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Abstract—This paper summarizes the principal results of a series of statistical studies in the last seven
years on the intensity distributions due to rapid fading.

The method of derivation and the principal characteristics of the m-distribution, originally found
in our h.f. experiments and described by the author, are outlined. Its applicability to both ionospheric
and tropospheric modes of propagation is fairly well confirmed by some observations. Its theoretical
background is also discussed in detail. A theoretical interpretation of the log-normal distribution is
given on the basis of this formula. An extremely simplified method is presented for estimating the
improvement available from various systems of diversity reception. The mutual dependences between
the m-formula and other basic distributions are fully discussed. Some generalized forms of the basic
distributions are also investigated in relation to the m-formula. Two methods of approximating a
given function with the m-distribution are shown. The joint distribution of two variables, each of
which follows the m-distribution, is derived in two different ways. Based on this, some useful associated
distributions are also discussed.

1. INTRODUCTION

In recent years, radio engineering requirements have become more stringent and
necessitate not only more detailed information on median signal intensity, but also
much more exact knowledge on fading statistics in both ionospheric and tropo-
spheric modes of propagation.

Such circumstances have forced a large number of extensive experiments and
numerous theoretical investigations to be performed on the intensity distribution
of fading under various conditions. In order to describe closely the results of
these comprehensive observations, diverse forms of the distribution have been
presented up to now. Among them, the following three may be regarded, in view
of practical uses, as the representatives:

One is the Rayleigh distribution

[

2R
p(B) =5 e, M

where Q = R? time average of B2. This was, asis well known, derived theoretically
by Lord Rayrercr (1880). Since Pawsey’s (1935) experimental verification in
h.f., many investigators have also confirmed the applicability of this form to fading
in both modes of propagation, under scattering conditions at least.

Another is the log-normal distribution

e~ =2 20,* , (2
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where y denotes signal intensity in terms of db. This seems to have been first
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introduced in fading problems by Grosskorr (1953) to describe his extensive
observations which were made over a relatively long period. Its theoretical
background is approximately explained in a general manner, as is well known,
by the property of the logarithms of positive variates. The author (Japan
(Nagacamr), 1955) gave it a satisfactory explanation in connection with his
m-distribution, by taking into account the average-intensity variations which
ought to exist for such longer intervals as in GROSSKOPE’s observations.

A third is the m-distribution, named and proposed by the author, whose
functional form is
_ 2mn B o

B p(R) = Tmar , (3)
where Q = R2 and m is
(R?)?
m=-——-—— >}, always, (4)
(R? — R?)

that is, the inverse of the normalized variance of B2, This formula was deduced
by Naracami (1943) from his large-scale experiments on rapid fading in h.f. long-
distance propagation. Some recent observations in h.f. (e.g. WaAMBECK and Ross,
1951) seem to well confirm its applicability. The author also found in some recent
dats that his distribution accounts for the observations at 4000 me (NARAGAMI,
1951) better than the other distributions, and that its applicability can be extended
without difficulty to a wider range from 200 mc to 4000 me¢ (NaRAeaMI and
Fuijmora, 1953). Further, some more recent observations (e.g. Marsvo and
IxepA, 1953; BuLringToN, INkSTER and DURKEE, 1955, see Figs. 11 and 12)
seem to support strongly this formula for tropospheric fading under various
conditions. It is of interest to remark that this formula can be regarded to be, in a
sense, a generalized form of the Rayleigh distribution, for it includes the latter
as its special case of m equal to unity.

On the theoretical side, on the other hand, in addition to the Rayleigh
distribution, the following two compact forms of distribution,

p(R) = 2B (w1 re 10(2RR0) (5)
o o
and
2R R2(1 1
R = 22 o~ (B2t 1iB) J [__(_ — _)} , (6
p(R) r—aﬁ 0| o f a )

were presented by Nakacamr (1940a) and by Naracami and SASAKT (1942a),
respectively. These were found, in 1939 and in 1941 respectively, in a series of
their theoretical investigations on fading as particular solutions of the so-called
problem of random interference, which is reasonably considered to be the main
cause of rapid fading. The former, named ‘‘n-distribution”, is frequently used
in radio engineering. The latter, named “g-distribution”, also appears in communi-
cation problems. More recently, we (NakaGcami, Wapa and FusiMura, 1953)
proved that the m-distribution is a more general solution with good approximation
to the random vector problem. At the same time it was also shown that the
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m-distribution includes in a particular manner the two distributions stated above.
Also, the mutual dependences among their parameters were fully investigated
(Nagagamr, Wapa and Fusimura, 1953), when the m-distribution and the
other distributions were mutually transformed.

The foregoing descriptions suggest that the m-distribution is well qualified as a
representative distribution at least at the present status. In further developing
the foregoing theories of the m-distribution, we (Naxaeami and NisHIo, 1953,
1954a, 1955) have also established in two different manners the joint distribution
function of two variables following the m-distribution law. Based upon this
formula, a new unified theory of diversity effects (NAKAcaMI and Nisato, 1953,
1955) and a more general, but the simplest, method (NarxaGamI and Yoxoz, 1953;
Naxacawmr, 1953) of evaluating the improvements available from various systems
of diversity reception have been proposed.

Further, an entirely new method (e.g. Nakacami, Tanaka and KaNEKoO,
1954) of observing long term distributions was found, based on the foregoing
theories, in order to avoid various inconveniences in the usual methods of
observation and in handling quantities of data. Using this apparatus, we are now
obtaining much useful information on fading (e.g. NARAGaMr and TANAKAa,
1956).

Most of the original papers of the author are written in Japanese, and it has
long been his regret that they appear to be little known abroad. Dr. Hoffman’s
kind invitation to write a paper based on our summary report (NAKAGAMI,
Tanaxa and KANEHTSA, 1957) for these proceedings was therefore well received.
The major portion of the present paper is a condensation of that report together
with some unpublished results, but because of space limitations, the graphs and
references are cut to the minimum. For more detailed information on our results,
readers are referred to the original papers, which are completely listed in the
bibliography at the end of this paper.

2. OUTLINE OF THE ORIGINAL DERIVATION OF THE m-DISTRIBUTION
AND SoME oF Its BaSic PROPERTIES

2.1 Outline of the Original Derivation

(a) Time interval of observation. In order to observe rapid fading alone,
i.e. to remove the effect of slow fading, the length of observation interval should
be carefully chosen, because the effect of slow fading will be more predominant for
too long time intervals, while the statistical meaning of the observed distribution
becomes ambiguous for too short time intervals. Therefore, there must exist
an optimum length of observation interval. This length, of course, depends on
various factors such as frequency, propagation path, the time of the day, etc.
After careful preliminary tests for h.f. long-distance propagation, the interval was
determined as about three to seven minutes in our experiments.

(b) Apparatus and observed waves. A vertical antenna, about 1-5 m long,
was used, the output of which, after amplification, logarithmic compression and
envelope detection, was applied to the deflection plates of a CR tube. The
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movement of the spot on the fluorescent screen follows exactly the signal variation,
which is recorded on a photographic plate placed in front of the screen. The
required distribution was determined by measuring the emulsion density of the
plate after developing. Special care was taken to make the measurements exact.
The overall time constant of the apparatus was 2 milliseconds (maximum).

