
Embedded systems architectures and
Linux devicetrees

Contents

1 Introduction 1
1.1 What is an embedded system? . 1
1.2 Terminology - processor, MCU, SoC, and SoM 1

2 ARM-based SoC architecture 5
2.1 Masters and slaves . 6
2.2 Interconnects . 6
2.3 Communication between components . 7
2.4 The bridge . 11

3 Introduction to devicetrees 12
3.1 What is a devicetree? . 12
3.2 Devicetree source (DTS) and devicetree blob (DTB) 12

3.2.1 The #address-cells and #size-cells properties 14
3.2.2 The reg property . 14
3.2.3 The compatible property . 15
3.2.4 The status property . 15
3.2.5 The format of a DTS node . 15
3.2.6 Translating to DTS format . 16

4 Linux kernel devices and drivers 19
4.1 Platform devices and drivers . 19
4.2 Matching a platform driver with a device . 20
4.3 Writing our first platform driver . 21

5 GPIO basics 23
5.1 What is a GPIO? . 23
5.2 Arduino example . 23
5.3 Linux GPIO on PICO-PI-IMX8M . 24

5.3.1 i.MX8MQ GPIO controllers and pins . 24
5.3.2 Identify the targeted GPIO pin . 24
5.3.3 Set the GPIO pin direction . 24
5.3.4 Write a logic value to the GPIO pin . 25

6 Exercises 26
6.1 Devicetree warm-up . 26
6.2 Platform drivers warm-up . 27
6.3 LED warm-up . 27
6.4 LED math . 28

i

Chapter 1

Introduction

1.1 What is an embedded system?
Generally speaking, an embedded system is an information-processing element designed to
accomplish one or several tasks, depending on its complexity. What sets it apart from a
consumer-grade computer, for example, is the range of applications and the constraints that
come with it. Typically, embedded systems are seen in smartwatches, smartphones, IoT, and
automotive1, where constraints such as size, cost, power consumption, and security2 can highly
influence the system’s design. On the other hand, consumer-grade computers are more general-
purpose, therefore their constraints will most likely end up being more relaxed, thus allowing
more freedom in their design choices.

1.2 Terminology - processor, MCU, SoC, and SoM
Before going further, it’s important to understand the meaning of some terms that are commonly
used in the embedded systems area.

The processor is the element that performs various operations such as basic logic or arithmetic
operations based on the instructions that are being fed into it. To work, it needs to be connected
to one or more memories (so that it can fetch instructions and process data) and to I/O blocks
(so that it can interact with a user).

Figure 1.1 shows the microarchitecture of a processor. Note that the diagram also includes the
instruction and data memories which are not part of the processor itself. Among the components
we can identify:

• The PC (program counter) register. This holds the value of the program counter, which
is used to address the instruction memory.

• The register file. This is a (sort of) memory used to store the contents of the processor
registers. Usually, this will have a lower access time compared to the data/instruction
memory.3

• The ALU (Arithmetic Logic Unit). This is the "heart" of the processor and the component
that performs the arithmetic and logic operations.

1List is not exhaustive.
2List is not exhaustive.
3https://intra.ece.ucr.edu/ stan/courses/ee120a/ee120a_10fall/labs/Lab_7_reg_file_design.pdf provides a

nice table with a few differences between a register file and a SRAM memory.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Microarchitecture of a generic processor

Source: ARM University Program. Introduction to Computer Architecture

An MCU (microcontroller unit) can be seen as a small computer that contains the processor,
some memory and basic I/O blocks, all of which is integrated in a single chip.

Figure 1.2 shows an example of a microcontroller. Of course, the complexity of a microcon-
troller’s architecture can vary, ranging from relatively simple architectures such as PIC’s to
more complex ones such as NXP’s LPC8404.

The SoC (System-on-Chip) can be thought of as a significantly more complex MCU.
This can contain one or more processors, accelerators (for instance, GPUs, FPGAs, DSPs),
specialized I/O blocks etc...All of this is integrated in a single chip. Thanks to its complexity,
a SoC is usually able to run some sort of rich-OS like Linux.

In contrast, a SoM (System-on-Module) is made up of multiple chips, all of which being
integrated on a PCB. Optionally, one of these chips can be an SoC.

