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Abstract—This paper summarizes the principal results of a series of statistical studies in the last seven 
years on the intensity distributions due to rapid fading. 

The method of derivation and the principal characteristics of the m-distribution, originally found 
in our h.f. experiments and described by the author, are outlined. Its applicability to both ionospheric 
and tropospheric modes of propagation is fairly well confirmed by some observations. Its theoretical 
background is also discussed in detail. A theoretical interpretation of the log-normal distribution is 
given on the basis of this formula. An extremely simplified method is presented for estimating the 
improvement available from various systems of diversity reception. The mutual dependences between 
the m-formula and other basic distributions are fully discussed. Some generalized forms of the basic 
distributions are also investigated in relation to the m-formula. Two methods of approximating a 
given function with the m-distribution are shown. The joint distribution of two variables, each of 
which follows the m-distribution, is derived in two dijQferent ways. Based on this, some useful associated 
distributions are also discussed. 

1. INTRODUCTION 

I N recent years, radio engineering requirements have become more stringent and 
necessitate not only more detailed information on median signal intensity, but also 
much more exact knowledge on fading statistics in both ionospheric and tropo
spheric modes of propagation. 

Such circumstances have forced a large number of extensive experiments and 
numerous theoretical investigations to be performed on the intensity distribution 
of fading under various conditions. In order to describe closely the results of 
these comprehensive observations, diverse forms of the distribution have been 
presented up to now. Among them, the following three may be regarded, in view 
of practical uses, as the representatives: 

One is the Rayleigh distribution 

i ) ( Ä ) = ^ . - < * ' / " ) , (1 ) 

where Ω = i?^, time average of R^, This was, as is well known, derived theoretically 
by Lord RAYLEIGH ( 1 8 8 0 ) . Since PAWSEY'S ( 1 9 3 5 ) experimental verification in 
h.f., many investigators have also confirmed the applicability of this form to fading 
in both modes of propagation, under scattering conditions at least. 

Another is the log-normal distribution 

Pix) = e - < ^ - W , (2) 

where χ denotes signal intensity in terms of db. This seems to have been first 
3 
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and 

(6) 

introduced in fading problems by GROSSKOPF (1953) to describe his extensive 
observations which were made over a relatively long period. Its theoretical 
background is approximately explained in a general manner, as is weU known, 
by the property of the logarithms of positive variates. The author (Japan 
(NAKAGAMI), 1955) gave it a satisfactory explanation in connection with his 
m-distribution, by taking into account the average-intensity variations which 
ought to exist for such longer intervals as in GROSSKOPF'S observations. 

A third is the m-distribution, named and proposed by the author, whose 
functional form is 

^^^^ " r(m)Q- ' ' 
where Ω = R^, and m is 

( ^ 2 ) 2 
m = = > \, always, (4) 

(i?2 - Ä 2 ) 2 

that is, the inverse of the normaUzed variance of R^, This formula was deduced 
by NAKAGAMI (1943) from his large-scale experiments on rapid fading in h.f. long
distance propagation. Some recent observations in h.f. (e.g. WAMBECK and Ross, 
1951) seem to well confirm its applicability. The author also found in some recent 
data that his distribution accounts for the observations at 4000 mc (NAKAGAMI, 
1951) better than the other distributions, and that its applicability can be extended 
without difficulty to a wider range from 200 mc to 4000 mc (NAKAGAMI and 
FujiMURA, 1953). Further, some more recent observations (e.g. MATSUO and 
IKEDA, 1953; BULLINGTON, INKSTER and DURKEE, 1955, see Figs. 11 and 12) 
seem to support strongly this formula for tropospheric fading under various 
conditions. It is of interest to remark that this formula can be regarded to be, in a 
sense, a generaUzed form of the Rayleigh distribution, for it includes the latter 
as its special case of m equal to unity. 

On the theoretical side, on the other hand, in addition to the Rayleigh 
distribution, the following two compact forms of distribution, 

σ \ a J 

^**'=^'«[IG-;)]' 
were presented by NAKAGAMI (1940a) and by NAKAGAMI and SASAKI (1942a), 
respectively. These were found, in 1939 and in 1941 respectively, in a series of 
their theoretical investigations on fading as particular solutions of the so-called 
problem of random interference, which is reasonably considered to be the main 
cause of rapid fading. The former, named *'7i-distribution", is frequently used 
in radio engineering. The latter, named *'g-distribution", also appears in communi
cation problems. More recently, we (NAKAGAMI, W A D A and FUJIMURA, 1953) 
proved that the m-distribution is a more general solution with good approximation 
to the random vector problem. At the same time it was also shown that the 
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m-distribution includes in a particular manner the two distributions stated above. 
Also, the mutual dependences among their parameters were fully investigated 
(NAKAGAMI, WADA and FUJIMURA, 1953), when the m-distribution and the 
other distributions were mutually transformed. 

The foregoing descriptions suggest that the m-distribution is well qualified as a 
representative distribution at least at the present status. In further developing 
the foregoing theories of the m-distribution, we (NAKAGAMI and NISHIO, 1953, 
1954a, 1955) have also established in two different manners the joint distribution 
function of two variables following the m-distribution law. Based upon this 
formula, a new unified theory of diversity effects (NAKAGAMI and NISHIO, 1953, 
1955) and a more general, but the simplest, method (NAKAGAMI and Υοκοι, 1953; 
NAKAGAMI, 1953) of evaluating the improvements available from various systems 
of diversity reception have been proposed. 

Further, an entirely new method (e.g. NAKAGAMI, TANAKA and KAKEKO, 
1954) of observing long term distributions was found, based on the foregoing 
theories, in order to avoid various inconveniences in the usual methods of 
observation and in handUng quantities of data. Using this apparatus, we are now 
obtaining much useful information on fading (e.g. NAKAGAMI and TANAKA, 
1956) . 

Most of the original papers of the author are written in Japanese, and it has 
long been his regret that they appear to be little known abroad. Dr. Hoffman's 
kind invitation to write a paper based on our summary report (NAKAGAMI, 
TANAKA and KANEHISA, 1957) for these proceedings was therefore well received. 
The major portion of the present paper is a condensation of that report together 
with some unpubhshed results, but because of space limitations, the graphs and 
references are cut to the minimum. For more detailed information on our results, 
readers are referred to the original papers, which are completely hsted in the 
bibliography at the end of this paper. 

2 . OUTLINE OF THE ORIGINAL DERIVATION OF THE m-DiSTRiBUTioN 
AND SOME OF ITS BASIC PROPERTIES 

2.1 Outline of the Original Derivation 

(a) Time interval of observation. In order to observe rapid fading alone, 
i.e. to remove the effect of slow fading, the length of observation interval should 
be carefully chosen, because the effect of slow fading wiU be more predominant for 
too long time intervals, while the statistical meaning of the observed distribution 
becomes ambiguous for too short time intervals. Therefore, there must exist 
an optimum length of observation interval. This length, of course, depends on 
various factors such as frequency, propagation path, the time of the day, etc. 
After careful prehminary tests for h.f. long-distance propagation, the interval was 
determined as about three to seven minutes in our experiments. 

(b) Apparatus and observed waves. A vertical antenna, about 1-5 m long, 
was used, the output of which, after ampUfication, logarithmic compression and 
envelope detection, was applied to the deflection plates of a CR tube. The 
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Table 2 .1 

station Distance 
(km) Call sign Frequency Date No. of 

plates 
No. of 

plates m < 0-5 

Changchun 1,500 JMP2 10,065 kc Apr. 1941 34 0 
Palau 3,200 JRAK 11,740 kc Oct. 1941 15 0 

( KNY 19,080 kc Nov. 1940- 67 1 
8,240 Oct. 1941 

San Francisco 8,240 KGEI 9,670 kc Oct. 1941 17 0 
I KWU 15,355 kc Oct. 1941 14 0 

Berlin 8,900 DFZ 20,020 kc Apr. 1941 19 0 
Taipei 2,200 JIB 10,535 kc Oct. 1940- 265 0 Taipei 

Dec. 1941 

(c) Example. An example of the records is shown in the photograph, in which 
ordinate and abscissa indicate each of two spaced-antenna outputs in decibels 
respectively. These records were used primarily to estimate the amount of 
diversity effects which can be expressed in terms of the correlation coefficient 
between the two outputs, and secondarily to reduce the functional form of intensity 
distributions. This method is, incidentally, similar to that of G. R. SUGAR ( 1 9 5 4 ) . 