The signals observed and the number of plates used in deducing the experimental
formula are shown in Table 2.1.

Table 2.1
. Distance . No. of No. of
Station (km) Call sign | Frequency Date plates plates m < 0-5

Changehun 1,500 JMP2 10,065 ke Apr. 1941 34 0
Palau 3,200 JRAK 11,740 ke Oct. 1941 15 0
KNY 19,080 ke Nov. 1940- 67 1

. Oct. 1941
San Francisco | 8,240 {| gapy 9,670ke | Oct. 1941 17 0
KWU 15,355 ke Oct. 1941 14 0
Berlin 8,900 DFZ 20,020 ke Apr. 1941 19 0
Taipei 2,200 JIB 10,5635 ke Oct. 1940— 265 0

Dec. 1941

(c) Example. An example of the records is shown in the photograph, in which
ordinate and abscissa indicate each of two spaced-antenna outputs in decibels
respectively. These records were used primarily to estimate the amount of
diversity effects which can be expressed in terms of the correlation coefficient
between the two outputs, and secondarily to reduce the functional form of intensity
distributions. This method is, incidentally, similar to that of G. R. Suear (1954).

(d) Derivation of the distribution function (7). By inspection, the functional
form of the measured distributions had been inferred, at least approximately, to
take the form of (7). To check this, they were first plotted on a system of log-log
co-ordinates, whose ordinate and abscissa were so chosen that (7) might be
represented as a group of straight lines having slopes proportional to the values
of m. Almost all the distributions measured are well represented as straight lines
on this system. Some of the representative distributions are illustrated in Fig. 2.1.

From this fact, their functional forms were determined as

p() = oxp|m(14+ 22— )| ()

where y is the signal intensity in decibels and M = 20 log;, ¢ = 8-686.
Upon normalization of (7), we obtain the distribution funetion of db-

intensity yx

p)= o oxp [m (3 %) | = A m, 0) ®)
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Also, from Table 2.1, we observe that the following holds with only one
exception,
m > 4. (9)

. B —
Using the transformations e#¥ = X = ok where Q= R2, the time average of

the square of intensity R, we finally arrived at the distribution (NARAGAMI, 1943)

2m™

p(X)= T‘T’r;) X2m—1p—mX®_. M (X, m, 1), (10)
or
2mmR2m—1 2
p(R):‘ W 6_(mIQ)R = J(R, m, Q). (11)
-8

Lo

/m =
0 \p—m=3
i ﬂ\ﬂ%’m :
m=3/4
08 m=5/8
L m=9/16
m=1/2

‘/.. L\&

0 ] 2 3
X

Fig. 2.2

This formula, defining the ‘“‘m-distribution”, includes both the Rayleigh
distribution and the one-sided Gaussian distribution as special cases for m =1
and m = }, respectively.

p(X) and p(x)/p(0) are illustrated graphically in Figs. 2.2, and 2.3, respectively.

(e) A remark on the m-distribution formula. This distribution is apt to be
confused with the y2 and the I'-distribution from their functional similarity, but
there exists a somewhat essential difference in the admissible range of values of
the parameter, i.e. in the latter two the parameter is usually assumed as a positive
integer and a positive number, respectively, while in the former we may assign
any positive number not less than %, as is shown in (9). This significant difference
will serve not only better to understand the m-distribution from the theoretical
viewpoint, but also to distinguish this formula from the other distributions with
similar functional forms.
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2.2 Some Properties of the m- Distributton

In the following, some of the prominent features of the m-distribution, which
are basic and useful in its applications, will be presented without proof.

(a) Basic properties of .#,(y, m,0). As readily seen from (8), #,(x, m, 0)
has the maximum value

2m™ 1 [2m
= o~ (2 1 12
p(O) Mr(m)em M o (m a’rge)’ ( )

at y = 0 or B = V/Q. This relation is of practical value. For instance, if we apply
this to an observed db-intensity distribution, the effective value of the linear
intensity can be found at a glance. When y < M in (8), .#,(x, m, 0) approaches
to the form of log-normal distribution

plp) 2 (13)
w
Further, .#,(x, m, 0) can be generalized in a form
2m™ 2(r —
p(r) = M;",(m) exp [m{—(ff@ — ez(’_’o)/M” = M, (1, m, Ty, (14)

where = and 7, are db-intensities of R and V/Q above unit intensity, respectively.
Graphs of the cumulative distribution defined by

Mizm) = [* (. m, 0) ay, (15)
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are illustrated in two different systems of co-ordinates such as Figs. 2.4 and 2.5.
These are of great use in practical applications.
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Fig. 2.4

Finally, the characteristic function becomes

F(m — % z)
® _ 2 M2z
¢(z) = *w'lx(x5 m, 0)6 d% = —FW m .

(b) Moments and variances. First, the moments and the variances will be
listed below:

v

P(m +§) (Q)él2 R — (Q)n(m +n—m-+n—2)...m (17)

'(m) m/ T \m D

Q2 r 2 Q
vy =L, wr = 9[1 —{—(—’ﬁiﬂ} ] ~ 2
m VT (m) 5m
where » and n are a positive number and a positive integer, respectively. The
same notations will be used throughout this paper, unless the contrary is stated.
Next, the moments and the variances of db-intensity are shown in the
following:

(16)

B

; (18)

I

- _ M\2
2 =2 —togom), 7 = () lpim) — logamt + y/(m)],

(19)

I

. 3
7 (g) [{w(m) — loge m}® + 3y’ (m){yp(m) — loge m} + y"(m)],

=7 = () vem, w5 =(3) vom, 20
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where y(y), ¥'(x) and y"(y) are the Di-gamma, the Tri-gamma and the Tetra-
gamma function, respectively.
(c) The parameter m. In the m-distribution, the parameter m has an important
meaning, which will soon be made clear.
Now, returning to (18) we get the expression
Q2 1

"R T VA -

where V,(R?) denotes the normalized variance of R%. That is, m is the inverse

999
V 1/ 4/

900 11/
700
500
30-0

Y/
o 7
7]

!

ol ;« S
=

R

Q

N

’0:/.5—
320
3.0
333
[ X
060

Relative intensity (ab)
Fig. 2.6

of the normalized variance of R2 exactly. This relation suggests the possibility to
use m as a measure of fading range N(P) defined by y, — y;, where

X1 ©
P = f M (x, m, 0)dy = f A (1, m, 0) dy.
o 2

This suggestion was justified fairly well by numerical calculations (NAkAGAwMI,
1955) as

N(P) ~ 10 ( +02) Iogm +1.5db  (m < 8). (22)

From this, it can be seen that N(P) is linearly proportional to 1/m, so it is termed
“Fading Figure”.

Based upon the above properties of the m-distribution, we (NAkAcaM1 and
Fuimura, 1953) have proposed defining the intensity variation in actual fadings
by the parameter m instead of by the conventional fading range. The advantages
of this definition will be evident from the preceding discussions.
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2.3. Distribution of Fineness (NaKAGAMI, KaNEnISA and OTa, 1955)

In the following, we shall give a short discussion on the distribution of the
so-called fineness, which means the rapidity of intensity fluctuations, and is
ordinarily expressed by the average number of crossings of a specified intensity
level per unit time.