Figure 1.3 shows the top and bottom views of the PICO-IMX8M SoM. The components are as
follows:

1. i.MX8MQ SoC

2. Memory (LPDDR4)

3. PMIC (Power Management IC)

4. Wi-FI/BT module

5. eMMC IC

6. Connector E1

7. Connector X1

8. Connector X2

4https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-
mcus/lpc800-arm-cortex-m0-plus-/lpc840-32-bit-arm-cortex-m0-plus-based-low-cost-mcu:LPC84X

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Architecture of Microchip’s PIC MCU

Source: PIC10F200/202/204/206 datasheet

CHAPTER 1. INTRODUCTION 4

Figure 1.3: Top and bottom view of PICO-IMX8M

Source: PICO-IMX8M System on Module product manual

Chapter 2

ARM-based SoC architecture

Chapter 1 established what an SoC is and gave some examples of components that may be
present in it. Of course, this might not be enough for an embedded engineer who needs to have
a somewhat good understanding of the SoC’s architecture to be able to write software for it.
As such, this chapter shall go a bit more into detail regarding the SoC’s architecture.

Figure 2.1 proposes a generic architecture of an SoC. As it can be seen, there are four compo-
nents:

• The masters (from M0 to M4).

• The slaves (from S1 to S5).

• The interconnects.

• The bridge.

Figure 2.1: Generic architecture of an SoC

5

CHAPTER 2. ARM-BASED SOC ARCHITECTURE 6

2.1 Masters and slaves
Usually, in an ARM-based SoC, components communicate with each other for different pur-
poses. For instance, a processor might want to communicate with a memory so that it can read
or write some data to it. Another typical example involves a processor communicating with an
UART module in order to send some data over the serial interface.

In this communication, one of the two components involved will be the initiator (i.e: the one
that starts the "conversation"), while the other will simply "reply" and/or comply with the
initiator’s request (note: the entity that replies may "refuse" the initiator’s request based on
several factors). In this model, the initiator is called a master, while the other component
is called a slave. Examples of master components include: processors, accelerators, DMA
(Direct Memory Access) engines, etc..., while examples of slave components include: memories,
peripherals, etc...

Please note that masters cannot communicate with each other directly1.

2.2 Interconnects
Normally, if there were only two components included in a SoC, we would be able to just connect
them directly via a wire. This can be seen in figure 2.2.

Figure 2.2: Wiring of two components

Since the SoC is made up of multiple components, we need to allow a way for them to "directly"
communicate with each other. This is where an interconnect comes into play. The main
purpose of the interconnect is to allow one component to communicate with another in a
system that contains more than two components.

Although not entirely accurate, you can think of an interconnect as a network switch. All it does
is forward data from one component to another. For instance, if M1 wishes to communicate
with S2, it will send the data to the interconnect and the interconnect will send the data directly
to S2. The same is applicable to S2 if it wishes to reply to M1. Note that multiple masters

1Unless they also have a slave interface alongside the master interface.

CHAPTER 2. ARM-BASED SOC ARCHITECTURE 7

and slaves may communicate with each other at the same time depending on the architecture
of the interconnect (i.e: if it allows this).

Figure 2.3 shows the communication between M1 and S2 (denoted by the red lines) happening
at the same time as the one between M4 and S3 (denoted by the yellow lines).

Figure 2.3: Communication through an interconnect

2.3 Communication between components
For the communication to happen, the initiator and the interconnect need to know who the
recipient is. Intuitively, this is the same as two computers trying to communicate over the
network. For this to work, the computer sending data needs to know who to send it to. This
is where addresses come into play. In our case, the master will use the slave’s address to
communicate with it. Based on the same address, the interconnect will know who the recipient
is.

Unlike IP or MAC addresses which will most likely be unique, the slaves have a range of
addresses that’s assigned to them.

Figure 2.4 shows an example of how addresses may be assigned to the slave components from
figure 2.1. In this scenario, S1 is assigned the addresses from 0x0 to 0x1000, S2 is assigned the
addresses from 0x2000 to 0x3000 and so on. What this means is that if a master wishes to
communicate with S1 for instance, it will use an address from the 0x0 to 0x1000 space.

