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Abstract currently implemented as a client-based system. A large

We present the design and implementation oftogus class of ap.plicatiorjs [1'0], i.ncl'uding Iocation-;ensitive
WLAN location determination system. The design of the content dellver_y: d|rect|on fmdmg_, asset tracking, and
Horussystem aims at satisfying two goals: high accuracyemergenCy notification, can be built on top of terus
and low computational requirements. THerussystem system. _ o )
identifies different causes for the wireless channel varia- WLAN location determination is an active research
tions and addresses them to achieve its high accuracy. #/€@ [5, 6, 8, 9, 12, 13, 15, 17, 20-22, 29-31, 33, 34].
uses location-clustering techniques to reduce the compuVLAN location determination systems usually work in
tational requirements of the algorithm. The lightweight W0 phases: awffline training phase and aonline lo-
Horus algorithm helps in supporting a larger number of cation determination p_hase. During the o_fflme phase, the
users by running the algorithm at the clients. system t_abulates the signal st_rengt_h received fron_w the ac-
We discuss the different components of Harussys- ~ C€SS pomts at selected Ic_)catlons in t.he area of |nterest,
tem and its implementation under two different operating'®Sulting in a so-calledadio map During the location
systems and evaluate the performance of{beus sys- determination phase, the system use the signal strength
tem on two testbeds. Our results show that wus  Samples received from the access points to “search” the
system achieves its goal. It has an error of less than 0.Fdi0 map to estimate the user location.
meter on the average and its computational requirements Radio-map based techniques can be categorized into
are more than an order of magnitude better than othefwo broad categories: deterministic techniques and prob-
WLAN location determination systems. Moreover, the abilistic techniques.Deterministic techniquefs, 6, 22]
techniques developed in the context of tHerus sys-  represent the signal strength of an access point at a loca-
tem are general and can be applied to other WLAN lo-tion by a scalar value, for example, the mean value, and
cation determination systems to enhance their accuracy/S€ non-probabilistic approaches to estimate the user lo-
We also report lessons learned from experimenting witration. For example, in thRadarsystem [5, 6] the au-
theHorussystem and provide directions for future work. thors use nearest neighborhood techniques to infer the
) user location. On the other hangdrobabilistic tech-
1 Introduction niques [8, 9, 13,17, 20, 21, 29-31, 33, 34] store informa-

. : N tion about the signal strength distributions from the ac-
Horusis an RF-based location determination system. It 9 g

: v imol ted in th text of 80211 wi cess points in the radio map and use probabilistic tech-
:S culr-rilr:l ylzrgp (_arrr:len et In the cot?] exto | t. \mre;)niques to estimate the user location. For example, the
€ss S [25]. The sys em uses the signal Strength 0y;p|q system [8, 9] uses a Bayesian Network approach
served for frames transmitted by the access points to i

: . . "o estimate the user location.
fer the user location. Since the wireless cards measure L _ .
The Horus system lies in the probabilistic techniques

the signal strength information of the received frames as : : .
part of their normal operation, this makes therussys- category. The design of théorussystem aims at satisfy-

tem a software solution on top of the wireless network "9 two goals: high accuracy and low computational re-

infrastructure. There are two classes of WLAN Iocationqu"emems' Thelorussystem identifies different causes

determination systems: client-based and infrastructuref-Or the wireless channel variations and addresses them

based. Both have their own set of applicatioHsrusis to ach|eve its high accuracy. It Uses Iocat|on.- clustering
techniques to reduce the computational requirements of

*Also affiliated with Alexandria University, Egypt. the algorithm. The lightweightiorus algorithm allows




Lucent Orinoco silver network interface card (NIC) sup-

0?4? ] porting up to 11 Mbit/s data rate [3]. Théorussystem
04 is implemented under both the Linux and Windows op-
' erating systems.
. 0.35 For the Linux OS, we modified [1] theucent Wave-
% 03 | lan driver so that it returns the signal strength of probe
g 0.25 response frames received from all access points in the
a 0.2 NIC range using active scanning [25]; our driver was the
0.15 ER first to support this feature.
0.1 The scanning process output is a list of MAC ad-
0.05 dresses of the access points associated with the signal
0 strength observed in this scan (through probe response
-52 -50 -48 -46 -44 -42 -40 -38 -36 frames). Each scan’s result set represents a sample.
Signal Strength (dBm) We also developed a wireless API [1] that interfaces

