
| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product
or service names are the property of their respective owners. © 2024 NXP B.V.

July 2024

Embedded Linux Summer School

Writing a Linux
Kernel Module

| NXP | Public2 | NXP | Public2

Content

Kernel space vs user space

Linux kernel modules

Character device drivers

| NXP | Public3

Kernel space vs User space

• Applications
• User process

• Supporting libraries

User space

Kernel space • CPU
• Memory
• Devices

Hardware
System call API

OS

Kernel

| NXP | Public4

Kernel space vs User space

OS

Kernel

User space applications

Hardware

| NXP | Public5

Kernel space vs User space

OS

Kernel

Modules

User space applications

Hardware

| NXP | Public6

• Code that executes as part of the Linux kernel
− Pieces of code that can be loaded and unloaded into the kernel upon demand

• Extends the capabilities and sometimes might modify the behavior of the kernel
• Without modules, one would have to build monolithic kernels and add new functionality directly

into the kernel image
• Besides having larger kernels, this has the disadvantage of requiring us to rebuild and reboot the

kernel every time we want new functionality
• Anatomy of a Kernel Module

What is a Linux Kernel Module?

| NXP | Public7

• Several typical components:
− MODULE_AUTHOR(“Jane Doe”)
− MODULE_LICENSE(“GPL”)
• The license must be an open-source license (GPL,BSD, etc.) or you will “taint” your kernel

• int init_module(void)

− Called when the kernel loads the module
− Initialize all stuff here
− Return 0 if all went well, negative if something wrong

• void cleanup_module(void)

− Called when the kernel unloads the module

− Free all resources here a Kernel Module

Anatomy of a Kernel Module

| NXP | Public8

• Accompany the kernel module with a 1-line GNU Makefile:
obj-m += hello.o

− Assumes file name is “hello.c”

• Run the magic make command:
make -C <kernel-src> M=`pwd` modules

− Produces: hello.ko
− Assumes current directory is the module source

Compiling a Kernel Module

| NXP | Public9

• lsmod - Show all loaded modules
• insmod - Insert a Module (excludes dependencies)
$sudo insmod <module_name>

• modprobe - Load the kernel module plus any module dependencies
$sudo modprobe <module_name>

• modinfo - Show information about a module
$modinfo <module_name>

• depmod - Build module dependency database
$/lib/modules/$(uname -r)/modules.dep

• rmmod - Remove a module
$rmmod <module_name>

• Show the log
$dmesg or $cat /var/log/syslog

Kernel Module utilities

| NXP | Public10

• Log at kernel
• 8 priority levels (see: include/linux/kern_levels.h)

− KERN_EMERG 0 system is unusable
− KERN_ALERT 1 action must be taken immediately
− KERN_CRIT 2 critical conditions
− KERN_ERR 3 error conditions
− KERN_WARNING 4 warning conditions
− KERN_NOTICE 5 normal but significant condition
− KERN_INFO 6 informational
− KERN_DEBUG 7 debug-level messages

• cat /proc/sys/kernel/printk

printk

| NXP | Public11

• Everything is a file or a directory
• Every device is represented by a file in /dev/
• Device Driver: Kernel Module that controls a device
• Device File:

− Interface for the Device Driver to
• read from or write to a physical device

− Also known as Device Nodes

− Created with mknod system call
mknod [name] <c/b> <major> <minor>

Device drivers vs device files

Device File
(/dev/xyz)

Device Driver

Physical Device

User space

Kernel space

| NXP | Public12

− Character device
• Stream of data one character at a time
• No restriction on number of bytes

− Block device
• Random access to block of data
• Can buffer and schedule the requests

• Internally the kernel identifies each device by a triplet of information
− Type - character or block
− Major number - typically the category of devices
− Minor number - typically the identifier of the device

Device files

| NXP | Public13

Character device driver implementation

Device Driver -> Kernel Module Device File -> /dev/<filename>

Register the device ->
register_chrdev / alloc_chrdev_region

mknod
struct file_operations

Implement file operations ->
open/release/read/write/

Unregister the device ->
unregister_chrdev / unregister_chrdev_region

| NXP | Public14

• #include <linux/fs.h>

• int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name)

−Allocates a range of char device numbers. The major number will be chosen
dynamically, and returned (along with the first minor number) in @dev

• Registered devices are visible in /proc/devices:
$ cat /dev/devices

Register device numbers

Character devices: Block devices:

1 mem
 2 pty
 3 ttyp
 4 /dev/vc/0
 4 tty
10 misc
...

7 loop
 8 sd
 31 mtdblock
 65 sd
 66 sd
 67 sd
 68 sd
...

| NXP | Public15

• #include <linux/cdev.h>

• static struct cdev char_cdev;

• void cdev_init(struct cdev *cdev, struct file_operations *fops);

• int cdev_add(struct cdev *p, dev_t dev, unsigned count);

• The kernel knows the association between the major/minor numbers and the file
operations.
− Device is ready to be used

Character device registration

| NXP | Public16

• #include <linux/cdev.h>

• void cdev_del(struct cdev *p);

• void unregister_chrdev_region(dev_t from, unsigned count);

Character device unregistration

| NXP | Public17

$ cat /dev/imx8mq_chardev

• calls read() function

• unsigned long copy_to_user (void __user * to, const void * from, unsigned long n);

$ echo "hello" > /dev/imx8mq_chardev

• calls write() function

• unsigned long copy_from_user (void * to, const void __user * from, unsigned long n);

Reading / Writing from character device

| NXP | Public18

nxp.com

| Public | NXP and the NXP logo are trademarks of NXP B.V. All other product
or service names are the property of their respective owners. © 2024 NXP B.V.

https://www.nxp.com/

	Slide 1: Writing a Linux Kernel Module
	Slide 2: Kernel space vs user space Linux kernel modules Character device drivers
	Slide 3: Kernel space vs User space
	Slide 4: Kernel space vs User space
	Slide 5: Kernel space vs User space
	Slide 6: What is a Linux Kernel Module?
	Slide 7: Anatomy of a Kernel Module
	Slide 8: Compiling a Kernel Module
	Slide 9: Kernel Module utilities
	Slide 10: printk
	Slide 11: Device drivers vs device files
	Slide 12: Device files
	Slide 13: Character device driver implementation
	Slide 14: Register device numbers
	Slide 15: Character device registration
	Slide 16: Character device unregistration
	Slide 17: Reading / Writing from character device
	Slide 18