Usually, the addresses in a slave’s address space have a special meaning and a register behind
it. Figure 2.5 shows an example of this. Assuming the same address space as S2, this means
that at address 0x2000 we have the VERID register, at address 0x2004 the PARAM register
and so on.

Let’s use an example to further understand the idea of address spaces. Imagine M1 wishes to
communicate with S2. This tells us that M1 will have to use an address from the 0x2000 -
0x3000 address space (since this is the space that’s assigned to S2). Specifically, M1 wishes to
read from the PARAM register and write some value to the TCSR register. First, we need
to identify the start of the address space and the offsets of the registers. In our case, the start
of the address space is 0x2000. According to figure 2.5, the offset of PARAM is 0x4 and the
offset of TCSR is 0x8. As such, to read from PARAM, M1 will have to use address 0x2004
(computed as address space base address + the offset of the register) and address 0x200C.

CHAPTER 2. ARM-BASED SOC ARCHITECTURE 8

Figure 2.4: Address space assignment

CHAPTER 2. ARM-BASED SOC ARCHITECTURE 9

Figure 2.5: Registers from a slave’s address space

Source: i.MX93 Technical Reference Manual

In figure 2.6, M1 tries to read from 0x2004. The interconnect will know to send the request to
S2 based on the fact that it belongs to S2’s address space (0x2000-0x3000). In figure 2.7 we
can see that S2 replies with an OK and sends M1 the data from the PARAM register (which
is 0xdeadbeef).

Figure 2.6: Sending a read request to S2

Figure 2.8 shows a snippet of a SoC’s memory map.

Another aspect of the communication between two components is the protocol. Roughly, this
tells the components involved in the communication when to send the data and how to encode
it. Most commonly, ARM-based SoCs will use one or more protocols from ARM’s AMBA
(Advanced Microcontroller Bus Architecture)1 specification (e.g: AXI4-Lite, APB, etc...) but
the SoC vendor may also choose to use their own protocol. It’s important to note that multiple
protocols may be used in the same SoC. For instance, M1 can use AXI4-Lite, while S4 may use
APB.

1https://developer.arm.com/Architectures/AMBA

CHAPTER 2. ARM-BASED SOC ARCHITECTURE 10

Figure 2.7: Receiving the reply from S2

Figure 2.8: Snippet from i.MX8ULP’s memory map

Source: i.MX8ULP Technical Reference Manual

CHAPTER 2. ARM-BASED SOC ARCHITECTURE 11

2.4 The bridge
For this to work, the SoC may need a bridge. What this does (amongst other things) is it
converts a protocol to another. This is needed because in order to understand each other,
a master and a slave need to use the same protocol. This is exactly the same for humans
which need to use the same language to understand each other. As such, assuming the first
interconnect only uses AXI4-Lite, the bridge will convert AXI4-Lite-encoded data coming from
the left interconnect to APB. What the second interconnect does is it takes the APB-encoded
data and "forwards" it to one of the slaves it’s connected to. Note that the bridge will also do
the conversion from APB to AXI4-Lite.

Chapter 3

Introduction to devicetrees

3.1 What is a devicetree?
The devicetree is a set of nodes arranged in a tree-like structure that describes the hardware
of a system. Each node has exactly one parent (except for the root node, which has no parent)
and contains a set of properties that describe the characteristics of the device represented by
it12. Figure 3.1 shows an example of how components of a system may be organized using the
devicetree structure.

There are a couple of notes to be made here regarding figure 3.1:

• The root node is depicted as /.

• The CPUS node refers to the CPU cluster present in the system. Its children are the
CPU cores that make up the cluster. Here, the cluster contains a single core depicted as
CPU_0.

• The MEMORY node refers to the system’s RAM.

• The SOC node can be viewed as a bus that’s connected to the CPU cluster. Usually, in
Linux, this is the node in which peripherals will be placed. In our case, this "bus" (or
virtual bus) has two devices: DEVICE 1 and DEVICE 2.

3.2 Devicetree source (DTS) and devicetree blob (DTB)
As mentioned in section 3.1, the main purpose of the devicetree is to describe hardware. This
is needed by software (e.g: an OS) running on platforms for which the hardware components
are not dynamically discoverable (like it’s the case for PCI-based systems). As such, we need
to represent the devicetree in two formats:

• One format that’s human-readable, used by developers that wish to describe the hardware
of their platforms. This is known as the devicetree source format.

