on 
how functions are called and their information 

 Set of rules that offer to the linker the possibility to unite 
compiled modules without recompilation 

Dependent on the platform 

Dependent on the programming language & compiler 

 Best example:  the citizen of a region/country, if they 
move to another region/country they will need to learn a 
new language. 

18.10.2016 8 



GCC 

GNU Compiler Collection represents a compiler system 

 Initially known as GNU C Compiler now also represents 
languages as: Objective C, Fortran, Java, Ada and Go 

 Started by Richard Stallman in 1987 but it was a failure 

 In 1997 a group of developers gathered as the 
Experimental/Enhanced GNU Compiler System (EGCS) 
workgroup started merging several GCC forks in one 
project with great success, making EGCS the official GCC 
version 

 They united when GCC 2.95 appeared 

18.10.2016 9 



GCC functionality 

 The frontend generates a tree from the source code 

 Initially used LALR parsers (Bison generated), but moved 
to recursive-descendent parsers (GENERIC, GIMPLE) 

Middle stage involves code analysis and optimization, 
starts from GENERIC and continue to the RTL (Register 
Transfer Language) representation 

 The backend represents preprocessor macros and specific 
architecture functions (endianness definition, calling 
convention, word size) 

 In the end the machine code is obtained. 

18.10.2016 10 



C library 

 There are a number of options available: 

 glibc 

eglibc 

Newlib 

bionic 

musl 

uClibc 

dietlibc 

Klibc 

  The main focus will be the glibc C library 

18.10.2016 11 



Generating the toolchain 

 Toolchain build process has 8 steps 

 Inside Yocto Project the toolchain is generated without 
notice 

 Interaction with the Yocto Project generated toolchain is 
done calling meta-ide-support 

 The first step is the setup: Create top-level directories 
and source subdirectories and define variables such as 
TARGET, SYSROOT, ARCH, COMPILER, PATH 

 The second step is the source code download: including 
the above presented packages together with various 
patches 

18.10.2016 12 



GNU Binutils setup 

 The third step: 

Unzip the sources available 

Patch the sources accordingly 

Configure the package accordingly 

Compile the sources 

 Install the sources in the corresponding location 

18.10.2016 13 



Linux kernel headers setup 

 The fourth step: 

Unzip the sources available 

Patch the sources accordingly 

Configure the kernel for the selected architecture, the 
corresponding kernel config file is also generated here  

Compile the Linux kernel headers and copy them in the 
corresponding location 

 Install the headers in the corresponding location 

18.10.2016 14 



Glibc headers setup 

 The fifth step: 

Unzip the glibc source and headers 

Patch the glibc sources if this applies  

Configure the glibc sources to the corresponding kernel headers 
by enabling the -with-headers variable to link the libraries with 
the Linux kernel headers 

Compile the glibc headers  

 Install the headers in the corresponding location 

18.10.2016 15 



GCC first stage setup 

 The sixth step: 

Unzip the gcc sources  

Patch the sources accordingly 

Configure the gcc sources enabling the necessary features 

Compile the C runtime components 

 Install the sources in the corresponding location 

18.10.2016 16 



Build the Glibc sources 

 The seventh step: 

Configure the glibc library by setting the corresponding march a 
mabi variables 

Compile the glibc sources 

 Install the glibc in the corresponding location 

18.10.2016 17 



GCC second stage setup 

 The eighth and last step: 

Configure the gcc sources 

Compile the gcc sources 

 Install the binaries in the corresponding location 

18.10.2016 18 



The Yocto Project paradigm 

 cd poky 

 source oe-init-build-env ../build-test 

 bitbake meta-ide-support 

 source tmp/environment-setup 

18.10.2016 19 



Outline 

 Cross-compiling 

 Bootloaders 

 Linux kernel 

 Linux root filesystem 

 Yocto Project 

 

