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Abstract
We present the design and implementation of theHorus
WLAN location determination system. The design of the
Horussystem aims at satisfying two goals: high accuracy
and low computational requirements. TheHorussystem
identifies different causes for the wireless channel varia-
tions and addresses them to achieve its high accuracy. It
uses location-clustering techniques to reduce the compu-
tational requirements of the algorithm. The lightweight
Horusalgorithm helps in supporting a larger number of
users by running the algorithm at the clients.

We discuss the different components of theHorussys-
tem and its implementation under two different operating
systems and evaluate the performance of theHorussys-
tem on two testbeds. Our results show that theHorus
system achieves its goal. It has an error of less than 0.6
meter on the average and its computational requirements
are more than an order of magnitude better than other
WLAN location determination systems. Moreover, the
techniques developed in the context of theHorus sys-
tem are general and can be applied to other WLAN lo-
cation determination systems to enhance their accuracy.
We also report lessons learned from experimenting with
theHorussystem and provide directions for future work.

1 Introduction
Horus is an RF-based location determination system. It
is currently implemented in the context of 802.11 wire-
less LANs [25]. The system uses the signal strength ob-
served for frames transmitted by the access points to in-
fer the user location. Since the wireless cards measure
the signal strength information of the received frames as
part of their normal operation, this makes theHorussys-
tem a software solution on top of the wireless network
infrastructure. There are two classes of WLAN location
determination systems: client-based and infrastructure-
based. Both have their own set of applications.Horus is
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currently implemented as a client-based system. A large
class of applications [10], including location-sensitive
content delivery, direction finding, asset tracking, and
emergency notification, can be built on top of theHorus
system.

WLAN location determination is an active research
area [5, 6, 8, 9, 12, 13, 15, 17, 20–22, 29–31, 33, 34].
WLAN location determination systems usually work in
two phases: anoffline training phase and anonline lo-
cation determination phase. During the offline phase, the
system tabulates the signal strength received from the ac-
cess points at selected locations in the area of interest,
resulting in a so-calledradio map. During the location
determination phase, the system use the signal strength
samples received from the access points to “search” the
radio map to estimate the user location.

Radio-map based techniques can be categorized into
two broad categories: deterministic techniques and prob-
abilistic techniques.Deterministic techniques[5, 6, 22]
represent the signal strength of an access point at a loca-
tion by a scalar value, for example, the mean value, and
use non-probabilistic approaches to estimate the user lo-
cation. For example, in theRadarsystem [5, 6] the au-
thors use nearest neighborhood techniques to infer the
user location. On the other hand,probabilistic tech-
niques [8, 9, 13, 17, 20, 21, 29–31, 33, 34] store informa-
tion about the signal strength distributions from the ac-
cess points in the radio map and use probabilistic tech-
niques to estimate the user location. For example, the
Nibble system [8, 9] uses a Bayesian Network approach
to estimate the user location.

TheHorussystem lies in the probabilistic techniques
category. The design of theHorussystem aims at satisfy-
ing two goals: high accuracy and low computational re-
quirements. TheHorussystem identifies different causes
for the wireless channel variations and addresses them
to achieve its high accuracy. It uses location-clustering
techniques to reduce the computational requirements of
the algorithm. The lightweightHorus algorithm allows
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Figure 1: An example of the normalized signal strength
histogram from an access point.

it to be implemented in energy-constrained devices. This
non-centralized implementation helps in supporting a
larger number of users. In this paper, we present the dif-
ferent components of theHorus system and show how
they work together to achieve its goals. We discuss our
Horusimplementation under two different operating sys-
tems and evaluate its performance on two different in-
door testbeds.

The rest of the paper is structured as follows: in the
next section, we describe the different causes of varia-
tions in the wireless channel. In Section 3 we present
the different components of theHorus system that deal
with the noisy characteristics of the wireless channel. We
present the results of testing theHorus system on two
different testbeds in Section 4. Section 5 presents our
experience while building theHorussystem. In Section
6 we discuss related work. Finally, Section 7 concludes
the paper and provides directions for future work.

2 Wireless Channel Characteristics
In this section, we identify the different causes of vari-
ations in the wireless channel quality and how they af-
fect the WLAN location determination systems. We are
mainly concerned with the variations that affect the re-
ceived signal strength. We start by describing our sam-
pling process. Then, we categorize the variations in the
wireless channel as temporal variations and spatial varia-
tions. We performed all the experiments in this section in
a typical office building, measured during the day when
people are around.

2.1 Sampling Process

A key function required by all WLAN location determi-
nation systems is signal-strength sampling. We used a

Lucent Orinoco silver network interface card (NIC) sup-
porting up to 11 Mbit/s data rate [3]. TheHorussystem
is implemented under both the Linux and Windows op-
erating systems.

For the Linux OS, we modified [1] theLucent Wave-
lan driver so that it returns the signal strength of probe
response frames received from all access points in the
NIC range using active scanning [25]; our driver was the
first to support this feature.