• Another format which is recognizable by the software. This is known as the device-
tree blob or flattened devicetree (FDT). The naming comes from the fact that the
devicetree is encoded as a binary linear data structure instead of the tree-like structure
mentioned in 3.1.

1https://github.com/devicetree-org/devicetree-specification/releases/tag/v0.4
2The node may not necessarily represent a hardware device but ideally it should.

12

CHAPTER 3. INTRODUCTION TO DEVICETREES 13

Figure 3.1: Generic devicetree example

CHAPTER 3. INTRODUCTION TO DEVICETREES 14

The entity that does the conversion between a DTS and a DTB is called the devicetree
compiler (DTC).

Before attempting to write our own DTS, we need to talk about a few of the most important
properties.

3.2.1 The #address-cells and #size-cells properties
These properties have the following format

#size-cells = <u32>;
#address-cells = <u32>;

where u32 is an unsigned 32-bit integer (big-endian).

They are used to help the software (e.g: an OS) interpret the value of the reg property. It’s
important to note that:

• If missing, the values that should be assumed by the software are:

#size-cells = <1>;
#address-cells = <2>;

• These properties should be specified for each node with children. This is because they
are not inherited from ancestors (i.e: grandparent and so on).

3.2.2 The reg property
The reg property is used to specify the address space of a node. This is an array of <u32>
values (big-endian) with the following format:

reg = <value1 value2 ... valueN>;

The meaning of these values is described via the #address-cells and #size-cells properties. First
N values from reg shall be used as the base address, while the next M values shall be used as
the size of the address space. It is assumed that

#address-cells = <N>;
#size-cells = <M>;

Let’s take the following snippet as an example:

#size-cells = <1>;
#address-cells = <1>;
reg = <0x2000 0x1000>;

Here, the address space is 0x2000 - 0x3000 (base is 0x2000 and the size is 0x1000).

Alternatively, according to:

#address-cells = <2>;
#size-cells = <1>;
reg = <0x0 0x80000000 0x1000>;

CHAPTER 3. INTRODUCTION TO DEVICETREES 15

The address space is 0x80000000 - 0x80001000. The base address here is obtained by concate-
nating the first two cells from the reg property.

3.2.3 The compatible property
This property has the following format:

compatible = "string_1", "string_2", ..., "string_N";

where string_i should ideally be of the form:

string_i = manufacturer,model

The manufacturer bit is usually some sort of identifier for the manufacturer. For instance, NXP
uses fsl or nxp (lately).

If the compatible property has multiple string values, these should be sorted from the most
specific device to the most generic one. In such cases, this can be interpreted as the device
being compatible with other, similar devices.

3.2.4 The status property
The format of this property is:

status = "string";

where string can have one of the following values (not exhaustive):

• okay - device is operational

• disabled - the device is currently not operational (or it shouldn’t be used)

3.2.5 The format of a DTS node
A devicetree node has the following format

[node-label]: node-name[@unit-address] {
[node-properties-go-here]

};

where

• node-label denotes the node’s label. This is useful when we want to reference a node. For
instance:

my-property = <&label-of-some-other-node>;

• node-name denotes the node’s name. Ideally this should be generic. For instance:
interrupt-controller, serial, ethernet, etc...

• unit-address usually represents the base address of the device. It needs to match the
address from the reg property.

CHAPTER 3. INTRODUCTION TO DEVICETREES 16

All fields encased in the square brackets are optional. Every node from the devicetree source
needs to use this format, the only exception being the root (/) node which has the following
format:

/ {
[node-properties-go-here]

};

3.2.6 Translating to DTS format
All that being said, assuming the address space from figure 3.2, figure 3.3 shows how the
devicetree presented in figure 3.1 can be translated to the DTS format.

Figure 3.2: Address space assignment of components depicted in figure 3.1

There are a few things worth mentioning regarding figure 3.1:

• The device_type property has been deprecated so you should generally avoid using it.
The only exception to this are the memory and the cpu nodes. For these, the property is
required and should have the value cpu for the cpu nodes and memory for the memory
nodes.