18.10.2016 20 



Bootloaders 

 U-Boot: This is also called the Universal Bootloader, and is available mostly for 
PowerPC and ARM architectures for embedded Linux systems 

 Barebox: This was initially known as U-Boot v2 and was started in 2007 with the 
scope to solve the limitations of U-Boot; it changed its name over time because 
the design goals and community changed 

 RedBoot: This is a RedHat bootloader derived from eCos, an open-source real-
time operating system that is portable and devised for embedded systems 

 rrload: This is a bootloader for ARM and is based on embedded Linux systems  

 PPCBOOT: A bootloader for PowerPC and is based on embedded Linux systems  

 CLR/OHH: This represents a flash bootloader for embedded Linux systems based 
on an ARM architecture 

 Alios: This is a bootloader that is written mostly in assembler, does ROM and 
RAM initializations, and tries to completely remove the need for firmware on 
embedded systems 

18.10.2016 21 



U-boot 

 tree -d -L 1 

. 

├── api 

├── arch 

├── board 

├── common 

├── configs 

├── disk 

├── doc 

├── drivers 

├── dts 

18.10.2016 22 

├── examples 

├── fs 

├── include 

├── lib 

├── Licenses 

├── net 

├── post 

├── scripts 

├── test 

└── tools 

19 directories 



Porting u-boot 

 Create a new board directory in board/vendor  

 Write your board specific code. It can be split across multiple 
headers and C files. 

 Create a Makefile referencing your code. 

 Create a configuration header file 

 Create a Kconfig file defining at least SYS_BOARD, SYS_VENDOR 
and SYS_CONFIG_NAME 

 Add a target option for your board and source your Kconfig either 
from arch/arm/<soc>/Kconfig or arch/arm/Kconfig 

 Optional: create a defconfig 

 Optional: create a MAINTAINERS file  
18.10.2016 23 



Yocto Project 

 PREFERRED_PROVIDER_virtual/bootloader = "u-boot-
at91" 

UBOOT_MACHINE ?= 
"sama5d3_xplained_nandflash_config" 

UBOOT_ENTRYPOINT = "0x20008000" 

UBOOT_LOADADDRESS = "0x20008000" 

AT91BOOTSTRAP_MACHINE ?= "sama5d3_xplained" 

18.10.2016 24 



Outline 

 Cross-compiling 

 Bootloaders 

 Linux kernel 

 Linux root filesystem 

 Yocto Project 

 

18.10.2016 25 



Linux kernel 

 Portability and hardware support. Runs on most architectures. 

 Scalability. Can run on super computers as well as on tiny devices (4 MB of RAM 
is enough). 

 Compliance to standards and interoperability. 

 Exhaustive networking support. 

 Security. It can't hide its flaws. Its code is reviewed by many experts. 

 Stability and reliability. 

 Modularity. Can include only what a system needs even at run time. 

 Easy to program. You can learn from existing code. Many useful resources on the 
net. 

18.10.2016 26 



Main roles 

Manage all the hardware resources: CPU, memory, I/O. 

 Provide a set of portable, architecture and hardware 
independent APIs to allow user space applications and 
libraries to use the hardware resources. 

Handle concurrent accesses and usage of hardware 
resources from different applications.  

Example: a single network interface is used by multiple user 
space applications through various network connections. The 
kernel is responsible to ``multiplex'' the hardware resource. 

 

18.10.2016 27 



System calls 

 The main interface between the userspace and kernel 

About 300 system calls 

 The interface is stable: only new system calls can be 
added by the developers 

 Is wrapped by the C library and user space applications 
which usually never make the system call directly but 
rather use the corresponding glibc function 

18.10.2016 28 



Inside the Linux kernel 

18.10.2016 29 



Linux kernel size 

As of kernel version 4.6 (in lines). 