Now, assuming the stationarity of fading, the fineness G(R) at an arbitrary
level R can be expressed by

o) = | R p(R B R, (23)

where p(R, R'; t) is the joint distribution function of the two random variables
R and R’, where R’ is the time derivative of R. The correlation coefficient
between R and R’ can be easily shown to vanish in almost all cases that may be
encountered in actual fading. This property suggests that R and R’ are mutually
independent, so that (23) may be written, at least to a good approximation, as

or) = 7 1B s(RIp(R) AR = |R| x p(R) 29

Here, we could arrive at the conclusion that the fineness takes the same
functional form as that of the intensity distribution. This conclusion was proved
theoretically in some special cases (e.g. MIDDLETON, 1948) and also suggested by
some observations (e.g. Miva, INoUE and WAKAIL 1953). As to p(R'), it is natural
to assume that it will take a Gaussian type in general, at least to a high degree of
approximation. Under this assumption G(R) can be easily reduced, in the case
of the m-distribution, to

2
G(R) = J~ —¢"(0) 4 (R, m, 0), (25)
ku
@(7) being the auto-correlation function of R.

2.4, Integral Expressions of M (R, m, Q)

The m-distribution is, like many others, often required in the form of a definite
integral in its applications. Such an integral representation can be found in various
forms. Among these, the two forms, i.e. the Bromwich type of contour integral
and the Hankel type of integral, are of much convenience for the present purpose.
Therefore, we shall outline these two forms in the following.

(a) The expression by Bromwich’s type of contour integral. This expression
is readily reduced by the Laplace transform to

¢+ joo
M(R,m, Q) = 2R ezR”—qz—— . (26)

27T] e—jo (92+ 1)
m

The path of integration is the so-called Bromwich contour, i.e. a straight line
parallel to the imaginary axis at a distance ¢ from the origin, ¢ being so chosen
that all the singularities of the integrand are on the left side of the line.
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(b) The expression by Hankel’s type of integral. From the »th Hankel
transform, the expression

M (R, m, Q) = f amJ . (AR)e~(@HmP ). (@7)

o2m- lI‘
can be derived without difficulty, and the transform of zero order also yields
another expression

M(R,m, Q) =R f ZJO(/lR)Lm_l(Z% z%)e—m/‘*m“’ di, (28)
0

after some calculations, L,(x) being the Laguerre function.
These expressions are, of course, equally valid for all values of m >= }. These
expressions will often be used to advantage in the following discussions.

3. THEORETICAL BACKGROUND OF THE m-DISTRIBUTION

We now turn our attention to the theoretical basis of the m-distribution, and
further to the relationships between the m-formula and the other basic distribution
forms stated above.

3.1. The m-Distribution as a General Approximate Solution of the
General Problem of Random Vectors

Before proceeding to the theoretical background of the m-distribution, we now
give some brief descriptions on the uses of the Hankel and the Laplace transforms.
They are of much expediency in the statistical treatments of such positive variates
as the modulus of a vector, and the distance, in a two- or a multi-dimensional
space, ete.

We shall show in the following how to use these transforms in the statistics of
fading problems.

(a) Uses of the Hankel transform and the Laplace transform in the fading statistics. Now,

let &(z,,...,,) be a given positive function of random variables @, ,, . .., z,; then the
distribution function of R, equal to &, can be formally expressed as
P(R) = 8(E — &), (29)

where d(x) denotes the d-function after Dirac, and the bar means the average with respect to
the random variables.
Here if we use the known relation (e.g. WaTson, 1922)

R —§) = R”“f A, (AR) "( al da (B() > —4), (30)
(29) becomes
Rv+1 © 1
PR = 5ro T L RTLI(AR)F,() 41, 31)

where

J,(28) —
Fy(h) = 2T0 + 1| 5 | = KE). (32)
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This function is of considerable importance in this method, corresponding to the characteristic
funetion in the usual method in statistics, and named “amplitude characteristic function of
vth order”. A,(z)is a tabulated function by JanNKE and EMDE (1943). By the Hankel inversion
theorem, F, (1) may be written as

F2) = fo p(R)A,(AR) dR. (33)
In particular,

P(B) = Rf AT (AR)Fo(3) d2,
’ (34)

%m=£%wmmm&

Integrating (31) with respect to R, we are able to establish a general expression of the
cumulative distribution in the compact form of a Hankel integral.

In applying the expressions (31) and (32) to individual problems, the order v of the Bessel
function involved may be any positive value not less than —%. But it is preferable to choose
such that

@2
& — &
because the calculation of F (i) beecomes simpler, the reason for which will be seen in later
calculations.

Further, in some applications of this method, it is worth noticing that if § is an n-dimensional
vector, then the order » of the Bessel function involved is connected with the number of
dimensions n by the relation

v+ 1= =m, (35)

Yy =

N3

as is well known in the theory of the Hankel transforms. Based on this, we could treat any
given positive variate from the multi-dimensional viewpoint.
Returning to (29), if we take
l‘ c+j00 3 2
SR —§ == KR8 gz,
2mj e—jo
it yields the integral expression
9R [otix

p(R) = —— R 4(z) dz,

2mj Jo— joo 37

where (37)
$lz) = [e ', J

which is usually called the moment-generating function.
Tt is of interest to see that ¢(z) and F,(4) are generally connected by the following Laplace
transform

g8) = f fine dt, (38)
0

where

gle) = 22HDT( + 1) t14(2), 8

i

i
i

f&) = F ()73,



The m-distribution—a general formula of intensity distribution of rapid fading 15

Furthermore, the applicabilities of the above two methods, of course, can readily be
extended to the case of two or more random variables, e.g. in the case of two variables the
distribution function is expressed, in the two methods, as

(R R2)V+l v+1av+1
p(BRy, By) = m A VRN A M RO (A R) F (A4, Ay) dA; dA,,
where (39)
Fy(Ay, dg) = Ay(45)A,(2565),
and
4R. R, [ctix [fet+jo
p(Ry, Ry) = __1_; f ez1R1’+z:R:’¢(zl, 2y) dz; dz,,
where (2”.7) ¢c—joo Je—joo (40)
2y, 2) = [e~FETTHED]
respectively.

The use of the former method is to be found in its origin with the great contributions due
to KLuyver (1906) and PEarsoxn (1908), and also in our later work (e.g. NaAxAGAaMI and SASAKI,
1942a) in & somewhat more advanced form. More recently it has been much developed in
well-established forms by LorD (1954) and others, especially in our laboratory (e.g. NAKaGaMI,
1954; Ora, 1956; Ora and Naracami, 1956). The latter method was further developed
(e.g. Naxacamr, 1940b) in relation to the treatment of transient phenomena in electric circuits.