The scanning process output is a list of theMAC ad-
dresses of the access points associated with the signal
strength observed in this scan (through probe response
frames). Each scan’s result set represents a sample.

We also developed a wireless API [1] that interfaces
with any device driver that supports the wireless exten-
sions [2]. The device driver and the wireless API have
been available for public download and have been used
by others in wireless research.

For the Microsoft Windows operating system, we used
a custom-built NDIS driver to obtain the signal strength
from the wireless card (using active scanning). This
gives us more control over the scanning process as de-
scribed in Section 5.

We now describe the different causes of variations in
a wireless channel. We divide these causes into two cat-
egories: temporal variations and spatial variations.

2.2 Temporal variations

This section describes how the wireless channel changes
over time when the user is standing at a fixed position.

2.2.1 Samples from one access point

We measured the signal strength from a single access
point over a five minute period. We took the samples one
second apart for a total of 300 samples. Figure 1 shows
the normalized histogram of the received signal strength.
In our experience, the histogram range can be as large as
10 dBm or more. This time variation of the channel can
be due to changes in the physical environment such as
people moving about [23].

These variations suggest that the radio map should re-
flect this range of values to increase the accuracy. More-
over, during the online phase, the system should use
more than one sample in the estimation process to have a
better estimate of the signal strength at a location.

2.2.2 Samples Correlation

Figure 2 shows the autocorrelation function of the sam-
ples collected fromone access point(one sample per
second) at a fixed position. The figure shows that the
autocorrelation of consecutive samples (lag = 1) is as
high as 0.9. This high autocorrelation is expected as over
a short period of time the signal strength received from
an access point at a particular location is relatively stable
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Figure 2: An example of the autocorrelation between
samples from an access point (one sample per second).
The sub-figure shows the autocorrelation for the first 10
seconds.

(modulo the changes in the environment discussed in the
previous section).

This high autocorrelation value has to be considered
when using multiple samples from one access point to
enhance accuracy. Assuming independence of samples
from the same access point leads to the undesirable re-
sult of degraded system performance as the number of
samples is increased (as explained in Section 4) as in a
typical WLAN environment samples from the same AP
are highly correlated.

2.2.3 Samples from different access points

We performed an experiment to test the behavior of ac-
cess points with different average signal strength at the
same location. During this experiment, we sampled the
signal strength from each access point at the rate of one
sample per second. Figure 3 shows the relation between
the average signal strength received from an access point
and the percentage of samples we receive from it during
a period of 5 minutes. The figure shows that the number
of samples collected from an access point is a monoton-
ically increasing function of the average signal strength
of this access point. Assuming a constant noise level, the
higher the signal strength, the higher the signal to noise
ratio and the more probable it becomes that the 802.11b
card will identify the existence of a frame. The sharp
drop at about -81 dBm can be explained by noting that
the receiver sensitivity (minimum signal power required
to detect a frame) for the card we used was -82 dBm.

2.3 Spatial characteristics
These variations occur when the receiver position is
changed. We further divide these variations into large-
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Figure 3: Relation between the average signal strength of
an access point and the percentage of samples received
from it during a 5-minute interval.

scale variations and small-scale variations.

2.3.1 Large-Scale Variations

Figure 4 shows the average signal strength received from
an access point as the distance from it increases. The sig-
nal strength varies over a long distance due to attenuation
of the RF signal.

Large-scale variations are desirable in RF-based sys-
tems as they lead to changing the signature stored in the
radio map for different locations and, hence, better dif-
ferentiation between these locations.

2.3.2 Small-Scale Variations

These variations happen when the user moves over a
small distance (order of wavelength). This leads to
changes in the average received signal strength. For the
802.11b networks working at the 2.4 GHz range, the
wavelength is 12.5 cm and we measure a variation in the
average signal strength up to 10 dBm in a distance as
small as 7.6 cm (3 inches) (Figure 5).

Dealing with small-scale variations is challenging. To
limit the radio map size and the time required to build
the radio map, selected radio map locations are typically
placed more than a meter apart. This means that the ra-
dio map does not capture small-scale variations leading
to decreased accuracy in the current WLAN location sys-
tems.

In the next section, we indicate how theHorussystem
handles these temporal and spacial variations.

3 TheHorus System
In this section, we present the different components of
theHorussystem.
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Figure 4: Large-scale variations: Average signal strength
over distance.

3.1 Overview
Figure 6 shows the overall system. TheHorus system
works in two phases:

1. Offline phase: to build the radio map, cluster ra-
dio map locations, and do other preprocessing of the
signal strength models.

2. Online Phase: to estimate the user location based on
the received signal strength from each access point
and the radio map prepared in the offline phase.

The radio map stores the distribution of signal strength
received from each access point at each sampled loca-
tion. There are two modes for operation of theHorus
system: one uses non-parametric distributions and the
other uses parametric distributions.

TheClusteringmodule is used to group radio map lo-
cations based on the access points covering them. Clus-
tering is used to reduce the computational requirements
of the system and, hence, conserve power (Section 3.7).