with any device driver that supports the wireless exten-
Figure 1: An example of the normalized signal strengthsjons [2]. The device driver and the wireless API have
histogram from an access point. been available for public download and have been used
by others in wireless research.
For the Microsoft Windows operating system, we used

it to be implemented in energy-constrained devices. Thid custom-bl_Jllt NDIS driver t_o Obta'ﬂ the 5'9”‘_”" strengt_h
from the wireless card (using active scanning). This

non-centralized implementation helps in supporting a. .
larger number of users. In this paper, we present the gif9!VeS us more .control over the scanning process as de-
ferent components of thidorus system and show how scribed in Sectlop 5 , o ,
they work together to achieve its goals. We discuss our W& now describe the different causes of variations in
Horusimplementation under two different operating sys- & wireless channel. We divide these causes into two cat-

tems and evaluate its performance on two different in-egories: temporal variations and spatial variations.

door testbeds. _ 2.2 Temporal variations
The rest of the paper is structured as follows: in the ] ) )
next section. we describe the different causes of variad Nis section describes how the wireless channel changes

tions in the wireless channel. In Section 3 we presenfVer time when the user is standing at a fixed position.

the different components of thdorus system that deal 221 Samples from one access point

with the noisy characteristics of the wireless channel. We ) )
present the results of testing thorus system on two We measured the signal strength from a single access

different testbeds in Section 4. Section 5 presents ouPPint over afive minute period. We took the samples one
experience while building thelorus system. In Section Second apart for a total of 300 samples. Figure 1 shows

6 we discuss related work. Finally, Section 7 concludedh® normalized histogram of the received signal strength.
the paper and provides directions for future work. In our experience, the histogram range can be as large as
10 dBm or more. This time variation of the channel can

2 Wireless Channel Characteristics be due to changes in the physical environment such as
people moving about [23].

In this section, we identify the different causes of vari- These variations suggest that the radio map should re-

ations in the wireless channel quality and how they af-flect this range of values to increase the accuracy. More-

fect the WLAN location determination systems. We areoyer, during the online phase, the system should use

mainly concerned with the variations that affect the re-more than one sample in the estimation process to have a

ceived signal strength. We start by describing our sampetter estimate of the signal strength at a location.

pling process. Then, we categorize the variations in the .

wireless channel as temporal variations and spatial varig2-2-2 Samples Correlation

tions. We performed all the experiments in this section inFigure 2 shows the autocorrelation function of the sam-

a typical office building, measured during the day whenples collected fromone access poin{one sample per

people are around. second) at a fixed position. The figure shows that the

. autocorrelation of consecutive samplésg(= 1) is as

2.1 Sampling Process high as 0.9. This high autocorrelation is expected as over

A key function required by all WLAN location determi- a short period of time the signal strength received from

nation systems is signal-strength sampling. We used an access point at a particular location is relatively stable
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Figure 2: An example of the autocorrelation betweenFigure 3: Relation between the average signal strength of
samples from an access point (one sample per seconn access point and the percentage of samples received
The sub-figure shows the autocorrelation for the first 10from it during a 5-minute interval.

seconds.

scale variations and small-scale variations.

(modulo the changes in the environment discussed in the o
previous section). 2.3.1 Large-Scale Variations

This high autocorrelation value has to be consideredrigure 4 shows the average signal strength received from
when using multiple samples from one access point taan access point as the distance from itincreases. The sig-
enhance accuracy. Assuming independence of samplefl strength varies over a long distance due to attenuation
from the same access point leads to the undesirable rexf the RF signal.
sult of degraded system performance as the number of | arge-scale variations are desirable in RF-based sys-
samples is increased (as explained in Section 4) as in @ms as they lead to changing the signature stored in the
typical WLAN environment samples from the same AP radio map for different locations and, hence, better dif-
are highly correlated. ferentiation between these locations.