• The ranges property is used to provide a translation between the bus address space and
the bus parent’s address space. In this case, what the property says is: For a region of
size 0x2000, bus child address 0x0 can be translated to bus parent address 0x0.. For now
though, we should ignore this property which was added for the sake of completeness.

• The simple-bus compatible value from the soc node is used to tell Linux that it should
create devices for the child nodes of soc.

CHAPTER 3. INTRODUCTION TO DEVICETREES 17

Figure 3.3: DTS translation for figure 3.1

CHAPTER 3. INTRODUCTION TO DEVICETREES 18

• The /dts-v1/; statement tells DTC which version of DTS you’re using. If the statement
is not present, DTC will assume the DTS uses version 0, which is obsolete.

Chapter 4

Linux kernel devices and drivers

The term driver is used to refer to a piece of software that’s responsible for managing a resource
(usually a hardware component). In Linux, this resource is known as a device. Usually, the
relationship between drivers and devices is as follows:

• A device can have at most one driver.

• A driver can control up to N devices.

Figure 4.1 exemplifies this relationship. As you can see, DEVICE_1 and DEVICE_2 are
assigned to DRIVER_1, DEVICE_3 is assigned to DRIVER_2 and DEVICE_4 has
no driver.

Figure 4.1: Example of relationship between devices and drivers

In Linux, a device is represented by a struct device and a driver is represented by a struct
device_driver. In our case though, this isn’t really interesting as we won’t be using these
structures directly.

4.1 Platform devices and drivers
A platform device is simply a more "specialized" type of device. This is used to refer to a
class of devices that are not dynamically discoverable (like it’s the case for devices sitting on

19

CHAPTER 4. LINUX KERNEL DEVICES AND DRIVERS 20

PCI buses). In the embedded world, this is usually the type of devices you will end up having
to deal with. Intuitively, a platform driver is just a driver written for a platform device.

A platform device is represented by a struct platform_device, while a platform driver is repre-
sented by a struct platform_driver. First, let’s look at the definition of struct platform_device:

/* definition taken from include/linux/platform_device.h */
struct platform_device {

struct device dev;
struct resource *resource;
u32 num_resources;
// some fields intentionally omitted here

};

Unsurprisingly enough, the platform_device structure contains a struct device. This is because,
as mentioned, a platform device is just a type or variant of a device. The resource field is an
array of resources assigned to the device. For a devicetree-based device, this can be one or more
memory regions (described via the reg property), interrupt lines, etc....

The definition of struct platform_driver is as follows:

/* definition taken from include/linux/platform_device.h */
struct platform_driver {

int (*probe)(struct platform_device *);
struct device_driver driver;
// some fields intentionally omitted here

};

As expected, the platform_driver structure is a container of the device_driver structure. A
very interesting field of the structure is probe. Whenever a platform device is added to Linux’s
infrastructure, the core will try to look for a platform driver for it based on some name matching
which will be exemplified later on. If there’s a match between the two, the core will try to probe
the platform driver. What this function does is it tells the core if the driver is able to handle
the device. In turn, from the platform driver’s point of view, what this function usually does is
it performs some sort of initialization. If everything goes well, the function will return 0, thus
letting the core know that it can bind the device to the driver.

4.2 Matching a platform driver with a device
For DT-based systems, a platform driver needs to give the core a list of platform device names
it supports so that it can be used in the matching process. This list is represented as an array
of struct of_device_id, which has the following definition:

/* definition taken from include/linux/mod_devicetable.h */
struct of_device_id {

char compatible[128];
const void *data;
// some fields are intentionally omitted here

};

The compatible field contains the name of the device the driver is, well, compatible with and
is what’s used by the core for the matching. Since the driver may be compatible with multiple
devices, the data field can be used to associate some data with a certain device1.

1Note that this data is only relevant to the platform driver and is optional

CHAPTER 4. LINUX KERNEL DEVICES AND DRIVERS 21

From the platform device’s side, the values of the compatible property (described in 3.2.3) are
the ones used in the matching process.

