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Recap: The Yocto Project 
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GNU Toolchain 

What does GNU toolchain means? 

 Includes 

GNU make 

GNU Compiler Collection (GCC) 

GNU Binutils 

GNU Bison 

GNU Debugger (GDB) 

GNU m4 

GNU build system (autotools) 
Autoconf 

Autoheader 

Automake 

Libtool 
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What is GNU? 

GNU is an operating system that is free software 

 https://www.gnu.org/ 

GNU stands for “GNU's Not Unix” 

 Free software means that the software's users have 
freedom. 

 The Free Software Foundation is the principal 
organizational sponsor of the GNU Operating System. 

 List of maintained and developed packages available 
here: https://www.gnu.org/software/software.html 
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Binutils 

 The GNU linker, that is ld 

 The GNU assembler, that is as 

 A utility that converts addresses into filenames and line numbers, that is 
addr2line 

 A utility to create, extract, and modify archives, that is ar 

 A tool used to listing the symbols available inside object files, that is nm 

 Copying and translating object files, that is objcopy 

 Displaying information from object files, that is objdump 

 Generating an index to for the contents of an archive, that is ranlib 

 A compiler for Windows resource files, that is windres 

 Displaying information from any ELF format object file, that is readelf 
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Binutils (2) 

 Listing the section sizes of an object or archive file, that is size 

 Listing printable strings from files, that is strings 

 Discarding the symbols utility that is strip 

 Filtering or demangle encoded C++ symbols, that is c++filt 

 Creating files that build use DLLs, that is dlltool 

 A new, faster, ELF-only linker, which is still in beta testing, that is gold 

 Displaying the profiling information tool, that is gprof 

 Converting an object code into an NLM, that is nlmconv 

 A Windows-compatible message compiler, that is windmc 
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ABI 

 Binary interface between two modules: information on 
how functions are called and their information 

 Set of rules that offer to the linker the possibility to unite 
compiled modules without recompilation 

Dependent on the platform 

Dependent on the programming language & compiler 

 Best example:  the citizen of a region/country, if they 
move to another region/country they will need to learn a 
new language. 
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GCC 

GNU Compiler Collection represents a compiler system 

 Initially known as GNU C Compiler now also represents 
languages as: Objective C, Fortran, Java, Ada and Go 

 Started by Richard Stallman in 1987 but it was a failure 

 In 1997 a group of developers gathered as the 
Experimental/Enhanced GNU Compiler System (EGCS) 
workgroup started merging several GCC forks in one 
project with great success, making EGCS the official GCC 
version 

 They united when GCC 2.95 appeared 
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GCC functionality 

 The frontend generates a tree from the source code 

 Initially used LALR parsers (Bison generated), but moved 
to recursive-descendent parsers (GENERIC, GIMPLE) 

Middle stage involves code analysis and optimization, 
starts from GENERIC and continue to the RTL (Register 
Transfer Language) representation 

 The backend represents preprocessor macros and specific 
architecture functions (endianness definition, calling 
convention, word size) 

 In the end the machine code is obtained. 
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C library 

 There are a number of options available: 

 glibc 

eglibc 

Newlib 

bionic 

musl 

uClibc 

dietlibc 

Klibc 

  The main focus will be the glibc C library 
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Generating the toolchain 

 Toolchain build process has 8 steps 

 Inside Yocto Project the toolchain is generated without 
notice 

 Interaction with the Yocto Project generated toolchain is 
done calling meta-ide-support 

 The first step is the setup: Create top-level directories 
and source subdirectories and define variables such as 
TARGET, SYSROOT, ARCH, COMPILER, PATH 

 The second step is the source code download: including 
the above presented packages together with various 
patches 
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GNU Binutils setup 

 The third step: 

Unzip the sources available 

Patch the sources accordingly 

Configure the package accordingly 

Compile the sources 

 Install the sources in the corresponding location 
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Linux kernel headers setup 

 The fourth step: 

Unzip the sources available 

Patch the sources accordingly 

Configure the kernel for the selected architecture, the 
corresponding kernel config file is also generated here  