(d) Derivation of the distribution function (7) . By inspection, the functional 
form of the measured distributions had been inferred, at least approximately, to 
take the form of (7 ) . To check this, they were first plotted on a system of log-log 
co-ordinates, whose ordinate and abscissa were so chosen that (7) might be 
represented as a group of straight lines having slopes proportional to the values 
of m. Almost all the distributions measured are well represented as straight lines 
on this system. Some of the representative distributions are illustrated in Fig. 2 . 1 . 

From this fact, their functional forms were determined as 

i>'(;^)=exp (7) 

where χ is the signal intensity in decibels and i f = 2 0 logio e = 8 - 6 8 6 . 
Upon normalization of (7 ) , we obtain the distribution function of db-

intensity χ 

Ml-Η = J(^(x, m, 0 ) . (8) 

movement of the spot on the fluorescent screen follows exactly the signal variation, 
which is recorded on a photographic plate placed in front of the screen. The 
required distribution was determined by measuring the emulsion density of the 
plate after developing. Special care was taken to make the measurements exact. 
The overall time constant of the apparatus was 2 milliseconds (maximum). 

The signals observed and the number of plates used in deducing the experimental 
formula are shown in Table 2.1. 
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Also, from Table 2.1, we observe that the following holds with only one 
exception, 

m > i (9) 

Using the transformations e^^^= X= — ^ , where Ω = JŜ , the time average of 

the square of intensity R, we finally arrived at the distribution (NAKAGAMI, 1 9 4 3 ) 

2m^ 

or 

p{X) = 
r(m) 

r(m)Q'» 

X2m-l^-mX'^ UÍ'íZ, TO, 1), (10) 

(11) 

This formula, defining the *'m-distribution", includes both the Rayleigh 
distribution and the one-sided Gaussian distribution as special cases for m = 1 
and m = | , respectively. 

p{X) a,náp(x)lp(0) are illustrated graphically in Figs. 2.2, and 2.3, respectively. 
(e) A remark on the m-distribution formula. This distribution is apt to be 

confused with the and the Γ-distribution from their functional similarity, but 
there exists a somewhat essential difference in the admissible range of values of 
the parameter, i.e. in the latter two the parameter is usually assumed as a positive 
integer and a positive number, respectively, while in the former we may assign 
any positive number not less than J, as is shown in (9). This significant difference 
will serve not only better to understand the m-distribution from the theoretical 
viewpoint, but also to distinguish this formula from the other distributions with 
similar functional forms. 
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'S. 

Fig. 2.3 

2.2 Some Properties of the m-Distribution 

In the following, some of the prominent features of the m-distribution, which 
are basic and useful in its appUcations, will be presented without proof. 

(a) Basic properties of JK^^ix, m, 0). As readily seen from (8), JKj^{x, m, 0) 
has the maximum value 

m = 
2m'' ^1 (m large), (12) 

at χ = 0 or J? = V ü . This relation is of practical value. For instance, if we apply 
this to an observed db-intensity distribution, the effective value of the linear 
intensity can be found at a glance. When χ ^ Μ in (8), ^^(χ, m, 0) approaches 
to the form of log-normal distribution 

^1 

Further, J(J,x, m, 0) can be generalized in a form 

2m'" 
m 

2(T - T„) 

Μ 
, g 2 ( r - r „ ) / 3 í = ^^(τ, m. To) , 

(13) 

(14) 

where τ and TQ are db-intensities of R and VΩ above unit intensity, respectively. 
Graphs of the cumulative distribution defined by 

Mix, m) = xiX' "»> 0) d^, (15) 
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are illustrated in two different systems of co-ordinates such as Figs. 2.4 and 2.5. 
These are of great use in practical applications. 

(16) 

-50 ^40 -30 -20 
X(dö) 

Fig. 2.4 

Finally, the characteristic function becomes 

φ{ζ) = ^,(χ, m, 0)e-^ άχ = m^^^'. 

(b) Moments and variances. First, the moments and the variances will be 
listed below: 

_ rim + - j ,Qw/2 /Q\„ 
W ' ^^"^ W + ^ - ^H"* +n-2)...m, Br = r(m) 

Ω 2 
F(i?2) = - , 

m 
V(B) = Ω 1 - IL 

5m' 

(17) 

(18) 

where ν and η are a positive nmnber and a positive integer, respectively. The 
same notations wiU be used throughout this paper, imless the contrary is stated. 

Next, the moments and the variances of db-intensity are shown in the 
following: 

- Μ — I MY 

8 
y j [{vW - l o g e m } 3 +Zf'{m){xp{m) - l o g e m } -f-ν'Ή]> 

(19) 

(20) 
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where ψ(χ), ψ'(χ) and ψ^ίχ) are the Di-gamma, the Tri-gamma and the Tetra-
gamma function, respectively. 

(c) The parameter m. In the m-distribution, the parameter m has an important 
meaning, which will soon be made clear. 

Now, returning to (18) we get the expression 

Ω 2 1 
m = (21) 

ν(Βη VAU')' 

where Vi^(R^) denotes the normaUzed variance of R^. That is, m is the inverse 

999 
9&0 
9<K) 
70O 
50O 
3(K) 
2O0 
ΙΟΌ 

5-0 

2-0 
K) 

0-5 

0-1 

A 
-<// 

c /// 
W 1 

1 III ^ ,m=40 

Λ / A>/ η fr, 
m=60 

/ y ^1 I 

Relative intensity {db) 

Fig . 2.5 

of the normalized variance of R^ exactly. This relation suggests the possibility to 
use m as a measure of fading range defined by — χ^, where 

Ρ = J(^X, m, 0) Αχ = JÍ^X, m, 0) d^. 

This suggestion was justified fairly well by numerical calculations (NAKAGAMI, 
1955) as 

ΛΓ(Ρ) - l o ( ^ + 0.2) logio + 1.5 db (m < 8). (22) 

From this, it can be seen that iV (̂P) is linearly proportional to 1/m, so it is termed 
^Tading Figure". 

Based upon the above properties of the m-distribution, we (NAKAGAMI and 
FUJIMURA, 1953) have proposed defining the intensity variation in actual fadings 
by the parameter m instead of by the conventional fading range. The advantages 
of this definition will be evident from the preceding discussions. 
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G(R) = \R'\p(R,R; t)dR\ (23 ) 

where p(R, R'; t) is the joint distribution function of the two random variables 
R and R\ where R' is the time derivative of R. The correlation coefficient 
between R and R' can be easily shown to vanish in almost all cases that may be 
encountered in actual fading. This property suggests that R and R' are mutually 
independent, so that (23) may be written, at least to a good approximation, as 

G{R) = f" \B'\ p(R)p{B') dB' = | ^ | χ p(B). (24) 
J— 00 

Here, we could arrive at the conclusion that the fineness takes the same 
functional form as that of the intensity distribution. This conclusion was proved 
theoretically in some special cases (e.g. MIDDLETON, 1948) and also suggested by 
some observations (e.g. MIYA, INOUE and WAKAI, 1 9 5 3 ) . As to p(R'), it is natural 
to assume that it will take a Gaussian type in general, at least to a high degree of 
approximation. Under this assumption G(R) can be easily reduced, in the case 
of the m-distribution, to 

G(R) = J--φ^O)^(R, m, 0 ) , (25) 

φ{τ) being the auto-correlation function of R, 

2 . 4 . Integral Expressions of JK(Ry m, Ω) 

The m-distribution is, like many others, often required in the form of a definite 
integral in its applications. Such an integral representation can be found in various 
forms. Among these, the two forms, i.e. the Bromwich type of contour integral 
and the Hankel type of integral, are of much convenience for the present purpose. 
Therefore, we shall outline these two forms in the following. 