As such, assuming the following devicetree node:

my_awesome_device: device {
compatible = "v1,m1", "v2,m2", "m3";
status = "okay";

};

and the following snippet from our platform driver:

/* taken from my_awesome_driver.c */

static const struct of_device_id my_awesome_device_of_match[] = {
{ .compatible = "v1,m1" },
{ /* sentinel */ }

};

the core will detect a match between the platform device associated with the my_awesome_-
device node and the my_awesome_driver platform driver. Note that this can only happen if
the node’s status property is set to "okay". If missing (i.e: status property is not specified),
the core will assume the status is "okay".

Please be very careful here with respect to what compatible strings you choose to use. Linux
doesn’t seem to have a score-based mechanism when doing the driver-device binding. If you have
more than one compatible string what could end up happening is the device will be associated
with the driver corresponding with the more generic compatible string, which might not be a
desired outcome.

4.3 Writing our first platform driver
Assuming we have the following devicetree node:

my_awesome_node: my-awesome-device {
compatible = "nss,my-awesome-model";
status = "okay";

};

we want to create a platform driver for it. All the driver has to do is print some sort of message
during its probe() function. As such, the following snippet shows a possible implementation of
our platform driver:

#include <linux/of.h>
#include <linux/platform_device.h>

static int my_awesome_driver_probe(struct platform_device *pdev)
{

pr_info("Hello, world from my awesome driver!\n");

return 0;
}

static const struct of_device_id my_awesome_driver_of_match[] = {

CHAPTER 4. LINUX KERNEL DEVICES AND DRIVERS 22

{ .compatible = "nss,my-awesome-model", },
{ /* sentinel */ },

};

static struct platform_driver my_awesome_driver_platform_driver = {
.probe = my_awesome_driver_probe,
.driver = {

.name = "my_awesome_driver",

.of_match_table = my_awesome_driver_of_match,
}

};

/* note: what this statement does is it creates two functions:

* my_awesome_driver_platform_driver_init() and

* my_awesome_driver_platform_driver_exit(). These functions will call

* platfrom_driver_register() and platform_driver_unregister().

*/
module_platform_driver(my_awesome_driver_platform_driver);

Chapter 5

GPIO basics

5.1 What is a GPIO?
A GPIO (General Purpose Input Output) (pin) is a digital pin, which can be controlled from
the software. Usually, these pins can operate as intput or as output pins.

5.2 Arduino example
Let’s consider the following snippet, which can be run on an Arduino board:

#define MY_PIN_NUMBER 2

void setup()
{

pinMode(MY_PIN_NUMBER, OUTPUT);
}

void loop()
{

digitalWrite(MY_PIN_NUMBER, HIGH);
delay(1000);
digitalWrite(MY_PIN_NUMBER, LOW);
delay(1000);

}

What this does is it first configures the GPIO pin number 2 as output (in the setup() call which
is invoked only once during the start of the program). It then proceeds to drive the pin low
(logic 0) and high (logic 1) in the loop() function, which is called endlessly.

More importantly, to toggle the pin output level, this example follows three steps:

1. Identify the targeted GPIO pin.

2. Set the GPIO pin direction.

3. Write a logic value to the GPIO pin.

23

CHAPTER 5. GPIO BASICS 24

5.3 Linux GPIO on PICO-PI-IMX8M
These steps can be followed to achieve the same effect on Linux. Since some of the information
below is somewhat vendor-specific, we shall refer to the PICO-PI-IMX8M board and its SoC,
i.MX8MQ.

5.3.1 i.MX8MQ GPIO controllers and pins
i.MX8MQ uses the concept of a GPIO controller. In this context, a GPIO controller is a module
in charge of configuring and driving the GPIO pins. The SoC contains 5 GPIO controllers
(indexed from 0 to 4), each of them managing 32 GPIO pins (indexed from 0 to 31). As such,
working with a GPIO pin means we need to identify the GPIO controller that manages said
pin and its corresponding index.

Let’s assume one wishes to use the GPIO_P30_3V3 pin. Sometimes, the pin name is intuitive
enough to deduce the GPIO controller and pin index from it but this is not the case. As such, we
need to have a look at the PICO-PI-IMX8M board schematic and the PICO-IMX8M reference
manual.