The Discrete Space Estimatormodule returns the ra-
dio map location that has the maximum probability given
the received signal strength vector from different access
points (Section 3.3).

TheCorrelation Modelling and Handlingmodules use
an autoregressive model to capture the correlation be-
tween consecutive samples from the same access point.
This model is used to obtain a better discrete location es-
timate using the average ofn correlated samples (Section
3.4).

TheContinuous Space Estimatortakes as an input the
discrete estimated user location, one of the radio map lo-
cations, and returns a more accurate estimate of the user
location in the continuous space (Section 3.5).
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Figure 5: Small-scale variations: Signal strength con-
tours from an AP in a 30.4 cm (12 inches) by 53.3 cm
(21 inches) area.

The Small-Scale Compensatormodule handles the
small-scale variation characteristics of the wireless chan-
nel (Section 3.6).

We start by laying out the mathematical framework
for the approach then give details about different com-
ponents of the system.

3.2 Mathematical Model

Without loss of generality, letX be a 2 dimensional phys-
ical space. At each locationx ∈ X, we can get the
signal strength fromk access points. We denote thek-
dimensional signal strength space asS. Each element in
this space is ak-dimensional vector whose entries rep-
resent the signal strength readings from different access
points. We denote samples from the signal strength space
S ass. We also assume that the samples fromdifferent
access points are independent.

The problem becomes, given a signal strength vector
s = (s1, ..., sk), we want to find the locationx ∈ X that
maximizes the probabilityP (x/s).

In the next section, we assume a discreteX space. We
discuss the continuous space case in Section 3.5.

3.3 Discrete Space Estimator

During the offline phase, theHorussystem estimates the
signal strength histogram for each access point at each
location. These histograms represent theHorussystem’s
radio map. Now consider the online phase. Given a sig-
nal strength vectors = (s1, ..., sk), we want to find the
locationx ∈ X that maximizes the probabilityP (x/s),
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Figure 6: Horus Components: the arrows show infor-
mation flow in the system. Shadowed blocks represent
modules used during the offline phase.

i.e., we want
argmaxx[P (x/s)] (1)

Using Bayes’ theorem, this can be shown to be equiva-
lent to [33]:

argmaxx[P (x/s)] = argmaxx[P (s/x)] (2)

P (s/x) can be calculated using the radio map as:

P (s/x) =
k∏

i=1

P (si/x) (3)

The signal-strength histogram can be approximated by
a parametric distribution such as the Gaussian distribu-
tion. We compare the performance of the discrete-space
estimator based on the parametric and non-parametric
distributions in the Section 4.

3.4 Correlation Handling
To account for the temporal signal-strength variations, it
is important to average multiple signal strength samples
from the same access point. As we showed in Figure 2,
the autocorrelation of successive samples collected from

one access point is as high as 0.9. Assuming indepen-
dence of samples from the same access point leads to the
undesirable result of degraded system performance as the
number of averaged samples is increased (as we demon-
strate below, in Section 4).

3.4.1 Mathematical model

We use an autoregressive model to capture the correla-
tion between different samples from the same AP.

Let st be thestationary time series representing the
samples from an access point, wheret is the discrete time
index. st can be represented as afirst order autoregres-
sive model [7] as:

st = αst−1 + (1− α)vt ; 0 ≤ α ≤ 1 (4)

wherevt is a noise process, independent ofst, andα
is a parameter that determines the degree of autocorre-
lation of the original samples. Moreover, different sam-
ples fromvt are independent and identically distributed
(i.i.d.).

The model in Equation 4 states that the current sig-
nal strength value (st) is a linear aggregate of the previ-
ous signal strength value (st−1) and an independent noise
value (vt). The parameterα gives flexibility to the model
as it can be used to determine the degree of autocorrela-
tion of the original process. For example, ifα is zero, the
samples of the processst are i.i.d.’s, whereas ifα is 1 the
original samples are identical (autocorrelation=1).

Assuming that the signal strength distribution of sam-
ples from an access point is Gaussian with meanµ and
varianceσ2, we have shown in [29, 31] that the distribu-
tion of the average ofn correlated samples is a Gaussian
distribution with meanµ and variance given by:

1 + α

1− α
σ2 (5)

3.4.2 Correlation modeler

The purpose of the correlation modeler component is to
estimate the value ofα in the autoregressive model and
to pre-calculate the parameters of the distribution of the
average ofn correlated samples during the offline phase.
In a previous work [29,31], we have shown thatα can be
approximated using the autocorrelation coefficient with
lag 1. The variance of the distribution can be calculated
using Equation 5. These distribution parameters (µ, σ,
andα) are then stored in the radio map.

3.4.3 Correlation handler

During the online phase, the correlation handler mod-
ule averages the value ofn consecutive samples from an
access point and passes this information to the discrete-
space estimator, which uses the distributions stored in the
radio map (taking correlation into account using the in-
formation in Section 3.4.1) to estimate the user location.