(b) Derivation of the m-distribution (NARAGAMI, WADA and FusiMURa, 1953).
Regardless of the modes of propagation, i.e. whether ionospheric or tropospheric,
it is reasonably supposed that the signal intensity £ at an observing point is
composed of some component signals r,e’ (1 = 1, 2, .. ., n) which have traveled
on different paths, and whose amplitudes and phases vary according to certain
statistical laws. Under these conditions, & may be generally written as

£ = ilne”“ =r + jy|. (41)

Now, starting with (32), we get

MMJ—P gm)zg“)+”’

by expanding the Bessel function in a power series. Here if we write

(£2\2 .
é)_ m, £ =Q, (42)
(52 . 52)2

and make use of the general properties of moments (£"+%)% > £2* x £ due to
Liarounorr, then after some calculations, F (1) can be approximately reduced to

y +1 =

I

Q 2 Q
Fy(d) = 117'1(m, 1; — yr 12) O (M }.2). (43)
Applying this to (34), and using (28) we arrive at
PR~ B[ B L (e @ 0.
[1]

The approximation in this reduction is sufficiently good enough for engineering
problems.
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In like manner, using (32), we get
F(3) ~ ¢~ QHC+DR (45)

to a high degree of approximation. By evaluating the integral (31), after substi-
tuting from (45) into it, we finally get

p(R) =~ R*+! f FHUT (AR)e~ O+ Q) — (R, m, Q). (46)
[4]

The foregoing reduction procedure indicates that the m-distribution arises not
only from random interferences, but also from a more general case of random
superposition of random vectorial elements. This theoretical evidence affirms that
the m-distribution might be a more suitable form for both ionospheric and tropo-
spheric fadings. This was fairly well confirmed by many experiments as stated
above.

When the central limit theorem holds, the parameter m takes the form

(0 +4%)?°

™= o + A% (B2 — 4% 1 242B cos 2(3, — 0p)

(47)
where
A= @ + @2 B'=4* 4 (0. — )}
0, =V(@@), o,=V), c=c@xy), o=0,+to,
ii 2¢

g, — 0,

tan 6; = %’ tan 24, =

From the well known inequality ¢%(z, ¥) < 0,0,, B < o results, and (47) yields the
following inequality.

(0 + 4%)°
(6 + A%% 4+ B% — A* + 24°%B

This restriction on m perfectly coincides with what was experimentally confirmed.

m >

> 4. (48)

3.2. The Basic Distribufions in the Random Phase Problem
and Certain of Their Properties

As is mentioned above, the Rayleigh, the n- and the g-distributions are the
particular solutions, and the m-distribution is & general but approximate solution,
of the so-called random phase problem, and they are all identical under certain
specific conditions as stated below. Their properties have been fully investigated,
certain of them except those of the last being listed in the following.

(a) The Rayleigh distribution.

pR) =220 = (R, o), ~
3 Dy ) v
R = g, R = lZF(l + 'é), > (49)

. 1
T oz + 1)

Fol) =%, 4(z)
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(b) The n-distribution.
p(R) =g(;_Re—(R’+Rog)/aIO(2IiR0) = ‘/V‘(R’ R05 0'), W

R — 2 B = ¢ y —ﬁ)
B—o+R? F 1‘(1—{—2)117'1( 21 —=0),

- 2
e [2/(oz+ 1)1 Ry ’

Fold) = AR, 46 =

~— 2

n = g‘l Parameters: (o, Ry), (Q, n).
lim A(R, Ry, o) = Z(R, 0) = H#(R, 1, o).
Ros0
(7—0)

{¢) The g-distribution.

_ 2R _mwamruny (B2 (1 1)) _
p(R) = ?/1_736 (RE2)(1] +lﬂ)]°{ 3 (ﬁ “)} = 9(R, «, p),
— —2
R R (R Y e o}
2 22 1
— g~ Ratpysy 1 =
Py = el - p), g =
g s K = E: :_z; , Parameters: («, ), (k).
Ilm 2R, a,B) = ZL(R,0) = H(R, 1, a),
(k—-l)
hm 2R, «, p) = MA(R, },%/2).
(17——»0)

17

(50)

(51)

(52)

(53)

3.3. The Interrelations between the m- Distribution and Other Basic Distributions

(NARAGAMI, WADA and FUJIMURA, 1953)

The foregoing discussions in this section maintain that the m-distribution must
include all other basic distributions, and that if a certain part of the m-distribution
corresponds to the g-distribution, the remaining part might also correspond to the
n-distribution. These dependences are definitely described by functional relations

between the parameters.

(a) The relation between the m-distribution and the n-distribution. In this

case, the basic relations between the parameters are

Q =g + R,2 l—:l-—-lﬁ1 m=1
0> m Q27 = L

(54)
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To represent the n-distribution in terms of the m-distribution, we have only to
take the parameters as
Q2 (1 + 5?2
Q= R, = = . 55
A R K (R IR 0

Further, for the inverse expression, the parameter relations take the forms

S Q - 2 __

(b) The relation between the m-distribution and the g¢-distribution. In like
manner, the parameter dependences are reduced to
«+p 1 (« — B)*

2’ m +—4Q2 ’

Q= 1<m <. (57)

Accordingly, for the transformation from the ¢-distribution into the m-distribution,
the parameter relations are given by

«+p (« +B)?
Q == , m = . 58
2 PR (%)
Next, in the inverse transformation, the relations must be taken as
Q — Q e
—_ 2 - . o2
« m(m+\/m m), = (m Vm — m?),

b — m — Vm — m? (59)

m + Vm — m?

The errors arising from these transformations are negligible for our present
purposes.

(c) General aspect of the interrelations. The above interrelations are not only
of considerable importance as regards a better understanding of the situation of
the m-distribution, but they are of much practical use in its various applications.
Therefore, we show some more-detailed characteristics of these in summarized
form as follows.

(1) The m-distribution with the parameter } < m <1 corresponds to the
g-distribution, i.e.

M (R, m, Q) = 2R, «, B), M (R, }, Q) = 2(R, 2Q, 0). (60)
}om—1 0—f—a
(0—k—+1)

(2) The m-distribution with the parameter 1 < m corresponds with the

n-distribution, i.e.

M(R,m, Q) = N(B, Ry, 0), MR, 1 Q) =N(R,0,0Q). (61)
e R

(3) At the junction point m = 1, the four distributions are all identical, i.e.
2(R,Q,Q) = H#(R,1,Q) = % (R, Q) = A(R, 0, Q). (62)
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3.4. Generalized Forms of the Basic Distributions
(NaragamI and NisH10, 1954b)

Now, we shall derive the generalized forms of the basic distributions stated
above. These are defined as the distributions of the sums of squares of # indepen-
dent m-variables.

R=r2tr2+ ... 472 (63)
where r,’s follow either one of the three basic distributions, i.e. the Rayleigh, the
n- and the g-distribution.

(a) Generalized form of the Rayleigh distribution. »

Case I. If r/s follow Z(r;, o), then the distribution of R becomes the standard
form of the m-distribution

p(R) = '/i(R’ m, Q), (64)
where m = n, Q = no. Its moments, ¥,(4) and ¢(z) are expressed by
|
v
. F(m +§) (Q)”’2 5 1
= ——— B A == _———m s
I(m) m (gz n 1)
m

3 (65)

FO(}') — e_(ﬂl4m)13Lm~1 (g_n 12) , Fm_l(l) — e_(ﬂ/4m);'2’

= e"(n“)a"]o(% 12) (m ES -%)_

(b) Generalized form of the n-distribution.
Case II. If r/s follow A7(R, ry,, o), then the distribution of B becomes

2R"

2 & 2.R.R
p(R) = . e (B TRy )"’In_l( . 0) = A ,(R, Ry, g), (66)
where B2 = Y 7}, its moments, F,(1) and ¢(z), being expressed by
i=1
(n+3)
By, ﬁ:wtlizmpln_zg
i=1 " I'(n) AU o/ (67)
1 2
- - L - 3 — oo/
86) = o= oy B Fan®) = AL GR,),

This form of distribution, named ‘‘generalized n-distribution”’, can be also derived
by a procedure similar to that in section 3.1.