 

 

 

 

 

 

 

 
18.10.2016 30 



New development model 

Using merge and bug fixing windows 

 

 

 

 

 

 

 

18.10.2016 31 



New development model details 

After the release of 4.x version, a two weeks merge 
windows opens, during which major additions are 
merged 

 The merge window is closed by the release of test version 
4.(x+1)-rc1s 

 The bug fixing period opens, for 6 to 10 weeks 

At regular intervals during the bug fixing period, 4.(x+1)-
rcY test versions are released 

When considered sufficiently stable, kernel 4.(x+1) is 
released and the process starts again 

18.10.2016 32 



Yocto Project 

 KERNEL_DEVICETREE = " at91-sama5d3_xplained.dtb “ 

 SERIAL_CONSOLES ?= "115200;ttyS0 115200;ttyGS0“ 

 SOC_FAMILY = "sama5:sama5d3“ 

 PREFERRED_PROVIDER_virtual/kernel_sama5 ?= "linux-
at91" 

18.10.2016 33 



Outline 

 Cross-compiling 

 Bootloaders 

 Linux kernel 

 Linux root filesystem 

 Yocto Project 

 

18.10.2016 34 



Filesystems 

Organize data in directories and files on network storage 
or a storage devices 

A single global hierarchy is used, based on FSH 

 Root filesystem is identified by / 

 The global hierarchy can be composed of multiple 
filesystems 

 Filesystems are mounted in a specific location (called 
mount point) 

The content of this directory reflects the content of the storage 
device 

When the unmount operation is done  the mount point is free 
again 

18.10.2016 35 



Important directories 

 /bin  Basic programs 

 /boot  Kernel image 

 /dev Device files 

 /etc System-wide configuration 

 /home Directory for users home directories and files 

 /lib   Basic libraries 

 /media Mount point for removal media 

 /mnt Mount point for static media 

 /proc Mount point for the proc virtual filesystem 
18.10.2016 36 



Important directories 

 /root  Home directory for the root user 

 /sbin  Basic system programs 

 /sys  Mount point for the sysfs virtual filesystem 

 /tmp Temporary files 

 /usr User specific files 

 /usr/bin   Non-basic programs 

 /usr/lib  Non-basic libraries 

 /usr/sbin Non-basic system programs 

 /var  System variable data files, including logging  
  data and administrative files 

18.10.2016 37 



Basic applications 

An init application which is the first userspace application 
started by the kernel after mounting the root filesystem  

A shell, to allow a user to interact with the system 

The kernel tries to execute /sbin/init, /bin/init, /etc/init and 
/bin/sh. 

 If none of them is found the kernel panics and the boot process 
is stopped 

 Basic Unix applications for file interation (commands like 
mv, cp, mkdir, cat, etc.) 

18.10.2016 38 



Busybox 

 In normal Linux system each of the previously presented 
components would be provided by a different project: 

 coreutils, bash, grep, sed, tar, wget, modutils etc. 

A lot of components to integrate 

Not all designed with embedded systems constrains in mind 

 Busybox is an alternative solution 

 Integrates all in a single project, all utilities are compiled 
into a single executable /bin/busybox 

The rest of the applications are only symbolic links to it 

 Really common in the embedded world 

18.10.2016 39 



Minimal rootfs 

 ldd /sbin/init 

 /lib 

 

 /bin 

 /etc 

 /dev 

 

minimal size is below 2 MB and around 80 percent of its 
size is due to the C library package 

18.10.2016 40 



Yocto Project 

meta/recipes-core/images/core-image-minimal.bb 

 

 

 

 

 

 

 bitbake core-image-minimal 

18.10.2016 41 



Things to remember 

 Embedded Linux is easier with Yocto Project 

 Linux is easier to standardize 

also 

 Test next lecture:  will cover the first two lectures 

 End of lecture 3 deadline for project selection 

Recommended the use of a versioning system 

 Integration with Yocto Project is a plus 

Personal ideas/project are appreciated 

 

18.10.2016 42 



The End 

? 
18.10.2016 43 