(a) The expression by Bromwich's type of contour integral. This expression 
is readily reduced by the Laplace transform to 

2R 
je(R, m, Ω) = 

The path of integration is the so-called Bromwich contour, i.e. a straight line 
parallel to the imaginary axis at a distance c from the origin, c being so chosen 
that all the singularities of the integrand are on the left side of the line. 

2 . 3 . Distribution of Fineness (NAKAGAMI, KANEHISA and OTA, 1 9 5 5 ) 

In the following, we shall give a short discussion on the distribution of the 
so-called fineness, which means the rapidity of intensity fluctuations, and is 
ordinarily expressed by the average number of crossings of a specified intensity 
level per unit time. 

Now, assuming the stationarity of fading, the fineness G(R) at an arbitrary 
level R can be expressed by 



The m-distribution—a general formula of intensity distribution of rapid fading 13 

^{R, m,Q) =R ^\/o(Ai?)i_,(¿A2)e-<"/*'»>^'dA, (28) 

after some calculations, L^{x) being the Laguerre function. 
These expressions are, of course, equally valid for all values of m > These 

expressions will often be used to advantage in the following discussions. 

3. THEORETICAL BACKGROUND OF THE m-DisTRiBUTioN 

We now turn our attention to the theoretical basis of the m-distribution, and 
further to the relationships between the m-formula and the other basic distribution 
forms stated above. 

3.1. The m-Distribution as a General Approximate Solution of the 
General Problem of Random Vectors 

Before proceeding to the theoretical background of the m-distribution, we now 
give some brief descriptions on the uses of the Hankel and the Laplace transforms. 
They are of much expediency in the statistical treatments of such positive variates 
as the modulus of a vector, and the distance, in a two- or a multi-dimensional 
space, etc. 

We shall show in the following how to use these transforms in the statistics of 
fading problems. 

(a) Uses of the Hankel transform and the Laplace transform in the fading statistics. Now. 
let ξ{χ^,. . . , a;̂ ) be a given positive function of random variables ajj, iCg, . . . , then the 
distribution function of R, equal to ξ, can be formally expressed as 

p{R) = δ(Ε - ξ), (29) 

where δ(χ) denotes the ó-function after Dirac, and the bar means the average with respect to 
the random variables. 

Here if we use the known relation (e.g. WATSON, 1922) 

XJ,(XR) άλ (R(v) > -i), (30) Ö(R - ξ) = 

(29) becomes 

Ρ(^) = ;̂írF;7T—τ; I λ^^'JΛmFΛλ)dλ, (31) 2'Τ(ν + 1) J 

= 2'Τ(ν + 1) Λ,(Α^). (32) 

(b) The expression by Hankel's type of integral. From the vth Hankel 
transform, the expression 

^{R, m, Ω) = W_i(AÄ)e-W*'»)^' άλ, (27) 

can be derived without difficulty, and the transform of zero order also yields 
another expression 

where 
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This function is of considerable importance in this method, corresponding to the characteristic 
function in the usual method in statistics, and named "amplitude characteristic function of 
vth order". \{x) is a tabulated function by JAHNKE and EMDE (1943) . By the Hankel inversion 
theorem, Ρ^{λ) may be written as 

In particular. 

p(R) = R 

W = 

p(R)\(ÁR) di?. 

λ7ο(ΑΑ)ίΌ(λ) άλ, 

J^(ÁR)p(R)dR. 

(33) 

(34) 

Integrating (31) with respect to R, we are able to establish a general expression of the 
cumulative distribution in the compact form of a Hankel integral. 

In applying the expressions (31) and (32) to individual problems, the order ν of the Bessel 
function involved may be any positive value not less than —J. But it is preferable to choose 
such that 

V + 1 = = m, (35) 
( |2 _ |2)2 

because the calculation of î „(A) becomes simpler, the reason for which will be seen in later 
calculations. 

Further, in some applications of this method, it is worth noticing that if | is an n-dimensional 
vector, then the order ν of the Bessel function involved is connected with the number of 
dimensions η by the relation 

. (36) 

as is well known in the theory of the Hankel transforms. Based on this, we could treat any 
given positive variate from the multi-dimensional viewpoint. 

Returning to (29) , if we take 

Ö(R - I) = 

it yields the integral expression 

p(R) = 
2R rc+j CO 

C—JCO 
where 

Φ(ζ) = [F^], 

(37) 

which is usually called the moment-generating function. 
It is of interest to see that φ(ζ) and F^(X) are generally connected by the following Laplace 

transform 

9(s) me-" dt. (38) 

where 

g(a) = 2 2 ( ' + l ) r ( v + l ) z ' + l ^ ( z ) , « = - , 

f(t) = F,m^, t = λ\ 
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Furthermore, the applicabilities of the above two methods, of course, can readily be 
extended to the case of two or more random variables, e.g. in the case of two variables the 
distribution function is expressed, in the two methods, as 

[2'Τ(ν + 1) 
where 

and 

where 

0 J (39) 

p(i?i, R^) = 
/•c 4-/00 

c—joo 

•c+i CO 

'c-joo (40) 

respectively. 
The use of the former method is to be found in its origin with the great contributions due 

to KLUYVBB (1906) and PEARSON (1906), and also in our later work (e.g. NAKAGAMI and SASAKI, 
1942a) in a somewhat more advanced form. More recently it has been much developed in 
well-established forms by LORD (1954) and others, especially in our laboratory (e.g. NAKAGAMI, 
1954; ÖTA, 1956; OTA and NAKAGAMI, 1956). The latter method was further developed 
(e.g. NAKAGAMI, 1940b) in relation to the treatment of transient phenomena in electric circuits. 

(b) Derivation of the m-distribution (NAKAGAMI, W A D A and FUJIMURA, 1 9 5 3 ) . 
Regardless of the modes of propagation, i.e. whether ionospheric or tropospheric, 
it is reasonably supposed that the signal intensity ξ at an observing point is 
composed of some component signals r^e^^* (i = 1, 2 , . . ., TÍ) which have traveled 
on different paths, and whose amplitudes and phases vary according to certain 
statistical laws. Under these conditions, ξ may be generally written as 

i = l 
X +jy\- ( 4 1 ) 

Now, starting with (32 ) , we get 

( 2 ! ) n 4 / (3!)2 

by expanding the Bessel function in a power series. Here if we write 
(J2)2 

V + 1 = : 
( | 2 _ | 2 ) 2 

^m, | 2 = Ω, (42 ) 

and make use of the general properties of moments ( | " + » ) 2 ^ f2» χ |2» due to 
LiAPOUNOFF, then after some calculations, 1Ό(Α) can be approximately reduced to 

F,(X) - ,F,(m, 1; - = e'^^l'-^^'''L„_^(^^X^. ( 4 3 ) 

Applying this to (34 ) , and using (28) we arrive at 

p(R) - í ? J ^ " a J o ( A A ) í ^ _ i ( ¿ x^e-^mm)x^dA = ^ ( Ä , m, Ω). (44) 

The approximation in this reduction is sufficiently good enough for engineering 
problems. 
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R^ = a, ir = a ' /2r( l +^) , (49) 

In like manner, using (32), we get 
F,(X) - β-í"/*<''+l»^^ (45) 

to a high degree of approximation. By evaluating the integral (31), after substi
tuting from (45) into it, we finally get 

p(ß) iü^+i f r+y,(AJ?)e-W*<''+i»^' _ ^ ( ^ ^ (4β) 
Jo 

The foregoing reduction procedure indicates that the m-distribution arises not 
only from random interferences, but also from a more general case of random 
superposition of random vectorial elements. This theoretical evidence affirms that 
the m-distribution might be a more suitable form for both ionospheric and tropo
spheric fadings. This was fairly well confirmed by many experiments as stated 
above. 