(c) Generalized form of the g-distribution.

Case III. If the r/s follow 2(r;, «, ), then the distribution becomes

2 \/;Rne—(R’/2)(1/a+llﬂ) {RZ (1

()G

p(E) = ) =2k an. 69
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Its moments, F, (1) and ¢(2), being expressed by

» 3
I'in +—)
B °‘+13) 7____(__.2_ 12 (_”—2 _v.ontl )
R2_~n( 2 B = I(n) Q7 F 4 7 4’ 2 ’K2’,(69)
F, () = e~ WFBa+B) A { }_‘2_ (¢ — /3)} (fJ(Z) — 1
- o-oell P T G 0@ PR

This form of distribution, named “‘generalized g¢-distribution”, can be also derived
by a procedure similar to that in section 3.1.

It is of interest to see that the above reduction procedures of the generalized
forms (66) and (68) require their parameter n to be a positive integer, but the
necessary and sufficient conditions of a distribution permit it to take any positive
number not less than unity at least. Therefore, they should be accepted in this
wider sense under the name of the generalized forms.

(d) Their interrelations in a particular case.

Case IV. Interrelations under specified conditions.

lim 2,(R, «, f) =lim A4 (R, Ry, 0) = #(R, n, no). (70)
pra(=0) Ry—0

(e) Further generalizations of the distributions. As is easily observed, the
above distributions are further generalized based on the relation (63) as follows.

Case V. If the s follow .#(r,, m, Q), then the distribution of R is reducible to

p(R) = M (R, nm, nQ2). (71)

Case VI. If r/s follow A", (r;, R,,;, o), then the distribution of E can also be
reduced to
p(R) = N (R, Ry, o), (72)
where v = S, B? = ZR},.
Case VII. If r’s follow 2,(r; a«, f), then the distribution of R can also be
reduced to
p(R) = '@v(R’ &, ﬂ)s (73)
where v = 2y,.
These reproducible characters of the generalized forms are of great importance
in the theory of these distributions. Further, their parameter interrelations are
algo similar to that of the basic distributions.

4. SomE FurTEER CHARACTERISTICS OF THE Mm-DISTRIBUTION

In this section, some further descriptions on the characteristics of the m-
distribution, which are of great use in practical applications, are briefly given.

4.1. Distribution of the Sums of Squares of m-Variables
(NagacaMI and Wapa, 1953)

Here we shall consider the distributions of the sums of squares of some indepen-
dent m-variables.
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(a) Special case. At first, we consider the case of two m-variables.
Case I. Let r, and r, follow #(ry, m,, Q) and #(r,, my, Q,) respectively, then
the distribution of their sum and its characteristic function become

2u—1 ,—(R}2)(1jo +1/ay) 1 1\) )

p(B) = 2R e 1 M, _&{Rz(_ — _)},
1 | A o a.
I'(2u)o ™0, (— - _) ' ?

| Gy Oy r (74)
an
| 4e) = :
o o 41

respectively, where M, ,(x) is the Whittaker function, and
Q Q —
=1, g2 T
m, My 2 2
This distribution plays an important role in the author’s theory, and is termed by
him the ““M-distribution”.
Cage II. In a special case m; = m, = m, (74) can be reduced to a simpler form
P(R) = 2,,(R, 03, 0y). (75)

Further, in a more special case, m; = my, = m and Q, = Q, = Q we get the
simplest form, i.e. the m-distribution

p(R) = A (R, 2m, 2Q), (76)

as it is readily supposed to be.
(b) General case. Next, we shall proceed to a more general case

R =anr?® +ay? +... +a,r2 (77)

For simplicity, the following discussions will be confined to some distributions
under certain conditions in fading practice.
Case I. If r’s are distributed according to #(r;, m,, Q,), and if the conditions

—% = 9—2- =...= 99 and e, = 1 are satisfied, then we have
ml My m,
p(R) = A(R, Em,, 2Q,). (78)
Case II. If the r;’s are distributed according to .#(r,, m,, Q,), and if the a,s

. iy _91+92+...+9ﬂ(@)
satisfy the conditions a; = m Fm . m\D,)’ then we have

Case I1I. If the r’s are distributed according to .# (r,-, m,, g‘), then we have
approximately i

where

p(R) ~ M(R, M, ZQ,),
(80)

oM = (5Q,)% (g) -
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4.2. Distribution of the Sum of m-Variables
Next, we consider the sum of » independent variables

R=r +ro+...4r, (81)
where r;’s follow the m-distribution #(r; m;, Q,). After some rather complex
calculations, in this case, we arrive at

P(R) = M (R, ym, Q) (82)
approximately, where

_ I¥m 4 %) 1
(1?2)2 (83)
(& - B

The functional form of f(m, n) is rather complex, but the numerical values are

= f(m, n)mn.

2

Fim, n)

Fig. 4.1

nearly equal to unity for all values of m and n, as illustrated in Fig. 4.1, so that the
parameters in (83) are approximately reduced to the concise forms

oM = mn, o = n2Q, (84)

It is very important, in this case, to notice that the distribution in terms of
db-intensity y can be closely expressed by

ply) = j}?@:; exp {mn (% — ez"’M)’. (85)

This relation is of great use in practical applications, as will be shown later. It
was first observed in our experiments on diversity receptions (NAKAGAMI, ARAZAWA
and TANAKA, 1941), and later proved both theoretically and numerically (NAKAGAMI
and SASAKI, 1942b).
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4.3. The Basic Characters of the Combined Output in Diversity Systems

The fading statistics in various diversity systems are uniquely determined by
the cumulative distribution of the combined signal. This distribution might be
supposed apparently to depend upon the kind of diversity, but essentially it is
determined by the following factors: (i) Type of fading. (ii) Magnitude of diversity
effect. (iii) Method of combination of component signals.

Here, we assume that the type of fading takes a form of the m-distribution and
that the diversity effect is perfect. Under these conditions, we (e.g. NarRAGAMI,
1942a, 1942b, Nakacamr and Wapa, 1953) obtained the statistical characters of
combined output of various methods of combination, based on the foregoing
formulas.

Some of them are summarized in the following, where the notations M(y, m)
and M (x, m) stand for the cumulative distributions of a single output R,, and the
combined output R respectively,

Case I. Linear-addition method; R = z R,

n(l: ) — M(X -~ Ju mn)’
where (86)

1
g, ~ 20log,,n + 10log,, (1 -— 5—7’—&) J

Case II. Switching method; R = % ZR,.
M, (x, m) =~ M(y, mn). - (87)
Case III. Square-addition method; R? =) RJ2.
t=1
Mn(x’ m) = M(X — 92 mn)> }

where (88)

Case IV. Maximum-signal-selection method; R = Max [R,].
M (x, m) = {M(x, m)}". (89)

As mentioned above, the cumulative distribution of combined output M, (y, m)
can be simply determined by M(y, m) of the signal. Hence, all the statistical
characters in various systems of diversity reception can be readily estimated with
only a sheet of the m-chart shown in Fig. 2.4. For the detailed process of obtaining
the characters reference should be made to the original papers (Japan (NARAGaMI),
1956). The adequacy of our method was fairly well confirmed in some observations
(NarRAGAMI, ARAZAWA and TANARA, 1941).