3.5 Continuous Space Estimator
The discrete-space estimator returns a single location
from the set of locations in the radio map. To increase the
system accuracy, theHorussystem uses two techniques
to obtain a location estimate in the continuous space.

3.5.1 Technique 1: Center of Mass of the Top Can-
didate Locations

This technique is based on treating each location in the
radio map as an object in the physical space whose
weight is equal to the normalized probability1 assigned
by the discrete-space estimator. We then obtain the cen-
ter of mass of theN objects with the largest mass, where
N is a parameter to the system,1 ≤ N ≤ ||X||.

More formally, letp(x) be the probability of a location
x ∈ X, i.e., the radio map, and let̄X be the list of loca-
tions in the radio maporderedin a descending order ac-
cording to the normalized probability (the location with
lower ID comes first for locations with equal probabil-
ity). The center of mass technique estimates the current
locationx as:

x =

N∑
i=1

p(i)X̄(i)

N∑
i=1

p(i)

whereX̄(i) is theith element ofX̄

(6)

Note that the estimated locationx need not be one of the
radio map locations.

3.5.2 Technique 2: Time-Averaging in the Physical
Space

The second technique uses a time-average window to
smooth the resulting location estimate. The technique
obtains the location estimate by averaging the lastW
locations estimates obtained by either the discrete-space
estimator or the continuous-space estimator discussed in
the previous section.

More formally, given a stream of location estimates
x1, x2, ..., xt, the technique estimates the current loca-
tion x̄t at timet as:

x̄t =
1

min(W, t)

t∑

t−min(W,t)+1

xi (7)

We compare the two techniques in Section 4.

3.6 Small-Scale Compensator
Dealing with small-scale variations (Figure 5) is chal-
lenging. Since the selected radio map locations are typ-
ically placed more than a meter apart, to limit the ra-
dio map size, the radio map does not capture small-scale
variations. This contributes significantly to the estima-
tion errors in the current systems. TheHorus system

uses thePerturbationtechnique to handle the small-scale
variations. The technique is based on two sub-functions:
detecting small-scale variations and compensating for
small-scale variations.

3.6.1 Detecting small-scale variations

In order to detect small-scale variations, theHorus sys-
tem uses the heuristic that users’ location cannot change
faster than their movement rate. The system calculates
the estimated location using the standard radio map and
the inference algorithm, then calculates the distance be-
tween the estimated location and the previous user loca-
tion. If this distance is above a threshold, based on the
user movement rate and estimation frequency, the system
decides that there are small-scale variations affecting the
signal strength.

3.6.2 Compensating for small-scale variations

To compensate for these small-scale variations, the sys-
tem perturbs the received vector entries, re-estimates the
location, and chooses the nearest location to the previous
user location as the final location estimate. For exam-
ple, if one sample includes a signal-strength observation
from each ofk access points(s1, s2, . . . , sk), the system
tries all3k combinations in which each of thek observa-
tionsi is replaced by one of three values,si, si(1+d), or
si(1 − d); we explore the parameterd in Section 4.2.4.
An enhancement of this approach is to perturb a subset
of the access points. The effect of the number of access
points to perturb and the value ofd on accuracy is de-
scribed in Section 4.

3.7 Clustering Module
This section describes theIncremental Triangulation
(IT) clustering technique used by theHorussystem to re-
duce the computational requirements of the location de-
termination algorithm. We define acluster as a set of
locations sharing a common set of access points. We call
this common set of access points thecluster key. The
problem can be stated as: Given a locationx, we want
to determine the cluster to whichx belongs. The noisy
characteristics of the wireless channel described in Sec-
tion 2 make clustering a challenging problem because the
number of access points covering a location varies with
time.

The IT approach is based on the idea that each access
point defines a subset of the radio map locations that
are covered by this access point. These locations can
be viewed as a cluster of locations whose key is the ac-
cess point covering the locations in this cluster. If during
the location determination phase we use the access points
incrementally, one after the other, then starting with the
first access point, we restrict our search space to the lo-
cations covered by this access point. The second access
point chooses only the locations in the range of the first



Figure 7: Floor plan for the first testbed. Readings were
collected in the corridors and inside the rooms.

access point and covered by the second access point and
so on, leading to a multi-level clustering process.

Notice that no preprocessing is required in the offline
training phase. During the online phase, a locationx be-
longs to a cluster whose key is access pointa if there
is information about access pointa at locationx in the
radio map.

The algorithm works as follows. Given a sequence of
observations from each access point, we start by sort-
ing the access points in descending order according to
the average received signal strength. For the first access
point, the one with the strongest average signal strength,
we calculate the probability of each location in the radio
map set given the observation sequence from this access
point alone. This gives us a set of candidate locations
(locations that have non-zero probability). If the prob-
ability of the most probable location is “significantly”
higher (according to a threshold) than the probability of
the second most probable location, we return that most
probable location as our location estimate, after consult-
ing only one access point. If this is not the case, we go to
the next access point in the sorted access point list. For
this access point, we repeat the same process again, but
only for the set of candidate locations obtained from the
first access point. We study the performance of theIT
approach in Section 4.