When the central hmit theorem holds, the parameter m takes the form 

(σ -f- A^)^ 
^ (a + ^ 2 ) 2 + ( £ 2 _ ^ 4 ) + 2A^B cos 2(δ^ - δ^) ^^^^ 

where 
A' = (x)^ + (y)^ B^ = ác^+ (σ, - σ,)^ 

= Ύ(χ), Oy = Y{y), c = c(x, y), σ = + σ̂ , 

tan ái = - , tan 2ó« = — — — . 
X - ay 

From the well known inequahty c^x, y) < a^Cy, Β results, and (47) yields the 
following inequality. 

This restriction on m perfectly coincides with what was experimentally confirmed. 

3.2. The Basic DistribiMons in the Random Phase Problem 
and Certain of Their Properties 

As is mentioned above, the Rayleigh, the n- and the ^-distributions are the 
particular solutions, and the m-distribution is a general but approximate solution, 
of the so-called random phase problem, and they are all identical under certain 
specific conditions as stated below. Their properties have been fully investigated, 
certain of them except those of the last being hsted in the following. 

(a) The Rayleigh distribution. 

a 
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= σ 

(σζ + 1) 
g-[í/(«+i)]V^ 

Μ, 
η = —β=, Parameters: (σ, Β^), (Ω, η). 

ν : 

(•7 -̂0) 

(ο) The g-distribution. 

2Β 

Um J^{B, Bo, σ) = Sf(B, a) = J((B, 1, a). 

p(B) = ^ e - < * ' / 2 ) ( i / a + i / m (jß^ / I _ 1 \ 
Voiß "{2 \ß α/ 

^ = U.+ β), R = n"^r{i + ^),^,(_ . ̂ ^^^^^^ 

\/(2a + 1)(2/S + 1)' 

^ = Γ ^ \ ' Parameters: (OL, β), (il^k). 
(« + PI 

lim É(B, α, (β) = ^ ( Ä , α) ξ ^ ( i ? , 1, α), 

Um J(i?,a,/3) = ^(B,htl2). 
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(50) 

(51) 

(52) 

(53) 

3 . 3 . The Interrelations between the m-Distribution and Other Basic Distributions 
(NAKAGAMI, WADA and FUJIMUBA, 1 9 5 3 ) 

The foregoing discussions in this section maintain that the w-distribution must 
include all other basic distributions, and that if a certain part of the m-distribution 
corresponds to the g-distribution, the remaining part might also correspond to the 
7i-distribution. These dependences are definitely described by functional relations 
between the parameters. 

(a) The relation between the m-distribution and the ^-distribution. In this 
case, the basic relations between the parameters are 

1 
m Ω2 ' m > 1. (54) 

(b) The 7i-distribution. 



1 8 M i N O R U NAKAGAMI 

Än^ = - Vm^ - m, a =-(m- Vm^ - m ) , V = J ] ^= . (56) 
m m m — y ^ ^ z _ ^ 

(b) T h e r e l a t i o n b e t w e e n t h e m - d i s t r i b u t i o n a n d t h e g - d i s t r i b u t i o n . I n Hke 
m a n n e r , t h e p a r a m e t e r d e p e n d e n c e s a r e r e d u c e d t o 

A c c o r d i n g l y , for t h e t r a n s f o r m a t i o n f r o m t h e g - d i s t r i b u t i o n i n t o t h e m - d i s t r i b u t i o n , 
t h e p a r a m e t e r r e l a t i o n s are g i v e n b y 

N e x t , i n t h e i n v e r s e t r a n s f o r m a t i o n , t h e r e l a t i o n s m u s t b e t a k e n a s 

Ω . . / . Ω = — (m + Vm — m )̂, β = — (m — Vm — m^), 
m m 

j^^Jrn-Vm-^^ (59) 
m + V m — m^ 

T h e errors a r i s i n g f r o m t h e s e t r a n s f o r m a t i o n s a r e n e g h g i b l e for o u r p r e s e n t 
p u r p o s e s . 

(c) G e n e r a l a s p e c t o f t h e i n t e r r e l a t i o n s . T h e a b o v e i n t e r r e l a t i o n s a r e n o t o n l y 
o f c o n s i d e r a b l e i m p o r t a n c e a s r e g a r d s a b e t t e r u n d e r s t a n d i n g o f t h e s i t u a t i o n o f 
t h e m - d i s t r i b u t i o n , b u t t h e y are o f m u c h p r a c t i c a l u s e i n i t s v a r i o u s a p p l i c a t i o n s . 
T h e r e f o r e , w e s h o w s o m e m o r e - d e t a i l e d c h a r a c t e r i s t i c s o f t h e s e i n s u m m a r i z e d 
f o r m a s f o U o w s . 

(1) T h e m - d i s t r i b u t i o n w i t h t h e p a r a m e t e r | < m < 1 c o r r e s p o n d s t o t h e 
g - d i s t r i b u t i o n , i . e . 

^(R, m, Ω) = J ( Ä , α, β), ^(R, i Ω) = ^ ( i ? , 2 Ω , 0 ) . (60) 

(0-*ĵ -̂*l) 

(2) T h e m - d i s t r i b u t i o n w i t h t h e p a r a m e t e r 1 < m c o r r e s p o n d s w i t h t h e 
^ - d i s t r i b u t i o n , i . e . 

^(R, m , Ω) = jr{R, i?^, a), JK{R, 1, Ω) = jr{R, 0 , Ω) . ( 6 1 ) 

(3) A t t h e j u n c t i o n p o i n t m = 1, t h e f o u r d i s t r i b u t i o n s a r e a l l i d e n t i c a l , i . e . 

M{R, Ω, Ω) = JK(R, 1, Ω) = ^(R, Ω) = jr{R^ 0 , Ω ) . (62) 

To represent the ^-distribution in terms of the m-distribution, we have only to 
take the parameters as 

Ω2 Í1 4-w2)2 

° = " + ^ · * · " " Q ^ ' d U V - , - - ' ' ' ' 

Further, for the inverse expression, the parameter relations take the forms 
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3.4. Generalized Forms of the Basic Distributions 
(NAKAGAMI and NISHIO, 1954b) 

Now, we shall derive the generalized forms of the basic distributions stated 
above. These are defined as the distributions of the sums of squares of η indepen
dent m-variables. 

i?2 = + + . . . + r,\ (63) 

where r/s follow either one of the three basic distributions, i.e. the Rayleigh, the 
n- and the g-distribution. 

(a) Generah^ed form of the Rayleigh distribution. 
Case I. If r/s follow JSf(r¿, σ), then the distribution of R becomes the standard 

form of the m-distribution 
p{R) = J({R, m, Ω), (64) 

where m =n,Q. =na. Its moments, F^{X) and φ{ζ) are expressed by 

A" = ( 2 ) = 
r(m) W ' /Ω ^ Λ ™ * 

Im' + V 

= β-<"/«^7„("λ2) (m = i). 

(b) Generahzed form of the ^-distribution. 

Case II. If r/s follow J^(B, r^^, a), then the distribution of R becomes 

= e -< -^+« . ' ) / ' ' / „_ , (^ ) ^ jr^(R, B„ a), 
η 

where R^ = 2 its moments, F^X) and φ(ζ), being expressed by 

I V Bo^\ 

(65) 

(66) 

i -1 

^(z) = 
1 

(σζ + 1) 

(67) 

(σζ + 1) 

This form of distribution, named "generalized n-distribution", can be also derived 
by a procedure similar to that in section 3.1. 