2.2.3 Samples from different access points 232 Small-Scale Variations

We performed an experiment to test the behavior of aCrpege variations happen when the user moves over a
cess points with different average signal strength at them )| gistance (order of wavelength). This leads to
same location. During this experiment, we sampled theanges in the average received signal strength. For the
signal strength from each access point at the rate of ongns 11p networks working at the 2.4 GHz range, the
sample per second. Figure 3 shows the relation betweeg,elength is 12.5 cm and we measure a variation in the

the average signal strength received from an access pOi%erage signal strength up to 10 dBm in a distance as
and the percentage of samples we receive from it duringm411 as 7.6 cm (3 inches) (Figure 5).

a period of 5 minutes. The figure shows_tha_lt the number Dealing with small-scale variations is challenging. To
of samples collected from an access point is a monotong . the radio map size and the time required to build

ically increasing function of the average signal strengthy, . o map, selected radio map locations are typically

ET tE'S aﬁces_s po||nt. Assim'ﬁg E.CEnStint no |sellevel, _th laced more than a meter apart. This means that the ra-
igher the signal strength, the higher the signal to noisg;, map does not capture small-scale variations leading

ratio ar_ld _the more probgble it becomes that the 802'“?0 decreased accuracy in the current WLAN location sys-
card will identify the existence of a frame. The sharp ms

drop at about -81 dBm can be explained by noting that In the next section, we indicate how thi®russystem

the receiver sensitivity (minimum signal power required . o
handles th mporal an ial variations.
to detect a frame) for the card we used was -82 dBm. andles these temporal and spacial variations

2.3 Spatial characteristics 3 TheHorus System

These variations occur when the receiver position idn this section, we present the different components of
changed. We further divide these variations into largetheHorussystem.
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Figure 4: Large-scale variations: Average signal strength 0 10 xz?cemimg?ers) 40 %0

over distance.

Figure 5: Small-scale variations: Signal strength con-
tours from an AP in a 30.4 cm (12 inches) by 53.3 cm

3.1 Overview (21 inches) area.

Figure 6 shows the overall system. THerus system
works in two phases:

The Small-Scale Compensatanodule handles the
small-scale variation characteristics of the wireless chan-
el (Section 3.6).

We start by laying out the mathematical framework
2. Online Phaseto estimate the user location based onfor the approach then give details about different com-

the received signal strength from each access poirRonents of the system.

and the radio map prepared in the offline phase. .
! P prep ' nep 3.2 Mathematical Model

The radio map stores the distribution of signal Streng”\Nithout loss of generality
received from each access point at each sampled Ioc?éal space. At each Ioc’atiom € X, we can get the

tion. There are two modes for o_perz_;\thn O.f tHerus signal strength fronk access points. We denote the

system: one uses r?on-_pa_ram_etnc distributions and thaimensional signal strength spaceSasach element in

othehr usles pa_rametréc Idls_tnbutlé)ns. i | this space is &-dimensional vector whose entries rep-
TheClusteringmodule is used to group radio map 10- yogent the signal strength readings from different access

cations based on the access points covering them. Clugi,inis \we denote samples from the signal strength space
tering is used to reduce the computational requirements <. \we also assume that the samples frdifferent
of the system and, hence, conserve power (Section 3.7), - .o points are independent

The Discrete Space Estimatanodule returns the ra- . .
dio map location that has the maximum probability given The problem becomes, given a &gna} strength vector
s = (s1,..., Sx), we want to find the locatiom € X that

the received signal strength vector from different access _ .~ .
points (Section 3.3). maximizes the probability?(x/s).

TheCorrelation Modelling and Handlingnodules use . In the next segtlon, we assume a @scﬁé@pace. we
an autoregressive model to capture the correlation be@scuss the continuous space case in Section 3.5.
twc_aen consgcutlve samplgs from the same access pong._s Discrete Space Estimator
This model is used to obtain a better discrete location es-
timate using the average ofcorrelated samples (Section During the offline phase, thdorus system estimates the
3.4). signal strength histogram for each access point at each

The Continuous Space Estimattakes as an input the location. These histograms representiitgus system’s
discrete estimated user location, one of the radio map loradio map. Now consider the online phase. Given a sig-
cations, and returns a more accurate estimate of the useal strength vectos = (s4, ..., s;), we want to find the
location in the continuous space (Section 3.5). locationz € X that maximizes the probability(x/s),

1. Offline phase to build the radio map, cluster ra-
dio map locations, and do other preprocessing of th
signal strength models.

IeX be a 2 dimensional phys-



one access point is as high as 0.9. Assuming indepen-
Estimated Location dence of samples from the same access point leads to the
] undesirable result of degraded system performance as the
number of averaged samples is increased (as we demon-
strate below, in Section 4).