Compile the Linux kernel headers and copy them in the 
corresponding location 

 Install the headers in the corresponding location 
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Glibc headers setup 

 The fifth step: 

Unzip the glibc source and headers 

Patch the glibc sources if this applies  

Configure the glibc sources to the corresponding kernel headers 
by enabling the -with-headers variable to link the libraries with 
the Linux kernel headers 

Compile the glibc headers  

 Install the headers in the corresponding location 
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GCC first stage setup 

 The sixth step: 

Unzip the gcc sources  

Patch the sources accordingly 

Configure the gcc sources enabling the necessary features 

Compile the C runtime components 

 Install the sources in the corresponding location 
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Build the Glibc sources 

 The seventh step: 

Configure the glibc library by setting the corresponding march a 
mabi variables 

Compile the glibc sources 

 Install the glibc in the corresponding location 
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GCC second stage setup 

 The eighth and last step: 

Configure the gcc sources 

Compile the gcc sources 

 Install the binaries in the corresponding location 
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The Yocto Project paradigm 

 cd poky 

 source oe-init-build-env ../build-test 

 bitbake meta-ide-support 

 source tmp/environment-setup 
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Bootloaders 

 U-Boot: This is also called the Universal Bootloader, and is available mostly for 
PowerPC and ARM architectures for embedded Linux systems 

 Barebox: This was initially known as U-Boot v2 and was started in 2007 with the 
scope to solve the limitations of U-Boot; it changed its name over time because 
the design goals and community changed 

 RedBoot: This is a RedHat bootloader derived from eCos, an open-source real-
time operating system that is portable and devised for embedded systems 

 rrload: This is a bootloader for ARM and is based on embedded Linux systems  

 PPCBOOT: A bootloader for PowerPC and is based on embedded Linux systems  

 CLR/OHH: This represents a flash bootloader for embedded Linux systems based 
on an ARM architecture 

 Alios: This is a bootloader that is written mostly in assembler, does ROM and 
RAM initializations, and tries to completely remove the need for firmware on 
embedded systems 
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U-boot 

 tree -d -L 1 

. 

├── api 

├── arch 

├── board 

├── common 

├── configs 

├── disk 

├── doc 

├── drivers 

├── dts 
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├── examples 

├── fs 

├── include 

├── lib 

├── Licenses 

├── net 

├── post 

├── scripts 

├── test 

└── tools 

19 directories 



Porting u-boot 

 Create a new board directory in board/vendor  

 Write your board specific code. It can be split across multiple 
headers and C files. 

 Create a Makefile referencing your code. 

 Create a configuration header file 

 Create a Kconfig file defining at least SYS_BOARD, SYS_VENDOR 
and SYS_CONFIG_NAME 

 Add a target option for your board and source your Kconfig either 
from arch/arm/<soc>/Kconfig or arch/arm/Kconfig 

 Optional: create a defconfig 

 Optional: create a MAINTAINERS file  
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Yocto Project 

 PREFERRED_PROVIDER_virtual/bootloader = "u-boot-
at91" 

UBOOT_MACHINE ?= 
"sama5d3_xplained_nandflash_config" 

UBOOT_ENTRYPOINT = "0x20008000" 

UBOOT_LOADADDRESS = "0x20008000" 

AT91BOOTSTRAP_MACHINE ?= "sama5d3_xplained" 
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Linux kernel 

 Portability and hardware support. Runs on most architectures. 

 Scalability. Can run on super computers as well as on tiny devices (4 MB of RAM 
is enough). 

 Compliance to standards and interoperability. 

 Exhaustive networking support. 

 Security. It can't hide its flaws. Its code is reviewed by many experts. 

 Stability and reliability. 

 Modularity. Can include only what a system needs even at run time. 

 Easy to program. You can learn from existing code. Many useful resources on the 
net. 
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Main roles 

Manage all the hardware resources: CPU, memory, I/O. 

 Provide a set of portable, architecture and hardware 
independent APIs to allow user space applications and 
libraries to use the hardware resources. 