4 Experimental Evaluation

In this section we start by showing the effect of each
module independently on the the accuracy of the basic
algorithm. We then show the effect of using all the com-
ponents together on the performance of theHorus sys-
tem.

4.1 Experimental Testbed

We performed our experiment in two different testbeds.

Figure 8: Floor plan of the office space where the second
experiment was conducted. Readings were collected in
the corridors and inside the rooms.

4.1.1 Testbed 1

We performed our first experiment in the south wing of
the fourth floor of the A. V. Williams building in the Uni-
versity of Maryland at College Park. The layout of the
floor is shown in Figure 7. The wing has a dimension of
68.2 meters by 25.9 meters. The technique was tested
in the University of Maryland wireless network using
Cisco access points. 21 access points cover the multi-
story wing and were involved in testing.

The radio map has 110 locations along the corridors
and 62 locations inside the rooms. On the average, each
location is covered by 6 access points. TheHorussystem
was running under the Windows XP professional operat-
ing system.

4.1.2 Testbed 2

We performed the second experiment in another office
space (Figure 8). The area of the experiment site is ap-
proximately 11.8 meters by 35.9 meters covering corri-
dors, cubicles, and rooms. Five LinkSys access points
and one Cisco access point cover the test area.

We have a total of 110 locations in the radio map. On
the average, each location is covered by 4 access points.
The Horus system was running under theLinux (kernel
2.5.7) operating system.

4.1.3 Data collection

The radio map locations were marked on the floor before
the experiment and the user clicked on the map to point
the location of the radio map points. We collected 100
samples, spaced 300 ms apart, at each radio map loca-
tion. We expect an error of about 15-20 cm due to the
inaccuracies in clicking the map.

The training data was placed 1.52 meters (5 feet) apart
for the first testbed and 2.13 meters apart for the second
testbed (7 feet).

For each testbed, we selected 100 test locations to ran-
dom cover the entire test area (none of them coincide
with a training point). For both testbeds, the test set was
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Figure 9: Performance of the basic algorithm of theHo-
rus system for the first testbed.

collected by different persons on different days and times
of day than the training set. This difference presents
a realistic testbed and should, if anything, decrease the
measured accuracy of our approach because it lessens
the likelihood that the test data is a close match to the
training data.

4.2 Results
We show the effect of each module independently on the
performance of the discrete-space estimator and present
the overall system performance in Section 4.3.

4.2.1 Discrete-space estimator (Basic algorithm)

Figure 9 shows the performance of the basic algorithms
of the Horus system for the first testbed. The system
can achieve an accuracy of 1.4 meters 90% of the time.
The performance of the parametric and non-parametric
methods is comparable with a slight advantage for the
parametric method. Using a parametric distribution to
estimate the signal-strength distribution smooths the dis-
tribution shape to account for missing signal strength val-
ues in the training phase (due to the finite training time).
This smoothing avoids obtaining a zero probability for
any signal strength value that was not obtained in the
training phase and hence enhances the accuracy.

Table 1 shows the summary of the results for the two
testbeds. Details for the second testbed can be found in
[28].

4.2.2 Correlation handler

Figure 10 shows the performance of theHorus system
when taking the correlation into account and without tak-
ing the correlation into account for the first testbed. We
estimated the value ofα to be 0.9. The figures show that
under the independence assumption, as the number of

Table 1: Summary of the percentage enhancement of dif-
ferent components on the basic algorithm

Technique Testbed 1 Testbed 2
Correlation Handling 19% 11%
Center of Mass 13% 6%
Time Averaging 24% 15%
Small-Scale Compensator25% 21%
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Figure 10: Average distance error with and without tak-
ing correlation into account for the first testbed.

averaged samples increases, the performance degrades.
The minimum value atn = 2 can be explained by noting
that there are two opposing factors affecting the system
accuracy:

1. as the number of averaged samplesn increases, the
accuracy of the system should increase.

2. asn increases, the estimation of the distribution of
the average of then samples becomes worse due to
the wrong independence assumption.

At low values ofn (n = 1, 2) the first factor is the dom-
inating factor and hence the accuracy increases. Start-
ing from n = 3, the effect of the bad estimation of the
distribution becomes the dominating factor and accuracy
degrades.

Using the modified technique, the system average ac-
curacy is enhanced by more than 19% using five signal-
strength samples.

4.2.3 Continuous space estimator

Center of Mass Technique:Figure 11 shows the effect of
increasing the parameterN (number of locations to in-
terpolate between) on the performance of the center of
mass technique for the first testbed. Note that the special
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Figure 11: Average distance error using the center of
mass technique for the first testbed.
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Figure 12: Average distance error using the time-
averaging technique for the first testbed.

case ofN = 1 is equivalent to the discrete-space estima-
tor output. The figures show that the performance of the
Horussystem is enhanced by more than 13% forN = 6.