According to the board schematic (see page 2, BOARD TO BOARD), the GPIO_P30_3V3
pin is connected to the E1 connection header (pin/pad 30). Looking at the PICO-IMX8M
reference manual (Table 7 - PICO Compute Module Pin Assignment), we can see that the
signal connected to E1’s pin 30 is called GPIO3_IO5. From this, we can deduce that the index
of the controller is 3, while the index of the GPIO pin is 5.

With this information in mind, we can now follow the steps presented in the previous section.

5.3.2 Identify the targeted GPIO pin
At this point, just knowing the GPIO controller and pin index is not enough. This information
needs to be encoded in the devicetree, which is fairly straightforward and can be achieved using
the following property

[name]-gpios = <&[gpio_controller_node] [gpio_pin_index] [flags]>;

where

• name is the name of the GPIO as given by the user.

• gpio_controller_node is the devicetree node of the GPIO controller.

• gpio_pin_index is the GPIO pin index.

• flags refers to various configuration options. For now, only the GPIO_ACTIVE_HIGH
flag will be taken into account.

With this in mind, using the GPIO_P30_3V3 pin would mean having to add the following
property to the consumer node (i.e: node corresponding to the device that wishes to use said
GPIO pin):

led-gpios = <&gpio3 5 GPIO_ACTIVE_HIGH>;

5.3.3 Set the GPIO pin direction
Naturally, the next step is to configure the pin direction in our platform driver. Unlike Arduino
though, Linux doesn’t work directly with the pin index. Instead, it uses a struct gpio_desc to
refer to a GPIO pin. As such, the platform driver needs to obtain a reference to said structure

CHAPTER 5. GPIO BASICS 25

so that it can use its assigned GPIO pin. The following snippet exemplifies how this can be
done:

static int my_platform_probe(struct platform_device *pdev)
{

struct gpio_desc *gpio_handle;

gpio_handle = devm_gpiod_get(&pdev->dev, "led", GPIOD_OUT_LOW);
if (IS_ERR(gpio_handle)) {

// do some error handling here
}

return 0;
}

The devm_gpiod_get() function has the following prototype

struct gpio_desc *__must_check
devm_gpiod_get(struct device *dev,

const char *con_id,
enum gpiod_flags flags);

where

• con_id is the name of the GPIO. It needs to match the [name] bit of the devicetree
property.

• flags refers to various configuration options. It can be used to set pin direction and initial
value (low or high). For now, only GPIOD_OUT_LOW shall be taken into account.

5.3.4 Write a logic value to the GPIO pin
The final step is to toggle the GPIO pin. To do so, use the previously obtained reference to
struct gpio_desc in conjunction with the gpiod_set_value() function. Its prototype is

void gpiod_set_value(struct gpio_desc *desc, int value);

Chapter 6

Exercises

Before starting the exercises, make sure you enable the following configurations:

• CONFIG_NSS_DRIVERS

• CONFIG_NSS_DRIVERS_LAB02

6.1 Devicetree warm-up
Starting from the skeleton found at

drivers/nss/lab02/ex1/imx8mq-pico-pi.dts

write a simple DTS for the PICO-PI-IMX8M board based on the following requirements:

• The DTS needs to include the cpus node.

Hints:
1) What SoC is the board based on?
2) What and how many ARM cores does the SoC have?
(only include the A cores)
3) What compatible should you use for a core?

• The DTS needs to describe the available RAM. Assume the 1GB model.

• The DTS needs to include the UART1, SAI6, and GIC400 components. Additionally:

– The node names should be taken from: https://github.com/devicetree-org/devicetree-
specification/releases/tag/v0.4

Hint: what’s the purpose of each of these
components?

– UART1 is most compatible with the fsl,imx8mq-lpuart driver, but can also work
with the fsl,imx8-lpuart driver.

Hint: which compatible(s) to use here?

26

CHAPTER 6. EXERCISES 27

– GIC400 can only work with the arm,gic400 driver.

– SAI6 is most compatible with the fsl,imx8mq-sai driver, but can also work with the
fsl,imx6-sai driver. The component is controlled by another OS so it shouldn’t be
used by Linux.

Hint: what status should we put here?

To compile a devicetree source, use the following command:

dtc -I dts -O dtb -o <output.dtb> <input.dts>

Information regarding what the components are and their address spaces can be found in the
SoC reference manual.