Continuous-Space
Estimator

3.4.1 Mathematical model

|
|
| We use an autoregressive model to capture the correla-
| tion between different samples from the same AP.
Let s; be thestationarytime series representing the
| ”””””””””””””” | samples from an access point, wheigthe discrete time
|
|
|
|

Small-Scale
ompensator

Estimator
sive model [7] as:

Horus System Components

Correlation
Handler

Discrete-Space . .
index. s; can be represented adiest order autoregres-
(Rmx?p st=asi1+(1—a)yy ;0<a<l] 4)

whereuv, is a noise process, independentsgfanda
is a parameter that determines the degree of autocorre-
lation of the original samples. Moreover, different sam-
ples fromuv, are independent and identically distributed
(i.i.d.).

The model in Equation 4 states that the current sig-
nal strength values{) is a linear aggregate of the previ-

ous signal strength value,(_;) and an independent noise

é/ value ;). The parametar gives flexibility to the model
as it can be used to determine the degree of autocorrela-

Figure 6: Horus Components: the arrows show infor- tion of the original process. For examplegifs zero, the

mation flow in the system. Shadowed blocks represent@mPples of the processare i.i.d’s, whereas iivis 1 the
modules used during the offline phase. original samples are identical (autocorrelation=1).
Assuming that the signal strength distribution of sam-

ples from an access point is Gaussian with mgand
variances?, we have shown in [29, 31] that the distribu-

i.e., we want tion of the average af correlated samples is a Gaussian
argmax [P(z/s)] (1)  distribution with mean: and variance given by:
Using Bayes’ theorem, this can be shown to be equiva- l+a ,
lent to [33]: T—a° 5)
argmax,[P(x/s)] = argmax,[P(s/z)] (2) 3.4.2 Correlation modeler

The purpose of the correlation modeler component is to
estimate the value af in the autoregressive model and
to pre-calculate the parameters of the distribution of the
P(s;/x) (3)  average of: correlated samples during the offline phase.
1 In a previous work [29, 31], we have shown thatan be
approximated using the autocorrelation coefficient with

The signal-strength histogram can be approximated byag 1. The variance of the distribution can be calculated
a parametric distribution such as the Gaussian distribuysing Equation 5. These distribution parameterss(
tion. We compare the performance of the discrete-spacgnda) are then stored in the radio map.
estimator based on the parametric and non-parametrig 43 C .

4. orrelation handler

distributions in the Section 4.

. . During the online phase, the correlation handler mod-
3.4 Correlation Handling ule averages the value afconsecutive samples from an
To account for the temporal signal-strength variations, itaccess point and passes this information to the discrete-
is important to average multiple signal strength samplespace estimator, which uses the distributions stored in the
from the same access point. As we showed in Figure 2radio map (taking correlation into account using the in-
the autocorrelation of successive samples collected fronformation in Section 3.4.1) to estimate the user location.

P(s/x) can be calculated using the radio map as:

—.

P(s/z) =

7



3.5 Continuous Space Estimator uses théPerturbationtechnique to handle the small-scale
The discrete-space estimator returns a single locatioyariations. The technique is based on two sub-functions:

from the set of locations in the radio map. To increase théletecting smal!-s_cale variations and compensating for
system accuracy, thdorus system uses two techniques Small-scale variations.

to obtain a location estimate in the continuous space. 3.6.1 Detecting small-scale variations

3.5.1 Technique 1: Center of Mass of the Top Can- In order to detect small-scale variations, tHerus sys-
didate Locations tem uses the heuristic that users’ location cannot change

This technique is based on treating each location in thd@Ster than their movement rate. The system calculates
radio map as an object in the physical space whosdhe estimated location using the standard radio map and
weight is equal to the normalized probabilitgssigned the inference algorithm, then calculates the distance be-
by the discrete-space estimator. We then obtain the cerfveen the estimated location and the previous user loca-

ter of mass of theV objects with the largest mass, where tion. If this distance is above a threshold, based on the
N is a parameter to the systein< N < [|X]|. ' user movement rate and estimation frequency, the system

More formally, letp(z) be the probability of a location decides that there are small-scale variations affecting the

€ X, i.e., the radio map, and I& be the list of loca- ~ Signal strength.

tions in the radio maprderedin a descending order ac- 3.6.2 Compensating for small-scale variations

cording to the normalized pro.babilit)_/ (the location WiFh To compensate for these small-scale variations, the sys-
lower ID comes first for locations with equal probabil- tem perturbs the received vector entries, re-estimates the

ity). The center of mass technique estimates the Currer]I)cation, and chooses the nearest location to the previous

locationz as: user location as the final location estimate. For exam-
N %(; ple, if one sample includes a signal-strength observation
izlp(’) (@) from each oft access pointésy, ss, . . . , 53), the system
rT="——xN tries all3* combinations in which each of thieobserva-
. (6) . o
> p(3) tionsi is replaced by one of three valuas, s; (1 +d), or
=1

- _ si(1 — d); we explore the parametérin Section 4.2.4.
whereX (i) is thei'" element ofX An enhancement of this approach is to perturb a subset
of the access points. The effect of the number of access
points to perturb and the value dfon accuracy is de-
scribed in Section 4.