Handle concurrent accesses and usage of hardware 
resources from different applications.  

Example: a single network interface is used by multiple user 
space applications through various network connections. The 
kernel is responsible to ``multiplex'' the hardware resource. 
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System calls 

 The main interface between the userspace and kernel 

About 300 system calls 

 The interface is stable: only new system calls can be 
added by the developers 

 Is wrapped by the C library and user space applications 
which usually never make the system call directly but 
rather use the corresponding glibc function 
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Inside the Linux kernel 
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Linux kernel size 

As of kernel version 4.6 (in lines). 
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New development model 

Using merge and bug fixing windows 
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New development model details 

After the release of 4.x version, a two weeks merge 
windows opens, during which major additions are 
merged 

 The merge window is closed by the release of test version 
4.(x+1)-rc1s 

 The bug fixing period opens, for 6 to 10 weeks 

At regular intervals during the bug fixing period, 4.(x+1)-
rcY test versions are released 

When considered sufficiently stable, kernel 4.(x+1) is 
released and the process starts again 
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Yocto Project 

 KERNEL_DEVICETREE = " at91-sama5d3_xplained.dtb “ 

 SERIAL_CONSOLES ?= "115200;ttyS0 115200;ttyGS0“ 

 SOC_FAMILY = "sama5:sama5d3“ 

 PREFERRED_PROVIDER_virtual/kernel_sama5 ?= "linux-
at91" 
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Filesystems 

Organize data in directories and files on network storage 
or a storage devices 

A single global hierarchy is used, based on FSH 

 Root filesystem is identified by / 

 The global hierarchy can be composed of multiple 
filesystems 

 Filesystems are mounted in a specific location (called 
mount point) 

The content of this directory reflects the content of the storage 
device 

When the unmount operation is done  the mount point is free 
again 
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Important directories 

 /bin  Basic programs 

 /boot  Kernel image 

 /dev Device files 

 /etc System-wide configuration 

 /home Directory for users home directories and files 

 /lib   Basic libraries 

 /media Mount point for removal media 

 /mnt Mount point for static media 

 /proc Mount point for the proc virtual filesystem 
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Important directories 

 /root  Home directory for the root user 

 /sbin  Basic system programs 

 /sys  Mount point for the sysfs virtual filesystem 

 /tmp Temporary files 

 /usr User specific files 

 /usr/bin   Non-basic programs 

 /usr/lib  Non-basic libraries 

 /usr/sbin Non-basic system programs 

 /var  System variable data files, including logging  
  data and administrative files 

18.10.2016 37 



Basic applications 

An init application which is the first userspace application 
started by the kernel after mounting the root filesystem  

A shell, to allow a user to interact with the system 

The kernel tries to execute /sbin/init, /bin/init, /etc/init and 
/bin/sh. 

 If none of them is found the kernel panics and the boot process 
is stopped 

 Basic Unix applications for file interation (commands like 
mv, cp, mkdir, cat, etc.) 
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Busybox 

 In normal Linux system each of the previously presented 
components would be provided by a different project: 

 coreutils, bash, grep, sed, tar, wget, modutils etc. 

A lot of components to integrate 

Not all designed with embedded systems constrains in mind 

 Busybox is an alternative solution 

 Integrates all in a single project, all utilities are compiled 
into a single executable /bin/busybox 

The rest of the applications are only symbolic links to it 

 Really common in the embedded world 
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Minimal rootfs 

 ldd /sbin/init 

 /lib 

 

 /bin 

 /etc 

 /dev 

 

minimal size is below 2 MB and around 80 percent of its 
size is due to the C library package 
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Yocto Project 

meta/recipes-core/images/core-image-minimal.bb 

 

 

 

 

 

 

 bitbake core-image-minimal 
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Things to remember 

 Embedded Linux is easier with Yocto Project 

 Linux is easier to standardize 

also 

 Test next lecture:  will cover the first two lectures 

 End of lecture 3 deadline for project selection 

Recommended the use of a versioning system 

 Integration with Yocto Project is a plus 

Personal ideas/project are appreciated 
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The End 

? 
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