4.4. Distributions of the Product and the Ratio of Two m-Variables

In the fading problems, the distributions of the product and the ratio of two
m-variables are often required. Therefore, in the following we sha.]l give them
without proof.
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(a) Distribution of the product of two m-variables. Now, if R, and R, follow
M(R,, my, Q) and A(R,, my, Q,) respectively, then the distribution of their
product R, = R, R, is given by

P(B,) = JZQZK EQYMHWWJJ@QR) (90)

where K (z) is the modified Bessel function of the second kind.

myMy

Using the transformation X, J
form

R,, where QO = R 2, we get a simpler

4 Xm1+m,~—1
X,) ="
PE) = D) Tmg)
These properties of this distribution were discussed in some detail (NAKAGAMI and
Ora, 1957).
(b) Distribution of the ratio of two m-variables. Next, let R, and R, follow
1, my, 1 ) and A(R,, my, Q,) respectively, then the distribution of the ratio

/ —= is reducible to

_ D(my + my) (m, g~ my o\ Tt
Mﬁww@Fﬁﬂﬂ ®2)

This form of the distribution is the same as the well-known “F-distribution” due
to SNEDECOR, but the marked difference in their parameters should be remembered
as previously mentioned. The above formula is due to Ora (1956).

(2X,). (91)

4.5. Intensity Distribution Due to Random Interferences

Now, we shall take up a more general type of interference, in which the
amplitudes and phases of component waves are mutually independently distributed
according to certain statistical laws. The resultant intensity in this case, of course,
may be expressed by (41).

(a) Case of a large number of component waves (NAKAGaMI and TANAKA, 1951).
For a large number of component waves we may assume the central limit theorem,
i.e. the Gaussian distribution of the components z and y given in (41). Under this
assumption we are able to reduce the intensity distribution p(R), after some
calculations, to

Pp(RB) = \2/—%} e‘("R’“‘As)ngoeﬂL.{%—z (é — i) }Izn(2R\/m) cos n®,  (93)

where ¢, is Neumann’s factor, and

1
2\a B «

q:%sin(él—éz), tan®=%tan(6l—62), a =0 + B, B =0¢ — B,

A, B, 0, §;, and §, being the same as in (47).
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In the particular cases « = § and 4 = 0, (93) yields the exact forms of the
n- and the g-distributions, respectively. The characteristics of this distribution
were fully discussed above. Of course, it also approximates, within a small error,
to M (R, m, o + A?) if m is given by (47).

(b) Case of arbitrary number of component waves (NaARAGaMI, NIsHIO and
Yoxor, 1954). Assuming first that the phases 8,’s are uniformly distributed over
the range (0, 27), we are able to express p(R), without any restriction, as

Pp(R) = Rf A o(AR) HJO(M ;) di (94)

Next, if we make the assumption that the amplitudes r,’s follow #(r,, m,, Q,)
independently, then F(1) may be reduced to the form

n s Qz
Foy =11 {rmdw L,,,,,_l( i /12)}. (95)

1=1

In the simplest case m, = 1, i.e. the Rayleigh distribution, F ) takes a simple
exponential form, and p(R) also becomes Z(R, 2Q,), as is well known. In the
other cases, it seems to be difficult in general to express p(R) in a compact form
with known functions. However, the general discussions in Section 3.1 enable us
to approximate to it as follows:

p(B) = M#(R, ym, 2Q,), (986)
where
(2Q,)?

i Q‘z) 2%99.
i=1(m + Y

i

o =

The approximation in the above expression improves as n and m increase, and is
good enough in fading practice for all values of » and m.
For the special case, Q; = Q, m; = m the parameter ym reduces to
m 1
o =
1 1
Y (97)
n  nm
From this, we can arrive at very important conclusions: (i) As n — o, always
om— 1. (ii) When m > 1, always m > ¢m > 1. (iii) When 1 > m > }, always
1> gm >m. (iv) When m =1, ym = 1 always. These conclusions are of great
use not only in better understanding the fading mechanism, but also in practical
applications.

4.6. Effects of the Parameter Variations on the m- Distribution
(Japan (NARAGAMI), 1955)

We shall now confine our attention to the effects on the m-distribution caused
by the fluctuations of its parameters m and Q,. These effects are of considerable
importance in the estimation of the distribution over a long term, where the para-
meters can no longer be considered as constant.
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Now, let p(ry, m) be the joint distribution of the parameters = and m, then the
distribution of 7, according to (14), can be written as

w0 o0
p(7) =f dmf M (T, M, To)P(Ty, M) d7y. (98)
3 —
Our recent observations and some calculations seem to support strongly that

plrq, m) = p(ro)p(m),

¢~ RAN QA Im =1/} (99)

1 1 1
p(—‘) e T, e

m/  V2nd plro) =7 2m0,
But these relations, with the exception of the last, are not yet established.

Therefore, in the present discussion, only the effect of 7, or Q will be considered.
After some calculation, we get a final expression

e — (/206" {(rg— )}

plr) =~ C M (v, m, 7o)8(r, m, 7y), (100)
where
Sy M . 2002m2(1 — Q)z}
S50 = i g " 3 o)

Q = M=% (¢ — Normalizing factor, nearly equal to 1.

Numerical calculations (Naxagamr, Tavakas and KanNgHISA, 1957, see Figs. 4.3
and 4.4) clearly indicate the remarkable tendency that, with the increase in fluctua-
tions of 7, or Q, p(r) gradually approaches a log-normal type of distribution. For
example, even in the extreme case of m equal to 4, p(+) may be taken as a log-normal
form for larger values of o, than 10 db, and the same will hold for the Rayleigh
distribution for values of ¢, beyond 7 db.

These properties of the m-distribution apparently account for GROSSKOPF’s
(1953) observations.

4.7. Some More General Forms of the m- Distribution

In general, we may obtain in various ways many other forms of distribution
which are of a more general nature than the generalized forms of the m-distribution
previously described. We next exhibit two such forms.

One form is

2pR e““l"’)(“")“"”}la_l{\/ER(\/Z + \/p)}

I (}. —p _ _ _
=1\ x I,_{V2R(VA — Vu)}, (101)

where «, 4, p and u are the parameters, being expressed in terms of the moments.
In the limit A — u, it reduces to the generalized n-distribution. Its characteristic

function is given by

p(R) =

pe—Z(l+#)/p(2+p) (1 _ I“)
a—1 -

93(2):1“— ()‘;”)(z+p) z2+p

(102)
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Another form is

»(R) = 2T'(2y) (R2p)* ™"

~ 1
I'(«) \/AM,_a,v_*(—z)
P
where «, ¥, p and A are the parameters. In the special case 2v = «, this also reduces
to the generalized n-distribution. And its characteristic function becomes
o —¥ e~z/21p(z+ p)

2R
P ( ) ,

Vi (103)

Generalizations such as these might describe much wider varieties of distri-
butions in actual fading. They are of much theoretical interest, but of less practical
importance because of their formal complexities. And we shall give no further
discussions on these subjects.