Note that the estimated locatiammeed not be one of the
radio map locations.

3.5.2 Technique 2: Time-Averaging in the Physical )
Space 3.7 Clustering Module

smooth the resulting location estimate. The techniqud!T) clustering technique used by thterussystem to re-
obtains the location estimate by averaging the &5t duce the computational requirements of the location de-
locations estimates obtained by either the discrete-spadmination algorithm. We define @usteras a set of
estimator or the continuous-space estimator discussed {R¢ations sharing a common set of access points. We call
the previous section. this common set of access points ttlaster key The
More formally, given a stream of location estimates Problem can be stated as: Given a locatignwe want

tion &; at timet as: characteristics of the wireless channel described in Sec-
tion 2 make clustering a challenging problem because the
_ 1 Zt: . number of access points covering a location varies with
= — €Ti .
Inin(m t) ) g ( ) time.
t—min(W,t)+1 ThelT approach is based on the idea that each access
We compare the two techniques in Section 4. point defines a subset of the radio map locations that

are covered by this access point. These locations can
3.6 Small-Scale Compensator be viewed as a cluster of locations whose key is the ac-
Dealing with small-scale variations (Figure 5) is chal- cess point covering the locations in this cluster. If during
lenging. Since the selected radio map locations are typthe location determination phase we use the access points
ically placed more than a meter apart, to limit the ra-incrementally, one after the other, then starting with the
dio map size, the radio map does not capture small-scalfirst access point, we restrict our search space to the lo-
variations. This contributes significantly to the estima-cations covered by this access point. The second access
tion errors in the current systems. Thidrus system point chooses only the locations in the range of the first
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Figure 7: Floor plan for the first testbed. Readings were"19ure 8: Floor plan of the office space where the second
collected in the corridors and inside the rooms. experiment was conducted. Readings were collected in

the corridors and inside the rooms.

851 feet

access point and covered by the second access pointandi.1 Testbed 1

so on, leading to a multi-level clustering process. We performed our first experiment in the south wing of

Notice that no preprocessing is required in the offlinethe fourth floor of the A. V. Williams building in the Uni-
training phase. During the online phase, a locatidre-  versity of Maryland at College Park. The layout of the
longs to a cluster whose key is access paint there  floor is shown in Figure 7. The wing has a dimension of
is information about access poiatat locationz in the 8.2 meters by 25.9 meters. The technique was tested
radio map. in the University of Maryland wireless network using

The algorithm works as follows. Given a sequence ofCisco access points. 21 access points cover the multi-
observations from each access point, we start by soristory wing and were involved in testing.
ing the access points in descending order according to The radio map has 110 locations along the corridors
the average received signal strength. For the first acceg®d 62 locations inside the rooms. On the average, each
point, the one with the strongest average signal strengtipcation is covered by 6 access points. Haussystem
we calculate the probability of each location in the radiowas running under the Windows XP professional operat-
map set given the observation sequence from this acce$3g system.
point alone. This gives us a set of candidate locations; 1 o  Testbed 2
(locations that have non-zero probability). If the prob- . _ .
ability of the most probable location is “significantly” e performed the second experiment in another office
higher (according to a threshold) than the probability ofSPace (Figure 8). The area of the experiment site is ap-
the second most probable location, we return that mogproximately 11.8 meters by 35.9 meters covering corri-
probable location as our location estimate, after consultdors cubicles, and rooms. Five LinkSys access points
ing only one access point. If this is not the case, we go t¢*1d 0ne Cisco access point cover the test area.
the next access point in the sorted access point list. For W& have a total of 110 locations in the radio map. On
this access point, we repeat the same process again, g} average, each location is covered by'4 access points.
only for the set of candidate locations obtained from the! N€ Horus system was running under thénux (kernel
first access point. We study the performance oflhe  2-9:7) Operating system.
approach in Section 4. 4.1.3 Data collection

The radio map locations were marked on the floor before
4 Experimental Evaluation the experiment and the user clicked on the map to point

the location of the radio map points. We collected 100
In this section we start by showing the effect of eachsamples, spaced 300 ms apart, at each radio map loca-
module independently on the the accuracy of the basition. We expect an error of about 15-20 cm due to the
algorithm. We then show the effect of using all the com-inaccuracies in clicking the map.

ponents together on the performance of Harus sys- The training data was placed 1.52 meters (5 feet) apart

tem. for the first testbed and 2.13 meters apart for the second
testbed (7 feet).