Time-averaging Technique:Figure 12 shows the ef-
fect of increasing the parameterW (size of the averag-
ing window) on the performance of the time-averaging
technique. The figures show that the larger the averag-
ing window, the better the accuracy. The performance
of theHorussystem is enhanced by more than 24% for
W = 10.

4.2.4 Small-scale compensator

For the purpose of detecting small-scale variations, we
assume a maximum user speed of two meters per second.

Figure 13 shows the effect of changing the perturba-
tion fraction (d, which is the amount by which to perturb
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Figure 13: Effect of changing the perturbation fraction
on average distance error.

each access point) on average error. We can see from this
figure that the best value for the perturbation fraction is
0.05 for the first testbed. We use these values for the rest
of this section.

Figure 14 shows the effect of increasing the number
of perturbed access points on the average distance error.
The access points chosen at a location are the strongest
access points in the set of access points that cover that
location. The figure shows that perturbation technique is
not sensitive to the number of access points. This means
that perturbing one access point only is sufficient to en-
hance the performance.

Figures 15 shows the effect of using the perturbation
technique on the basicHorus system. The perturbation
technique reduces the average distance error by more
than 25% and the worst-case error is reduced by more
than 30%.

4.2.5 Clustering module

Figures 16 and 17 shows the effect of the parameter
Threshold on the performance. For small values of the
Threshold parameter, the decision is taken quickly af-
ter examining a small number of access points. As the
threshold value increases, more access points are con-
sulted to reach a decision. As the number of access points
consulted increases, the number of operations (multipli-
cations) per location estimate increases and so does the
accuracy.

4.3 Overall System Performance
In the previous sections, we studied the effect of each
component of theHorussystem separately on the perfor-
mance. In this section, we compare the performance of
the full Horussystem, to the performance of a determin-
istic technique (theRadarsystem [5]) and a probabilistic
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Figure 14: Effect of changing the number of perturbed
access points on average distance error.
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Figure 15: CDF for the distance error for the first testbed.

technique [21]. We use the parametric distribution tech-
nique. Table 2 shows the values of different parameters.

Figures 18 shows the comparison for the two testbeds
(the curve for theRadarsystem is truncated). Tables 3
summarizes the results. The table shows that the average
accuracy of theHorus system is better than the Radar
system by more than 89% for the first testbed and 82%
for the second testbed. The worst case error is decreased
by more than 93% for the first testbed and 70% for the
second testbed.

Comparing the probabilistic system in [21] to theHo-
rus system shows that the average error is decreased by
more than 35% for the first testbed and 27% for the sec-
ond testbed. The worst case error is decreased by more
than 78% for the first testbed and 70% for the second
testbed. These results show the effectiveness of the pro-
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Figure 16: Effect of the parameterThreshold on the
average distance error for the first testbed.

Table 2: Estimation parameters for the two testbeds
Parameter Test. 1 Test. 2
Correlation Degree (α) 0.9 0.7
Num. of avg. samples (n) 10 10
Num. of loc. used in interp. (N ) 6 6
Averaging window (W ) 10 10
Threshold 0.1 0.1

posed techniques.

The performance of the three systems is better in the
first testbed than the second testbed as the first testbed
has a higher density of APs per location and the calibra-
tion points were closer for the first testbed.

Moreover, theHorus system leads to more than an
order of magnitude savings in the number of multipli-
cations required per location estimate compared to the
other systems (250 multiplications for Horus compared
to 2708 for the other two systems).

We also applied the enhancement discussed in this pa-
per (without correlation handling) to the Radar system.
We summarize the results is Table 3. These results show
the effectiveness of the techniques proposed in the paper
and that these techniques are general and can be applied
to other WLAN location determination systems to en-
hance their accuracy.

5 Discussion

In this section, we highlight some of our experience with
theHorussystem.



Table 3: Comparison of theHorussystem and other systems (error in centimeters)
Testbed 1 Testbed 2

Median Avg Stdev 90% Max Median Avg Stdev 90% Max
Horus 39 42 28 86 121 51 64 53 132 289
System [21] 48 65 63 143 578 72 86 77 181 991
Radar 296 400 326 853 1757 341 361 184 611 967
Radar with Horus tech. 161 193 107 302 423 142 195 106 332 483
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Figure 17: Effect of the parameterThreshold on the
average number of operations per location estimate for
the first testbed. The sub-figure shows the same curve
for Threshold = [0.1, 0.7].

5.1 Parametric vs Non-Parametric Distri-
butions

TheHorussystem can model the signal strength distribu-
tions received from the access points using parametric or
non-parametric distributions. The main advantage of the
non-parametric technique is the efficiency of calculating
the location estimate, while the parametric technique re-
duces the radio map size and smooths the distribution
shape which leads to a slight computational advantage of
the parametric technique over the non-parametric tech-
nique.