6.2 Platform drivers warm-up
Starting from the skeleton found at

drivers/nss/lab02/ex2/my-awesome-driver.c

write a platform driver that prints a Hello, world message in its probe() function.

The devicetree node you should use is

my-awesome-device {
compatible = "nss,my-awesome-device";

}

You’ll have to place this node inside the nss-bus node. Before starting, make sure you enable
CONFIG_NSS_DRIVERS_LAB02_EX02.

6.3 LED warm-up
Starting from the skeleton found at

drivers/nss/lab02/ex3/led.c

write a platform driver that exposes to the user space a character device interface through
which a user can toggle the state (on/off) of an LED. The LED should be connected to the
GPIO_P26_3V3 pin as shown in figure 6.1.

Assuming the name of the character device is led-chardev, issuing

echo "on" > /dev/led-chardev

should turn on the LED. In contrast, doing

echo "off" > /dev/led-chardev

should turn off the LED.

CHAPTER 6. EXERCISES 28

Before starting, make sure you enable the nss-led devicetree node (by setting its status to okay)
and the CONFIG_NSS_DRIVERS_LAB02_EX3 configuration.

Figure 6.1: LED warm-up circuit

6.4 LED math
Starting from the skeleton found at

drivers/nss/lab02/ex4/led-math.c

write a platform driver that will act as a very simple calculator. The input will be received
through a character device interface and will have the following format

[digit_1][op][digit_2]

digit_1 and digit_2 can have any value from the 0-9 range, while op has two valid values:

• "+" - addition

• "-" - subtraction (second number is subtracted from first)

The result will be "written" to three LEDs, each of them signifying a bit of the resulting number.
If the LED is lit that means its corresponding bit is set.

The pins you should use and their corresponding bit indexes are:

• GPIO_P26_3V3 - bit 0

• GPIO_P28_3V3 - bit 1

• GPIO_P30_3V3 - bit 2

Figure 6.2 shows how the LEDs should be connected to these pins.

Examples of inputs and their results:

• 1+2 - result is 3, LED states are:

GPIO_P26_3V3 LED => on

CHAPTER 6. EXERCISES 29

GPIO_P28_3V3 => on
GPIO_P30_3V3 => off

• 3-1 - result is 2, LED states are:

GPIO_P26_3V3 LED => off
GPIO_P28_3V3 => on
GPIO_P30_3V3 => off

• 9-3 - result is 6, LED states are:

GPIO_P26_3V3 LED => off
GPIO_P28_3V3 => on
GPIO_P30_3V3 => on

• 9+9 - invalid, LEDs keep their previous state

• 3-6 - invalid, LEDs keep their previous state

Figure 6.2: LED math circuit

Before starting, make sure you:

• Enable the nss-led-math node.

• Disable the nss-led node.

• Enable CONFIG_NSS_DRIVERS_LAB02_EX04

	1 Introduction
	1.1 What is an embedded system?
	1.2 Terminology - processor, MCU, SoC, and SoM

	2 ARM-based SoC architecture
	2.1 Masters and slaves
	2.2 Interconnects
	2.3 Communication between components
	2.4 The bridge

	3 Introduction to devicetrees
	3.1 What is a devicetree?
	3.2 Devicetree source (DTS) and devicetree blob (DTB)
	3.2.1 The #address-cells and #size-cells properties
	3.2.2 The reg property
	3.2.3 The compatible property
	3.2.4 The status property
	3.2.5 The format of a DTS node
	3.2.6 Translating to DTS format

	4 Linux kernel devices and drivers
	4.1 Platform devices and drivers
	4.2 Matching a platform driver with a device
	4.3 Writing our first platform driver

	5 GPIO basics
	5.1 What is a GPIO?
	5.2 Arduino example
	5.3 Linux GPIO on PICO-PI-IMX8M
	5.3.1 i.MX8MQ GPIO controllers and pins
	5.3.2 Identify the targeted GPIO pin
	5.3.3 Set the GPIO pin direction
	5.3.4 Write a logic value to the GPIO pin

	6 Exercises
	6.1 Devicetree warm-up
	6.2 Platform drivers warm-up
	6.3 LED warm-up
	6.4 LED math