4.1 Experimental Testbed For each testbed, we selected 100 test locations to ran-

dom cover the entire test area (nhone of them coincide
We performed our experiment in two different testbeds. with a training point). For both testbeds, the test set was



s st Table 1: Summary of the percentage enhancement of dif-

0.8 . ferent components on the basic algorithm
0.8 " [ Technique | Testbed 1] Testbed 2|
07 y Correlation Handling 19% 11%

z 06 ! Center of Mass 13% 6%

g 05 Time Averaging 24% 15%

£ o4 ii Small-Scale Compensator25% 21%

0.3 !
/

0.2 / 0.8 L
01 Non-Parametric =——— "] ’5 0.7 n
0 ‘ Parametrip e °
0 1 2 3 4 5 6 = 068 & .
Distance Error (Meter) §
5 0.5
. . . ]
Figure 9: Performance of the basic algorithm of He S 04
rus system for the first testbed. % 03
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> 0.2
E) 0 1 . -
collected by different persons on different days and times < ' W't\*}\‘/)i;’rf 88{{ ;
of day than the training set. This difference presents 0 5 3 ‘4 5

a realistic testbed and should, if anything, decrease the
measured accuracy of our approach because it lessens
the likelihood that the test data is a close match to th
training data.

4.2 Results

We show the effect of each module independently on the
performance of the discrete-space estimator and presegyeraged samples increases, the performance degrades.
the overall system performance in Section 4.3. The minimum value at = 2 can be explained by noting

4.2.1 Discrete-space estimator (Basic algorithm) that there are two opposing factors affecting the system

. . . accuracy:
Figure 9 shows the performance of the basic algorithms

of the Horus system for the first testbed. The system 1. asthe number of averaged sampidscreases, the

can achieve an accuracy of 1.4 meters 90% of the time.  accuracy of the system should increase.

The performance of the parametric and non-parametric

methods is comparable with a slight advantage for the 2. asn increases, the estimation of the distribution of

parametric method. Using a parametric distribution to the average of the samples becomes worse due to

estimate the signal-strength distribution smooths the dis-  the wrong independence assumption.

tribution shape to account for missing signal strength val-

ues in the training phase (due to the finite training time).At low values ofn (n = 1, 2) the first factor is the dom-

This smoothing avoids obtaining a zero probability for inating factor and hence the accuracy increases. Start-

any signal strength value that was not obtained in thdng fromn = 3, the effect of the bad estimation of the

training phase and hence enhances the accuracy. distribution becomes the dominating factor and accuracy
Table 1 shows the summary of the results for the twodegrades.

testbeds. Details for the second testbed can be found in Using the modified technique, the system average ac-

[28]. curacy is enhanced by more than 19% using five signal-

strength samples.

Number of samples (n)

%:igure 10: Average distance error with and without tak-
ing correlation into account for the first testbed.

4.2.2 Correlation handler

Figure 10 shows the performance of tHerus system 4.2.3  Continuous space estimator

when taking the correlation into account and without tak-Center of Mass Techniqué&igure 11 shows the effect of
ing the correlation into account for the first testbed. Weincreasing the parameté&’ (number of locations to in-
estimated the value af to be 0.9. The figures show that terpolate between) on the performance of the center of
under the independence assumption, as the number afiass technique for the first testbed. Note that the special
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Figure 11: Average distance error using the center ofigure 13: Effect of changing the perturbation fraction

mass technique for the first testbed. on average distance error.
07 each access point) on average error. We can see from this
06 L m figure that the best value for the perturbation fraction is
. 0.05 for the first testbed. We use these values for the rest
0.5 e e . .., of this section.

Figure 14 shows the effect of increasing the number
of perturbed access points on the average distance error.
0.3 The access points chosen at a location are the strongest
access points in the set of access points that cover that
location. The figure shows that perturbation technique is
0.1 not sensitive to the number of access points. This means
that perturbing one access point only is sufficient to en-
hance the performance.