(c) Generalized form of the ^^-distribution. 
Case III. If the r/s follow ¿(r^, α, β), then the distribution becomes 

2v'i^i?"e-(«'/2)(i/a+i/^) 
p(B) = 

(aßr 
^ J„(Ä, α, β). (68) 
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Its moments, F^(X) and φ(ζ), being expressed by 

Γ(») - · \ i · i - 2 ι (69) 

= .-*·«'Λ,._„4ί ϊ (. - ή . = ^ ,,,'^ ^ . 
This form of distribution, named ''generahzed g-distribution", can be also derived 
by a procedure similar to that in section 3.1. 

It is of interest to see that the above reduction procedures of the generahzed 
forms (66) and (68) require their parameter τι to be a positive integer, but the 
necessary and sufficient conditions of a distribution permit it to take any positive 
number not less than unity at least. Therefore, they should be accepted in this 
wider sense under the name of the generahzed forms. 

(d) Their interrelations in a particular case. 
Case IV. Interrelations under specified conditions. 

Um J„(i?, α, β) = hm J^„(i?, R^, σ) = ^ ( i ? , η, na). (70) 

(e) Further generahzations of the distributions. As is easily observed, the 
above distributions are further generahzed based on the relation (63) as follows. 

Case V. If the r/s follow c/^(r¿, m, Ω), then the distribution of R is reducible to 

p(R) = ^{R, nm, ηΩ). (71) 
Case VI. If r/s follow J^^^ÍTí, Rq,í, σ), then the distribution of R can also be 

reduced to 
p(R) = ^,(R,Ro,a), (72) 

where ν = Σν^, R^^ = ΣRli, 
Case VII. If r¿'s follow Jy^(r„ a, β), then the distribution of R can also be 

reduced to 
p(R) = É,(R, OL, β), (73) 

where ν = Σν^. 
These reproducible characters of the generahzed forms are of great importance 

in the theory of these distributions. Further, their parameter interrelations are 
also similar to that of the basic distributions. 

4. SOME FURTHER CHARACTERISTICS OF THE m-DiSTRiBUTiON 

In this section, some further descriptions on the characteristics of the m-
distribution, which are of great use in practical apphcations, are briefly given. 

4.1. Distribution of the Sums of Squares of m-Variables 
(NAKAGAMI and WADA, 1953) 

Here we shall consider the distributions of the sums of squares of some indepen
dent m-variables. 
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(a) Special case. At first, we consider the case of two m-variables. 
Case I. Let and follow ^(r^, m ,̂ Ω̂ ) and ^{r^, mg, Ω2) respectively, then 

the distribution of their sum and its characteristic function become 
2 -(R^2)iljai + lla^) 

and 
( - - - ) ' 

φ(ζ) = 
(σ^ζ + 1)"Ήσ2Ζ + 1)"" ' 

respectively, where Μ„^μ(χ) is the Whittaker function, and 

(74) 

σι = — 
mi μ = V = 

— m¡ 
mj · 2 ' ' 2 • 

This distribution plays an important role in the author's theory, and is termed by 
him the "Jlf-distribution". 

Case II. In a special case m^ = = m, (74) can be reduced to a simpler form 

p{R) = ä^JB, σ^, σ,). (75) 
Further, in a more special case, m^ = mg = m and Ωι = Ω2 = Ω we get the 

simplest form, i.e. the m-distribution 

p(E) = JI((R, 2m, 2Ω), (76) 

as it is readily supposed to be. 
(b) Greneral case. Next, we shall proceed to a more general case 

i?2 = a^r^^ + a^r^^ + . . . + a,r,\ (77) 
For simplicity, the following discussions will be confined to some distributions 

under certain conditions in fading practice. 
Case I. If r/s are distributed according to ^Κ{ν^, ιη^, Ω )̂, and if the conditions 

^ = ^ = . . . = — and a¿ = 1 are satisfied, then we have 
m̂  mg m^ 

p(B) = J({R, Σm¿, ΣΩ^). (78) 
Case II. If the r/s are distributed according to cx̂ (r,., m„ Ω )̂, and if the a /s 

satisfy the conditions a. = ^ 1 ""t" ^ 2 "|" · ' · ^γ^^^ have 
mi -f mg 4- . . . + 
p[R) = J((R, Zm,., ΣΩ,.). (79) 

Case in. If the r/s are distributed according to ^(r^, m„ —V then we have 
approximately ^ 

p(R) - ^(R, ΣΩ,), 

(80) 
where 
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4.2. Distribution of the Sum of m-Variables 

Next, we consider the sum of η independent variables 

(81) 

where r/s follow the m-distribution ^(r^, mi, ili). After some rather complex 
calculations, in this case, we arrive at 

p(R) - ^(B, om, οΩ) (82) 
approximately, where 

,a = B^=na+ n(n - 1)Ω ^'^^2^^ n^^ll - ^), " I V / rriT^m) \ 5m/ 
(Br (83) 

«m = =f(m,n)mn. 
(B^ - i?2)2 

The functional form of /(m, n) is rather complex, but the numerical values are 

0-9 

nearly equal to unity for all values of m and n, as illustrated in Fig. 4.1, so that the 
parameters in (83) are approximately reduced to the concise forms 

om mn, η^Ω. (84) 

It is very important, in this case, to notice that the distribution in terms of 
db-intensity χ can be closely expressed by 

2(mn)'^'' (85) 

This relation is of great use in practical apphcations, as will be shown later. It 
was first observed in our experiments on diversity receptions (NAKAGAMI, AKAZAWA 
and TANAKA, 1941), and later proved both theoretically and numerically (NAKAGAMI 
and SASAKI, 1942b). 
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- 2 0 l o g i o η + 10logio ( l " ¿ ) · 
(86) 

Case I I . Swi tching m e t h o d ; Β = - ΣΒ^. 
η 

M„{x,m)^M(x,mn). . (87) 
η 

Case I I I . Square -add i t ion m e t h o d ; i í^ = V B^. 
t = l 

where > (88) 
= l O l o g i o ^ . J 

Case I V . Maximum-s ignal -se lec t ion m e t h o d ; Β = M a x [iZ,]. 

M,(x,m)={M(x,m)}\ (89) 

As m e n t i o n e d a b o v e , t h e c u m u l a t i v e d i s t r i bu t i on of c o m b i n e d o u t p u t M^ix, m) 
can be s imply d e t e r m i n e d b y Μ(χ, m) of t h e s ignal . H e n c e , all t h e s t a t i s t i ca l 
cha rac te r s in va r ious sy s t ems of d ivers i ty r ecep t ion can be r ead i ly e s t i m a t e d w i t h 
only a shee t of t h e m-cha r t shown in F ig . 2.4. F o r t h e de ta i l ed process of o b t a i n i n g 
t h e cha rac te r s reference should b e m a d e t o t h e or iginal p a p e r s ( J a p a n (NAKAGAMI), 
1956). T h e a d e q u a c y of our m e t h o d was fairly well confirmed in some obse rva t ions 
(NAKAGAMI, AKAZAWA a n d TANAKA, 1941). 

4.4. Distributions of the Product and the Batio of Two m-Variables 

I n t h e fading p rob l ems , t h e d i s t r ibu t ions of t h e p r o d u c t a n d t h e r a t i o of t w o 
m-var iables a r e often requ i red . Therefore , in t h e following we shal l give t h e m 
w i t h o u t proof. 

4.3. The Basic Characters of the Combined Output in Diversity Systems 

T h e fading s ta t i s t i cs in va r ious d ivers i ty s y s t e m s a r e u n i q u e l y d e t e r m i n e d b y 
t h e c u m u l a t i v e d i s t r ibu t ion of t h e combined signal . Th i s d i s t r i b u t i o n m i g h t be 
supposed a p p a r e n t l y t o d e p e n d u p o n t h e k i n d of d ivers i ty , b u t essent ia l ly i t is 
d e t e r m i n e d b y t h e following fac tors : (i) T y p e of fading, (ii) M a g n i t u d e of d ive r s i ty 
effect, (iii) M e t h o d of c o m b i n a t i o n of c o m p o n e n t s ignals . 