5. METHODS OF APPROXIMATING A GIVEN DistriBuTioN FuncTIiON
WITH THE m-DISTRIBUTION

There often arise, in theoretical treatments of fading, strong demands for
suitable methods of approximating to a given distribution with a specified distri-
bution function, especially with the m-formula. These methods may be found in
some different ways. Some of them are given in the sequel.

5.1. Methods Based on the Laguerre Polynomial Expansion
(Nagacami, TANARA and KANEHTSA, 1957)

Generally speaking, the distribution function of a variate defined in the positive
range is usually expansible in terms of the Laguerre polynomials. Making use of
this form of expansion, we are able to establish the method of approximating to a
given distribution of any positive variate by means of the m-distribution. On this
form of expansion we give some brief accounts in the following.

(a) A more general form of the expansion. In the first place, we shall derive in
a more general manner a form of expansion in terms of the Laguerre polynomials,
without rigorous discussions. '

In virtue of the known formula (e.g. ERDELYT, 1953a)
eat) oVl = S — L@ (105)
* n=0 I‘(n —+— o + 1) ’
F(A) in (32) may be expanded in the form

m-1(™ )
© Lﬂ (QE {2’2 Q}n

F() =T —(Q/4m)22 i
W4) = L(m)e ngo T ) (4 m (106)
_ 2
where Q =82, m =v 41 = g s 88 usual.
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Evaluating (31), after substitution into it from (105), we can get the required
expansion

© 1 T

This formula not only affords a general formulation of the expansion in terms of
the Laguerre polynomials, but clearly indicates the underlying principle of this
method of approximation. Resorting to this formula we are able to obtain, at

least in form, the required approximation by only taking the average L7~! (g 52) .

(b) A method of expansion by means of ¥,(4). For the following two methods,
we shall only give the reduction process, for the underlying principles and some
examples of these methods have already appeared in the foregoing discussions.

At the first step, using a given distribution, calculate F,(1) according to (32),
and expand it in the form

F,@4) = e““""")"{l + Zanzzn}. (108)
e
Next, in virtue of the formula (e.g. ERDELYI, 1953b)
ex*2L,*(x) =% J; we—‘t”+ g (24/2t) dt, (0 > —1),
calculate p(R) according to (31), then we can arrive at the final expression

p(R) = A(R, m, Q){l +§322mﬂnz (g)"m-l(gm)}- (109)

(¢) A method of expansion by means of ¢(z). First, with the aid of BurManN’s
expansion theorem, expand ¢(z) in the form

2 b z n
1 143k |

—z 41
m

Next, using the known formula (e.g. ERDELYI, 1954)

+iw n
lf“ w4 Mtve-m;(t), (111)

27 Jooiw© (2 - 1)PFF O T T Ly + 1)
calculate p(R) according to (37). Then we finally have the required expansion
o v 1 ()
= — L?1 - R?% 112
P8 = A O+ 30, O (B R),

which is of course equivalent to (109).

These forms of expansion are of much theoretical interest, but they are rather
inconvenient for numerical calculations, the reasons for which will be found in the
following descriptions.
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5.2. 4 Method of Expansion in Terms of the m-Distribution

Before proceeding to the particular types of expansion in question, we shall
show an illustrative example suggesting the underlying principle as well as the
remarkable properties of this method.

(a) An illustrative example. Now, for the sake of simplicity, we take up the
n-distribution. Its characteristic function is, as shown in (50), expressed by

1
$(z) = Zzo + 1)

Here if we expand the exponent as

o Z.R 2 n
$z) = (02 + ng n!(az -{(i 1) ’

then it yields immediately from (111) the Laguerre polynomial expansion

iy 2R g 30" () (B a1

g

e @z + D) R?, (113)

In this series, the terms alternate in sign and the polynomials also oscillate in
value. Due to these undesirable properties, this form of series is inconvenient for
numerical calculations.

On the other hand, if we expand ¢(z), after a slight modification of the exponent,

in the form
$e) —emmm S ( : )W(R*oz)n (115)
on!\zo + 1 o/’

then by virtue of its inverse transform, we may get a particular form of series

© 2\ n
p(R) = e~ &Y ;Ll-'u/l(R, n + 1, o(n +n))(%’~) : (116)
n=070:

This form of series, as is evident, has the following distinguished properties.
(i) It consists of a family of the m-distribution. (ii) The series consists only of
positive terms. These properties are best utilized to advantage in the approxima-
tion of a given distribution function; e.g. they enable us to obtain the required
approximation within a small error, using only a sheet of m-chart shown in Fig. 2.4.

(b) Expansion of certain more general distributions. In a similar manner, the
generalized n- and the generalized g-distributions are readily expansible as

0 2n
N (B, Ry, o) — e~ RS %j(ze, v 4+, (v + n)), (117)
n=0 H

R.2
where 72 = —% | ag usual, and
[

25, (R, «, ) = (221“22, > )"KZ"./(R 20 +n), 2Q,(v +1),  (118)
where (), =v(» +1)...(» +n —1),K = ﬁ—ﬁ nd Q, = 2ap , respectively.

@+p)" «+p
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More general distributions (101) and (103) are also expanded in this form, as is
easily seen from their respective characteristic functions.
In the case of the distribution (93), its characteristic function may be written
as
1

" Vi + DEB + 1)

which indicates again that this distribution may also be expanded in the form of a
positive term series similar to (118). But, in this case, a less complex positive term
series in terms of the M -distribution (74) can be readily obtained from (119).

In conclusion, from the foregoing discussions and some general considerations
on fading mechanisms, the above forms of positive term series, which are constructed
with the families of certain specified distributions, might well describe the intensity
distributions under most conditions in actual fading.

oP@a+1) + () +1) — (plata*h) (119)

$(2)

6. JOINT DisTRIBUTION OF Two m-VARIABLES AND CERTAIN
oF ITs PROPERTIES

We are now in a position to derive the joint distribution of two variables each
of which follows the m-distribution, and further to discuss the basic characteristics
of the distribution.

6.1. Special but Exact Distribution (Naxacami, Tanaxa and KaNEHISA, 1957)
In order to derive the exact distribution, we start with the following relations
R12 == ril + "%‘2 + .. + 'ri”, .R22 = 7‘%’1 + 1‘%2 + e + 7%’”. (120)

(a) Derivation from the Rayleigh distribution. Now, let r; ;s and r, ;’s follow
L(ry Q) and L(ry ,;, Q,) respectively, then, as is already proved, R, and R,
follow (R, n, nQ,) and A#(R,, n, nQ,) respectively. And further let

c(ris 13))

e raeraiall (¢ =J) 1
)V (3,) JL (121)
=0 (i #J),

then, as is already discussed (NaAKAGAMI and Sasaki, 1943), the joint distribution
of r, ; and r, ; takes the form

4ry, 72,5 —(02g7% + Qyra? Q051 — 21,49 1\/;’; ..
Py e ) = 2 ¢ (Qgrty o+ Qyrg® P Qy(L—pg)y | T 108 27 7 P2 (E =3
T T 00,00 — py) Waga — ) ’
=ZL(r6 H)L(ry,5 Q) (¢ #3), (122)
where Q,; :7712:-, Q, =r_§’;(i =12 ...,n).
From this, the characteristic function ¢(z,, z,) can be reduced to,
1
$(z), 25) = (123)

(2 + og)(za + xg) — ¥’
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where
1 1 Q,
- = o, W =S
¢ Q,Q4(1 — py) ! QQy(1 — py)
Vo 0 (124)
» P2 % 1

- Q192(1 - Pz) ,J

By virtue of the formula (VOELKER and DoETscH, 1950a)

- \/@—2(1 — pa) ’

(_}‘)2 c+jo c+j°°e(21x+z’y) dzldzg
27j] Je—jw Jo—jwo [z + o) (zg + ag) — %]
_ (xy)(v—l)ﬂ — (@ @+ ogy) E "y
= Ty e W], (2yVay), (125)

we can arrive at the required distribution
4(R, Rz)ne—-(ﬂ,Rl’+ 2, Ry®){0;,Q4(1 pp)} 2\/;; R.R,
I'(n)Q,Q,(1 — Pz)(\/my;? "_l{\/m(l - Pz)]
= M(R,, n, nQy; By, n, nQy)p,), (126)
where nQ, = ,Q, = R;2, nQ, = (Q, = I?