5.2 Location Estimation Latency

The correlation handling and the continuous space es-
timator modules each use more than one sample to in-
crease the accuracy of the system. However, a side effect
of this increased accuracy is that the latency of calculat-
ing the location estimate increases. In general, we have a
tradeoff between the accuracy required and the latency of
the location estimate. The higher the required accuracy,
the higher the number of samples required and the higher
the latency to obtain the location estimate. This decision

is dependent on the application in use.
Latency can be reduced by presenting the location es-

timate incrementally using one sample at a time. The
system need not to wait until it acquires then samples
all at once. Instead, it can give a more accurate estimate
of the location as more samples become available by re-
porting the estimated location given the partial samples
it has. Other factors that affect the choice of the value of
n are the user mobility rate and the sampling rate. The
higher the user mobility rate or the sampling rate, the
lower the value ofn.

5.3 User Profile
A common assumption of WLAN location determination
systems is that the user position follows a uniform distri-
bution over the set of possible locations. Our analysis
and experimentation [32] show that knowing the prob-
ability distribution of the user position can reduce the
number of access points required to obtain a given accu-
racy. However, with a high density of access points, the
performance of theHorussystem is consistent under dif-
ferent probability distributions for the user position, i.e.,
the effect of the user profile is not significant with a high
density of access points. Systems can use this fact to re-
duce the energy consumed in the location determination
algorithm by not using the user profile in the estimation
process.

5.4 Effect of Different Hardware
One of the hardware related questions is whether differ-
ent hardware from different manufacturers are compati-
ble. That is, how does using different APs, mobile de-
vices, or wireless cards affect the accuracy?

Our experience with theHorussystem shows that the
Laptop or PDA used for the calibration has no effect on
the accuracy if a different device is used in tracking. APs
from different manufacturers can be used without affect-
ing the accuracy since the radio map captures the sig-
nature of the AP at each location (note that the second
testbed uses mixed types of APs). The 802.11h specifica-
tions, however, require APs to have transmission power
control (TPC) and dynamic frequency selection (DFS).
This presents an open research direction for the current
WLAN location determination systems as they assume
that the AP transmission power does not change over
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Figure 18: CDF of the performance of theHorussystem
and theRadarand the probabilistic system.

time.
The main factor that may affect the accuracy when

changing hardware is the wireless card. Our experience
shows that cards from the same manufacture are inter-
changeable. The good news is that a linear mapping ex-
ists between different NICs [13]. Unfortunately, some of
the cards in the market are so noisy [27] that with this
linear mapping the obtained radio map is not represen-
tative of the environment. We found that Orinoco cards
and Cisco cards are stable, in terms of signal-strength
measurements.

5.5 Operating System Interface
We implemented theHorus system under both Linux
and Windows. The main functionality we require from
the OS is support for issuing scan requests and return-
ing the results. Under the Linux OS, the wireless exten-
sions [1,2] give us a common interface to query different

drivers that support that interface. Under the Windows
OS, NDIS allowed us to perform the same functions.

Our experience with both systems shows that drivers
under Linux conform to the Wireless Extensions APIs
better than Windows Drivers do with the NDIS. For ex-
ample, under the Windows, some cards, like the Cisco
card, respond to scans with low frequency (every 2-3
seconds) and return only one AP. We hope that future
versions of the driver will have better support for the
NDIS interface. Moreover for both systems, better ac-
tive scanning techniques needs to be developed to reduce
the scanning overhead.

6 Related Work
Many systems over the years have tackled the problem
of determining and tracking the user position. Examples
include GPS [11], wide-area cellular-based systems [24],
infrared-based systems [4, 26], ultrasonic-based sys-
tems [19], various computer vision systems [16], and
physical contact systems [18].

Compared with these systems, WLAN location de-
termination systems are software based (do not require
specialized hardware) and may provide more ubiquitous
coverage. This feature adds to the value of the wireless
data network.

The Daedalus project [14] developed a system for
coarse-grained user location. A mobile host estimates
its location to be the same as the base station to which
it is attached. Therefore, the accuracy of the system is
limited by the access point density.

The RADAR system [5] uses the RF signal strength
as an indication of the distance between the transmitter
and receiver. During an offline phase, the system builds
a radio map for the RF signal strength from a fixed num-
ber of receivers. During normal operation, the RF signal
strength of the mobile client is measured by a set of fixed
receivers and is sent to a central controller. The central
controller uses a K-nearest approach to determine the lo-
cation from the radio map that best fits the collected sig-
nal strength information.

The Aura system proposed in [22] uses two tech-
niques: pattern matching (PM) and triangulation, map-
ping and interpolation (TMI). The PM approach is very
similar to the RADAR approach. In the TMI technique,
the physical position of all the access points in the area
needs to be known and a function is required to map sig-
nal strength onto distances. They generate a set of train-
ing points at each trained position. The interpolation of
the training data allows the algorithm to use less training
data than the PM approach. During the online phase, they
use the approximate function they got from the training
data to generate contours and they calculate the intersec-
tion between different contours yielding the signal space
position of the user. The nearest set of mappings from



the signal-space to the physical space is found by apply-
ing a weighted average, based on proximity, to the signal
space position.