H e r e , we a s sume t h a t t h e t y p e of fading t a k e s a fo rm of t h e m-d i s t r ibu t ion a n d 
t h a t t h e d ivers i ty effect is perfect . U n d e r t h e s e condi t ions , we (e.g. NAKAGAMI, 
1942a, 1942b, NAKAGAMI a n d WADA, 1953) o b t a i n e d t h e s t a t i s t i ca l cha r ac t e r s of 
combined o u t p u t of va r ious m e t h o d s of combina t ion , b a s e d on t h e foregoing 
formulas . 

Some of t h e m a re s u m m a r i z e d in t h e following, where t h e n o t a t i o n s Μ(χ, m) 
a n d MJ^x, m) s t a n d for t h e c u m u l a t i v e d i s t r ibu t ions of a single o u t p u t J?¿, a n d t h e 
combined o u t p u t Β respect ively , ^ 

Case I . L inea r -add i t ion m e t h o d ; i? = 2 ^i-
1 = 1 

JiJx, m) ^Μ{χ ran), 
where 



24 M i N O B U NAKAGAMI 

/ m ^ 2 
Ω 

PiX.) = Τ^ΤΓΤΤ^ΖΓΤ ^.«.-»..(2^.)· (91) 

This form of the distribution is the same as the well-known ''jP-distribution" due 
to SNEDECOR, but the marked difference in their parameters should be remembered 
as previously mentioned. The above formula is due to OTA ( 1 9 5 6 ) . 

4 . 5 . Intensity Distribution Due to Random Interferences 

Now, we shall take up a more general type of interference, in which the 
amplitudes and phases of component waves are mutually independently distributed 
according to certain statistical laws. The resultant intensity in this case, of course, 
may be expressed by (41 ) . 

(a) Case of a large number of component waves (NAKAGAMI and TANAKA, 1 9 5 1 ) . 
For a large number of component waves we may assume the central hmit theorem, 
i.e. the Gaussian distribution of the components χ and y given in ( 4 1 ) . Under this 
assumption we are able to reduce the intensity distribution p(R), after some 
calculations, to 

p{R) = e-('*'+*^'>J^e„/„{^' - ^]l,„(2RVp^) cos n@, (93) 

where is Neumann's factor, and 

β. 

A, Β, σ, δι, and δ^ being the same as in (47). 

g = 4 sin (ó, - Ó2), t an© = ^ t a n ( á i - Ó 2 ) , Λ = σ + Β, β = σ - Β, 
β β 

(a) Distribution of the product of two m-variables. Now, if and R^ follow 
^(Ri, Ωι) and ^(Rz, rn^, Qg) respectively, then the distribution of their 
product Rj, = R1R2 is given by 

where K^(x) is the modified Bessel function of the second kind. 

Using the transformation = ^ ^ ^ 7 ^ Rp, where Ω = R/, we get a simpler 
form 

These properties of this distribution were discussed in some detail (NAKAGAMI and 
OTA, 1 9 5 7 ) . 

(b) Distribution of the ratio of two m-variables. Next, let R^ and R^ follow 
^ ( i ? ! , m ,̂ Ωι) and .JÍiR^, ^ 2 ) respectively, then the distribution of the ratio 
^ i? 2 IR^^ . ^ , 
F = —e- / I S reducible to 
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(95) 

In the simplest case = I, i.e. the Rayleigh distribution, Fq{X) takes a simple 
exponential form, and p(R) also becomes JS?(i2, ΣΩ^, as is well known. In the 
other cases, it seems to be difficult in general to express p{R) in Ά compact form 
with known functions. However, the general discussions in Section 3.1 enable us 
to approximate to it as follows: 

p(R) - ^ ( i ? , om, ΣΩ,), (96) 
where 

(ΣΩ,)2 
am = 

The approximation in the above expression improves as η and m increase, and is 
good enough in fading practice for all values of η and m. 

For the special case, Ω, = Ω, m^ = m the parameter ^m reduces to 

η nm 
From this, we can arrive at very important conclusions: (i) As ^ -> oo, always 

ο^-> 1. (ii) When m > 1, always m > o^ > 1. (hi) When 1 > m > | , always 
I > ^m > m, (iv) When w = 1, o^ = 1 always. These conclusions are of great 
use not only in better understanding the fading mechanism, but also in practical 
apphcations. 

4.6. Effects of the Parameter Variations on the m-Distribution 
(Japan (NAKAGAMI), 1955) 

We shall now confine our attention to the effects on the m-distribution caused 
by the fluctuations of its parameters m and Ωο- These effects are of considerable 
importance in the estimation of the distribution over a long term, where the para
meters can no longer be considered as constant. 

In the particular cases ex. = β and A = 0, (93) yields the exact forms of the 
n- and the g-distributions, respectively. The characteristics of this distribution 
were fully discussed above. Of course, it also approximates, within a small error, 
to ^{R, m, a + A^) if m is given by (47). 

(b) Case of arbitrary number of component waves (NAKAGAMI, NISHIO and 
YoKOi, 1954). Assuming first that the phases ö/s are uniformly distributed over 
the range (0, 2π), we are able to express ^^(jB), without any restriction, as 

p(R) = R f V o ( A Ä ) f[Jo(λri) dA. (94) 
Jo t=l 

Next, if we make the assumption that the amplitudes r/s follow ^(r^, m¿, Ω,) 
independently, then Fq(X) may be reduced to the form 
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00 
ám - ^ . ( T , m, TO)2>(TO, m) d r Q . (98) 

Our recent observations and some calculations seem to support strongly that 

^(TO, m) -=p{r^)p{m), 

p i - \ == J _ g-(l/2^*){(l/m-l/mo)}2^ \ ^ J _ ^-(l/2V){(To-fo)}«^ 
(99) 

But these relations, with the exception of the last, are not yet estabhshed. 
Therefore, in the present discussion, only the effect of or Ω will be considered. 

After some calculation, we get a final expression 

ρ(τ) - G^^(T, m, fo)Ä(T, m, T o ) , (100) 
where 

Q = β(2/Μ)(τ-το)^ Q ^ Normahzing factor, nearly equal to 1. 
Numerical calculations (NAKAGAMI, TANAKA and KANEHISA, 1957, see Figs. 4.3 

and 4.4) clearly indicate the remarkable tendency that, with the increase in fluctua
tions of T o or Ω, ρ{τ) gradually approaches a log-normal type of distribution. For 
example, even in the extreme case of m equal to J, ρ{τ) may be taken as a log-normal 
form for larger values of σο than 10 db, and the same will hold for the Rayleigh 
distribution for values of σο beyond 7 db. 

These properties of the m-distribution apparently account for GROSSKOPF'S 
(1953) observations. 

4.7. Some More General Forms of the m-Distribution 

In general, we may obtain in various ways many other forms of distribution 
which are of a more general nature than the generahzed forms of the m-distribution 
previously described. We next exhibit two such forms. 

One form is 

^(^) = e-«^/^><^+^>+''^'>/«_i{\/2i?(\/Ä + VJt)} 

X I.-i{V2R(Vl - V^)}, (101) 

where a. A, ρ and μ are the parameters, being expressed in terms of the moments. 
In the hmit λ-^μ,ϋ reduces to the generahzed 7i-distribution. Its characteristic 
function is given by 

^^'^ ^ . ίλ-μ\. . . ^-ΛνΤ~ρ)' (102) 

Now, let p(TQ, m) be the joint distribution of the parameters TQ and w, then the 
distribution of τ, according to (14), can be written as 
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„±0 Γ(Μ + α + 1) 
F„(X) in (32) may be expanded in the form 

(105) 

ΡΛλ) = r(m)e-<"/*'») '̂ I " 7 ^ / 1̂  - ! " , (106) 
„ = 0 Γ(» + w) U mj ^ ' 

— Ω 2 
where Ω=ξ^, m=v + l = =^==^ , as usual. 