As to p,, it is of interest to see that

c(R%, Ry?) — pg = C('r%,i: 7'%.;')
VVEBAV(RY T VIV

p(Rl’ RZ) =

G=1,2...,n). (127

. In the above discussions, » is restricted to a positive integer, but even if » is
assumed to be any positive number not less than 4, the formula (126) satisfies the
necessary and sufficient conditions to be a joint distribution function. Therefore,
it can be extended to a more general case, where n stands for a positive number not
less than %.

(b) Derivation from the m-distribution. Taking (126) as a basis, we shall also
derive a more general form of the distribution.
Now, assuming that

Py, Ta,5) = M1y v, Q5795 9, Qzle) (¢ =) } (128)
= My, v, Q) M(r,; v, Q) (@ #3),
we obtain, in like manner, the characteristic funetion
1 n
Hler ) = (c”{(zl + o)z + o) — 72}”) ' (129)

And by the aid of (125), we can readily get
P(Ry, Ry)) = M(Ry, nv, nQy; Ry, nv, nQy|p,). (130)
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6.2. General but Approximate Distribution
(e.g. NaRAGAMI and NisHIO, 1953, 1955)

Further, we take up a more general case

R, =&z, 2, . . ., 2,), Ry = &2y, 2y, . . ., 7,), (131)
where £, and &, are given functions of random variables x;, #,, . . ., #,. Even in this
case, the characteristic function can be reduced, in a similar way, to

1
(295 29) =~ , 132
#len 7 {(0QIz1 + 1) (ogzzz + 1) T 2 } (132)
m m P2 m? %129
where
(& — 22 ’ P VVETV(EY oo o2 = &2
Here, if we use the formula (VorLKER and Dorrsch, 1950b)
1 0 oo _ B xy) (8—-1)/2 (2\/;)
—_— (pz+vy) @+nie+n{2d Y d
F(s)(b+1)LL" e (b Tea\g77) Sy
1 (o] <),

(g + D0+ D) + bl (Rls) > 0),
we can readily arrive at the final result

P(Ry, By) ~ M (R, my, {y; By, my, oﬂz,Pz)- (134)

6.3. Some Properties of M (R, my, Q;; R,, my, Qylp,)
(NaxacamI and Ni1sHIO, 1953, 1955)

The properties of this distribution have been fully discussed. Certain of them
are summarized below:

(a) Expansions of the distribution function. In virtue of the Hill-Hardy
formula (ErD¥LYI, 1953¢)

S

. n!
Aol +a 4+ 1)
we can readily expand the distribution function in a form of series

"”(Rl’ m, Ql;‘ Rz’ m, Qatpz) = "l(le m, Q’l) /(Rz, m, Qz)

< olm) . (mB*_ _ (mRB?
X2 T 4 o) P08 | o, ) o, ). Gal <. 039

where L;(x) is the generalized Laguerre polynomial, as usual.

]

— 1 —
(1 —13) exp( ¢ -

Lna(x)Lna(y)tn> (ltl < 1! a > _1):
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Next, we shall show the expansion in terms of the m-distribution.
Expanding the characteristic function (123) in the form

_ 1 my>
“%”"MQ+mw+mwb+@+M@+m
m(m + 1) ()"

2! {(zr + ) (23 + )} T },

and referring to (65), we finally get the required expansion
w5 (M)
P(Ry, Ry) = (1 — py) ngo )

n! .
X MRy, m 4+ n, (m + n)QQ)) M( Ry, m +n, (m + n)Q,). (136)

where (m), =m(m +1)...(m +n —1), Q) = (1 — pg)Qy, Q) = (1 — p,y)Q,.
(b) Covariances and correlation coefficients.

7%

n )
e N )

0,0 /2P2(m ﬂ)
® 2 n n
) s b~ 5 3 imin) — 1), 39

c(By", Ry) = (

pn — c(R,", Ry")
" VV(RMV(RY)

o)
1

- Fm)I'(m + n) — I‘z(m +g

’—53_‘2‘;7”/;[72)- I}Z’pa. (139)

(c) Amplitude characteristic function. In two different manners, F, (1) is
reducible to
F, A = e—(1/4m)(nllla+nz,=) Am_ltj(w)}_ (140)
m
Based upon the above relations, we (NAKAGAMI and NisHIO0, 1955) established

the unified theory of diversity effects, and also discussed in some detail the depen-
dence of these effects on the coherency of the waves.

6.4. The Distribution of the Sum of Squares of Two Correlated m-Variables
(Naxaeamr and Nisgio, 1955)

Now, we consider the distribution of the sum of squares of two variables which
follow (130). The characteristic function in this case can be reduced to

1
) =l — el F a)F — FH™,

(141)
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where
—_ato
20105(1 — py)
From this, we obtain the final result

2RV'm o~ @1t oD RH(20,)(1— p,)(R
{o105(1 — Pz)}mp(m 28
i.e. a type of the generalized g-distribution.

For a small value of R, p(R) can be approximately written as

PUR) = (R, o (143)

ﬂzz . 0’1=———, 0'2:

(01 — 03)® + 401040, Q 9}
40,%0,%(1 — p,)? m m’

-1
p(B) = )" rem e

where § = (1 — p,).

These formulas will be found to be useful in some practical applications, e.g.
in a dual diversity reception by the square-addition method they afford the means
of estimating the degree of improvement available from this method of diversity,
the diversity effect being reasonably expressed by the quantity S in (143).

6.5. Distributions of the Product and the Ratio of Two Correlated m-Variables

Before concluding, we shall add two distribution formulas of the product
and the ratio of two correlated variables R, and R, which follow #(R,, m, Q;
R2’ m, Qzll’z)-

The distribution of the product R, = R, R, is given by Nakacam1 and Ora
(1957) as follows: '
41 — py)"

W z,m,, 12V pyx,) K o(22,), (144)
2

px,) =

where
x, = 91&_\4_—1 + pofm R,
\/-Q(l — po)
This form of distribution appears in certain fading problems. Its applications

will be found in the above reference.

2
Next, the distribution of the ratio F == %— g— takes the form
1

(1 — pm1 + By

and Q= R,*

_ Fm-1 4p2F —(m+1%)
p(F) = B(m, m) — m} s (145)

where m; = m, = m. This formula is due to Ora (1956).
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