The Nibble location system, from UCLA, uses a
Bayesian network to infer a user location [8]. Their
Bayesian network model include nodes for location,
noise, and access points (sensors). The signal to noise
ratio observed from an access point at a given location
is taken as an indication of that location. The system
also quantizes the SNR into four levels: high, medium,
low, and none. The system stores the joint distribution
between all the random variables of the system.

Another system, [21], uses Bayesian inversion to re-
turn the location that maximizes the probability of the re-
ceived signal strength vector. The system stores the sig-
nal strength histograms in the radio map and uses them
in the online phase to estimate the user location. Yet,
another system, [17], applies the same technique to the
robotics domain.

The Horus system is unique in defining the possible
causes of variations in the received signal strength vec-
tor and devising techniques to overcome them, namely
providing the correlation modeler, correlation handler,
continuous space estimator, and small-space compen-
sator modules. Moreover, it reduces the computational
requirements of the location determination algorithm by
applying location-clustering techniques. This allows the
Horus systemto achieve its goals of high accuracy and
low energy consumption.

7 Conclusions
In this paper, we presented the design of theHorus
system: a WLAN-based location determination system.
We approached the problem by identifying the various
causes of variations in a wireless channel and developed
techniques to overcome them. We also showed the vari-
ous components of the system and how they interact.

TheHorussystem models the signal strength distribu-
tions received from access points using parametric and
non-parametric distributions. By exploiting the distribu-
tions, theHorus system reduces the effect of temporal
variations.

We showed that the correlation of the samples from
the same access point can be as high as 0.9. Experi-
ments showed that under the independence assumption,
as the number of averaged samples increases, the per-
formance degrades. Therefore, we introduced the cor-
relation modeler and handling modules that use an au-
toregressive model for handling the correlation between
samples from the same access point. Using the modi-
fied technique, the system average accuracy is enhanced
by more than 19% for the first testbed and 11% for the
second testbed.

TheHorussystem uses thePerturbationtechnique for

handling small-scale variations. The perturbation tech-
nique enhances the average distance error by more than
25% for the first testbed and more than 21% for the sec-
ond testbed. Moreover, the worst-case error is reduced
by more than 30% for the two testbeds.

The basicHorus technique chooses the estimated lo-
cation from the discrete set of radio map locations. We
described two techniques for allowing continuous-space
estimation: theCenter of Masstechnique and theTime-
Averagingtechnique. Using theCenter of Masstech-
nique, the accuracy of theHorus system was increased
by more than 13% for the first testbed and by more than
6% for the second testbed compared to the basic tech-
nique. TheTime-Averagingtechnique enhances the per-
formance of theHorussystem by more than 24% for the
first testbed and more than 15% for the second testbed.
The two techniques are independent and can be applied
together.

We also compared the performance of theHorussys-
tem to the performance of theRadarsystem. We showed
that the average accuracy of theHorus system is better
than the Radar system by more than 89% for the first
testbed and 82% for the second testbed. The worst case
error is decreased by more than 93% for the first testbed
and 70% for the second testbed. Comparing the prob-
abilistic system in [21] to theHorus system shows that
the average error is decreased by more than 35% for the
first testbed and 27% for the second testbed. The worst
case error is decreased by more than 78% for the first
testbed and 70% for the second testbed. These results
show the effectiveness of the proposed techniques. In
terms of computational requirements, theHorussystem
is more efficient by more than an order of magnitude.

The proposed modules are all applicable to any of
the current WLAN location determination systems. We
show the result of applying the techniques of theHorus
system to theRadarsystem. The results show that the
average distance error is reduced by more than 58% for
the first testbed and by more than 54% for the second
testbed. The worst case error is decreased by more than
76% for the first testbed and by more than 48% for the
second testbed.

As part of our ongoing work we are experimenting
with different clustering techniques. Automating the
radio-map generation process is a possible research area.
The Horus system provides an API for location-aware
applications and services. We are looking at designing
and developing applications and services over theHorus
system. A possible future extension is to dynamically
change the system parameters based on the environment,
such as changing the averaging window size as the user
speed changes or using a time-dependent radio map. We
are also working on the theoretical analysis of different
components of the system.



Our experience with theHorussystem showed that it
has achieved its goals of:

• High accuracy: through a probabilistic location de-
termination technique, using a continuous-space es-
timator, handling the high correlation between sam-
ples from the same access point, and the perturba-
tion technique to handle small-scale variations.

• Low computational requirements: through the use
of clustering techniques.

The design of Horus also allows it to achieve scalabil-
ity to large coverage areas, through the use of clustering
techniques, and to large number of users, through the dis-
tributed implementation on the mobile devices and due to
the low energy requirements of the algorithms.

Moreover, the techniques presented in this paper may
be applicable to other RF-technologies such as 802.11a,
802.11g, HiperLAN, and BlueTooth.
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Notes
1The normalization is used to ensure that the sum of the probabili-

ties of all locations equals one.