( | 2 _ |-2)2 

Another form is 

Γ ( α ) ν Λ ϋ / . , . „ _ , ( 1 ) 

where a, v, ρ and λ are the parameters. In the special case 2v = a, this also reduces 
to the generahzed ^-distribution. And its characteristic function becomes 

Generahzations such as these might describe much wider varieties of distri
butions in actual fading. They are of much theoretical interest, but of less practical 
importance because of their formal complexities. And we shall give no further 
discussions on these subjects. 

5. METHODS OF APPROXIMATING A GIVEN DISTRIBUTION FUNCTION 
WITH THE m-DlSTRIBUTION 

There often arise, in theoretical treatments of fading, strong demands for 
suitable methods of approximating to a given distribution with a specified distri
bution function, especially with the m-formula. These methods may be found in 
some different ways. Some of them are given in the sequel. 

5 . 1 . Methods Based on the Laguerre Polynomial Expansion 
(NAKAGAMI, TANAKA and KANEHISA, 1957) 

Generally speaking, the distribution function of a variate defined in the positive 
range is usually expansible in terms of the Laguerre polynomials. Making use of 
this form of expansion, we are able to establish the method of approximating to a 
given distribution of any positive variate by means of the m-distribution. On this 
form of expansion we give some brief accounts in the following. 

(a) A more general form of the expansion. In the first place, we shaU derive in 
a more general manner a form of expansion in terms of the Laguerre polynomials, 
without rigorous discussions. 

In virtue of the known formula (e.g. ERDÉLYI, 1953a) 
__d 00 Τ 
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Evaluating (31), after substitution into it from (105), we can get the required 
expansion 

This formula not only affords a general formulation of the expansion in terms of 
the Laguerre polynomials, but clearly indicates the underlying principle of this 
method of approximation. Resorting to this formula we are able to obtain, at 
least in form, the required approximation by only taking the average ^n~^{^ f^) · 

(b) A method of expansion by means of î „(A). For the following two methods, 
we shall only give the reduction process, for the underlying principles and some 
examples of these methods have already appeared in the foregoing discussions. 

At the first step, using a given distribution, calculate F^(X) according to (32), 
and expand it in the form 

n = 3 
(108) 

Next, in virtue of the formula (e.g. EBDÉLYI, 1953b) 

e-^x^l^L^^x) ί ν ί " + < * / 2 ) 7 ^ ( 2 \ / ί < ) d<, (a > - 1 ) , 
n\ Jo 

calculate p(R) according to (31), then we can arrive at the final expression 

p(R) - ^(R, m, Ω) (109) 

(c) A method of expansion by means οΐφ(ζ). First, with the aid of BUBMANN'S 
expansion theorem, expand φ{ζ) in the form 

φ(ζ) = 1 h I 

- 3 + 1; 
m I 

(110) 

Next, using the known formula (e.g. EBDÉLYI, 1954) 

Γ(» + 1) •c+joo 

U.oo (Z + 1) ,η + 1 + v dz = 
Γ(« + r + 1) 

(111) 

calculate p{R) according to (37). Then we finally have the required expansion 

p{R) --- JIÍ{R, m, Ω) r(m) rm-1 (112) 
n^s ^ r(m + n) 

which is of course equivalent to (109). 
These forms of expansion are of much theoretical interest, but they are rather 

inconvenient for numerical calculations, the reasons for which will be found in the 
following descriptions. 
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00 2n 

jr^(R, i?„ a) = e -<V/->2 —,^{R. V -f n, a{v + n)), (117) 
w=o n\ R 2 

where = —^ , as usual, and 
2^7 αοΓ « (γ\ 

^2 . ( i í , a ,^ ) = . 2 ^ ^ ^ ^ ^ - ^ ( i ? , 2(v +n), 2 Ω > -f τ.)), (118) 
(α -f- ρ) n=o n\ 

where (v)^ = v(v + \) . , . (v ^ η - l), Κ = ^ ^ and = , respectively. 
\^ -r ρ) α + Ρ 

5.2. A Method of Expansion in Terms of the m-Distribution 

Before proceeding to the particular types of expansion in question, we shall 
show an illustrative example suggesting the underlying principle as well as the 
remarkable properties of this method. 

(a) An illustrative example. Now, for the sake of simphcity, we take up the 
n-distribution. Its characteristic function is, as shown in (50), expressed by 

Here if we expand the exponent as 

then it yields immediately from (111) the Laguerre polynomial expansion 

In this series, the terms alternate in sign and the polynomials also oscillate in 
value. Due to these undesirable properties, this form of series is inconvenient for 
numerical calculations. 

On the other hand, if we expand φ{ζ), after a slight modification of the exponent, 
in the form 

°° 1 / 1 \ * * + l / ß « 2 \ n 

«'> = «-'-'"J.¿Ct^) ( Ν ) · 
then by virtue of its inverse transform, we may get a particular form of series 

p{R) = e-(V/°) I -J((R, w + 1, a{n + w ) ) ( ^ T . (116) 

This form of series, as is evident, has the following distinguished properties, 
(i) It consists of a family of the m-distribution. (ii) The series consists only of 
positive terms. These properties are best utilized to advantage in the approxima
tion of a given distribution function; e.g. they enable us to obtain the required 
approximation within a small error, using only a sheet of m-chart shown in Fig. 2.4. 

(b) Expansion of certain more general distributions. In a similar manner, the 
generalized n- and the generalized g-distributions are readily expansible as 
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More general distributions (101) and (103) are also expanded in this form, as is 
easily seen from their respective characteristic functions. 

In the case of the distribution (93), its characteristic function may be written 
as 

¿/¿\ = ^ (̂αί>*)/(2α+1) + {ßq^)Kzß + l) - (119) 
V(zoL+l)(zß +1) 

which indicates again that this distribution may also be expanded in the form of a 
positive term series similar to (118). But, in this case, a less complex positive term 
series in terms of the Jf-distribution (74) can be readily obtained from (119). 

In conclusion, from the foregoing discussions and some general considerations 
on fading mechanisms, the above forms of positive term series, which are constructed 
with the famihes of certain specified distributions, might well describe the intensity 
distributions under most conditions in actual fading. 

6. JOINT DISTRIBUTION OF Two m-VARIABLES AND CERTAIN 
OF ITS PROPERTIES 

We are now in a position to derive the joint distribution of two variables each 
of which follows the m-distribution, and further to discuss the basic characteristics 
of the distribution. 

6.1. Special but Exact Distribution (NAKAGAMI, TANAKA and KANEHISA, 1957) 

In order to derive the exact distribution, we start with the following relations 

Hi' = ήΛ + ή., +•••+ ή.η, = 4 l + »-12 + · · · + An- (120) 
(a) Derivation from the Rayleigh distribution. Now, let / s and / s follow 

jS?(ri„ Ωι) and ^('{r^i, Ω2) respectively, then, as is already proved, and R^ 
follow ^Ji(Ri, n, ηΩ,ι) and ^(Rz, n, ηΩ,2) respectively. And further let 

then, as is already discussed (NAKAGAMI and SASAKI, 1943), the joint distribution 
of rj ,· and r^^ takes the form 

= ^ ( » - 1 , , , O i ) ^ ( r 2 . „ Ω )̂ (i φ j), (122) 

(121) 

where Ωχ = ff,<, Ω2 = r|,i (i = 1, 2 η). 
From this, the characteristic function φ(ζι, z^) can be reduced to, 

^ '̂̂ ' "'̂  ~ c " [ ( z , + a , ) ( z , + a , ) - y ^ » ' 
(123) 
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where 
1 _ 1 

« 1 = 

Y = 

By virtue of the formula (VOELKER and DOETSCH, 1950a) 

\2π?7 Je 

Ω Α ( 1 - />2) 

Ω , 
(124) 

C—jao J 

'C+j 00 
c- ioo [(2^1 + a i ) ( z 2 + aa) y 2 ] 

(125) 

we can arrive at the required distribution 

p(üi, Ä 2 ) = _ ! _ L _ ^ / / 

Γ ( 7 . ) Ω Α ( 1 - / > 2 ) ( V ü A P 2 r ^ 

Ξ ^(J?i, 71, η Ω ι ; i ? 2 , η , η Ω 2 | ρ 2 ) . 

2Vp2R^R2 
ν Ω ι Ω 2 ( 1 - Ρ 2 ) 

where ηίΐ^ = o^i = ^ ^ 2 = 0 ^ 2 = ^ 2 ^ · 
As to p2> is of interest to see that 

c(rf,,4i) 
V?(r?,)V(ri,) 

(i = 1, 2, . . . , »). 

(126) 

(127) 

In the above discussions, η is restricted to a positive integer, but even if η is 
assumed to be any positive number not less than | , the formula (126) satisfies the 
necessary and sufficient conditions to be a joint distribution function. Therefore, 
it can be extended to a more general case, where η stands for a positive number not 
less than | . 

(b) Derivation from the m-distribution. Taking (126) as a basis, we shall also 
derive a more general form of the distribution. 

Now, assuming that 

Pih.o ^2.i) = V, Ω ι ; r^j, v, Q^lp^) (t =j) 

= ^(r^j, V, Ω ι ) ^(r^.,, v, Ω^) (Í φ j), 

we obtain, in like manner, the characteristic function 

And by the aid of (125), we can readily get 

p(Ri, R2) = ^(R-i, nv, ηΏί^\ R^, w , 

(128) 

(129) 

(130) 
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6 . 2 . General but Approximate Distribution 
( e . g . NAKAGAMI a w d NISHIO, 1 9 5 3 , 1 9 5 5 ) 

F u r t h e r , w e t a k e u p a m o r e g e n e r a l c a s e 

^ 1 = ^ i K , ̂ 2^'-, ^n)y ^ 2 = ^ 2 ( ^ 1 . ^ 2 , " . ^n), ( 1 3 1 ) 

w h e r e a n d a r e g i v e n f u n c t i o n s o f r a n d o m v a r i a b l e s x^, ojg, . . . , E v e n i n t h i s 

c a s e , t h e c h a r a c t e r i s t i c f u n c t i o n c a n b e r e d u c e d , i n a s i m i l a r w a y , t o 

1 
^2) ^ 

w h e r e 

m = 

h^2\ 
\ \ lib I \ m I m-

H e r e , i f w e u s e t h e f o r m u l a (VOELKEB a n d DOETSCH, 1 9 5 0 b ) 

1 

r(8){b + 1 ) 

m d 

( 1 3 2 ) 

( 1 3 3 ) 

i (8-1)12 

1 (I 6 < 1 ) . 
{{μ+1)(ν + 1) +bμvY (R(s) > 0 ) , 

w e c a n r e a d i l y a r r i v e a t t h e final r e s u l t 

p(R^, i?2) í:̂  c ^ ( i 2 i , m i , ο Ω ^ ; B^, m^, 0^2 Ρ2)· ( 1 3 4 ) 

6 . 3 . Some Properties of ^{B^, m ^ , Ω ^ ; B^, m^, Ω^ρ^ί 
(NAKAGAMI and NISHIO, 1 9 5 3 , 1 9 5 5 ) 

T h e p r o p e r t i e s o f t h i s d i s t r i b u t i o n h a v e b e e n f u l l y d i s c u s s e d . C e r t a i n o f t h e m 

a r e s u m m a r i z e d b e l o w : 

( a ) E x p a n s i o n s o f t h e d i s t r i b u t i o n f u n c t i o n . I n v i r t u e o f t h e H i l l - H a r d y 

f o r m u l a (ERDÉLYI, 1 9 5 3 C ) 

(l-r^exp(-.^)(.,r«'^4^;j 
= Σ L„'{x)L„^y)t\ ( | i | < l , « > - l ) . 

n = o Γ ( « + α + 1 ) 

w e c a n r e a d i l y e x p a n d t h e d i s t r i b u t i o n f u n c t i o n i n a f o r m o f s e r i e s 

m, Ω ι ; R^, m, Ω^\ρ^) = ^(Β^, m, üi)JI({B^, m, Ω ^ ) 

Χ Σ 
„ = ο T{m + « ) ' ' ' ' \ Ω ι \ Ω2 

w h e r e L'Jx) i s t h e g e n e r a l i z e d L a g u e r r e p o l y n o m i a l , a s u s u a l . 
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+ «i){22 + « ζ ) } " * ι (Zi + α ϊ ) + α^) 

m(m + 1) (γΎ . 
2! {(2j + αι)(22 + α2 )Ρ ' ' * 1' 

and referring to (65), we finally get the required expansion 

M A „ i ? , ) = ( l - p , ) - i M i p ^ » 
n=o ni 

X ^(B^, m +n,(m + n)il^')^(B2, m + n, (m + n)^^). (136) 

where (m)„ = m(m + 1) . . . (m + η - 1), Ω/ = (1 - ρ2)Ωι, Ω '̂ = (1 - p 2 ) " 2 . 
(b) Co variances and correlation coefiScients. 

c(iii", A / ) 
P« = \/V(i?i")V(i?2») 

' r(m)r{m +n) -r^{m + 
^ά{-1,-1;«^·,Ρ2)-ι)^Ρ2· (139) 

(c) Amplitude characteristic function. In two different manners, F„(k) is 
reducible to 

i^™-i(A) = e - W * ' » K " A H n V ) A „ _ , { ^ - ( ^ ^ ^ ^ ) ) . (140) 

Based upon the above relations, we (NAKAGAMI and NISHIO, 1955) estabhshed 
the unified theory of diversity effects, and also discussed in some detail the depen
dence of these effects on the coherency of the waves. 

6.4. The Distribution of the Sum of Squares of Two Correlated m-Variables 
(NAKAGAMI and NISHIO, 1955) 

Now, we consider the distribution of the sum of squares of two variables which 
follow (130). The characteristic function in this case can be reduced to 

^ '̂̂  = K a , ( l - p , ) { ( 2 V a ) ^ - ^ n r , ^'''^ 

Next, we shall show the expansion in terms of the m-distribution. 
Expanding the characteristic function (123) in the form 
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m V l -f- p^lm R^ and Ω = R^^, 
νΩ(1 - />2) 

This form of distribution appears in certain fading problems. Its apphcations 
will be found in the above reference. R^ IR ^ 

Next, the distribution of the ratio F = -~ I —^ takes the form 

B(m, m) 1 _ ^p^^ 

(1 + FY 
where = m2 = m. This formula is due to OTA (1956). 

(145) 
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where 

From this, we obtain the final result 

i.e. a type of the generahzed ^-distribution. 
For a small value of i?, p(R) can be approximately written as 

(143) 

where 8 = (\ — pg)-
These formulas will be found to be usefiil in some practical applications, e.g. 

in a dual diversity reception by the square-addition method they afford the means 
of estimating the degree of improvement available from this method of diversity, 
the diversity effect being reasonably expressed by the quantity /S in (143). 

6.5. Distributions of the Product and the Ratio of Two Correlated m-Variables 

Before concluding, we shall add two distribution formulas of the product 
and the ratio of two correlated variables R^ and i?2 which follow ,Ji{Ri, m, Ω ;̂ 
Α 2 , ^ , Ω 2 | / ) 2 ) · 

The distribution of the product i?^ = R1R2 is given by NAKAGAMI and OTA 
(1957) as follows: 

r ( m ) ( \ / p 2 ) " - ' 
where 
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