Figures 15 shows the effect of using the perturbation
technique on the basidorus system. The perturbation
Figure 12: Average distance error using the time-technique reduces the average distf';mce error by more
averaging technigue for the first testbed. EEan 328://0 and the worst-case error is reduced by more

an 0.

4.2.5 Clustering module

0.4

0.2

Average distance error (Meter)

0 2 4 6 8 10
Averaging window size (W)

case ofN = 1 is equivalent to the discrete-space estima-Figures 16 and 17 shows the effect of the parameter
tor output. The figures show that the performance of thel hreshold on the performance. For small values of the
Horussystem is enhanced by more than 13%8be 6. Threshold parameter, the decision is taken quickly af-

Time-averaging TechniqueFigure 12 shows the ef- ter examining a small number of access points. As the
fect of increasing the paramet®r (size of the averag- threshold value increases, more access points are con-
ing window) on the performance of the time-averagingsulted to reach a decision. As the number of access points
technique. The figures show that the larger the averageonsulted increases, the number of operations (multipli-
ing window, the better the accuracy. The performancecations) per location estimate increases and so does the
of the Horus system is enhanced by more than 24% foraccuracy.

W = 10. 4.3 Overall System Performance

4.24 Small-scale compensator In the previous sections, we studied the effect of each
For the purpose of detecting small-scale variations, wecomponent of thélorussystem separately on the perfor-
assume a maximum user speed of two meters per seconghance. In this section, we compare the performance of
Figure 13 shows the effect of changing the perturba-the full Horussystem, to the performance of a determin-
tion fraction ¢, which is the amount by which to perturb istic technique (th&adarsystem [5]) and a probabilistic
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Figure 14: Effect of changing the number of perturbedFigure 16: Effect of the paramet@threshold on the

access points on average distance error. average distance error for the first testbed.
1 55
0.9 /;5/3 Table 2: Estimation parameters for the two testbeds
0.8 o | Parameter | Test. 1] Test. 2|
0.7 | f Correlation Degreen) 0.9 0.7
2 o6 [¢ Num. of avg. samples) 10 10
§ 05 / Num. of loc. used in interp.{) | 6 6
E 04 / Averaging window (V) 10 10
03 g Threshold 0.1 0.1
0.2 /
0.1 ; Perturbation —&— 1
J Basic ---©-- .
0 . " ‘4 posed techniques.
Error Distance (Meter) The performance of the three systems is better in the

first testbed than the second testbed as the first testbed

Figure 15: CDF for the distance error for the first testbed has a higher density of APs per location and the calibra-
tion points were closer for the first testbed.

Moreover, theHorus system leads to more than an

technique [21]. We use the parametric distribution tech-order of magnitude savings in the number of multipli-
nique. Table 2 shows the values of different parametersc@tions required per location estimate compared to the
other systems (250 multiplications for Horus compared
Figures 18 shows the comparison for the two testbed&® 2708 for the other two systems).
(the curve for theRadarsystem is truncated). Tables 3  \We also applied the enhancement discussed in this pa-
summarizes the results. The table shows that the averaggr (without correlation handling) to the Radar system.
accuracy of theHorus system is better than the Radar We summarize the results is Table 3. These results show
system by more than 89% for the first testbed and 82%he effectiveness of the techniques proposed in the paper
for the second testbed. The worst case error is decreaseghd that these techniques are general and can be applied
by more than 93% for the first testbed and 70% for theto other WLAN location determination systems to en-
second testbed. hance their accuracy.
Comparing the probabilistic system in [21] to tHe-
rus system shows that the average error is decreased b% . .
more than 35% for the first testbed and 27% for the sec Discussion
ond testbed. The worst case error is decreased by more
than 78% for the first testbed and 70% for the secondn this section, we highlight some of our experience with
testbed. These results show the effectiveness of the prahe Horussystem.



Table 3: Comparison of thdorussystem and other systems (error in centimeters)

Testbed 1 Testbed 2
Median | Avg | Stdev | 90% | Max | Median | Avg | Stdev | 90% | Max

Horus 39| 42 28 86| 121 51| 64 53| 132| 289

System [21] 48 | 65 63| 143 | 578 72| 86 77| 181 | 991

Radar 296 | 400 326 | 853 1757 341 | 361 184 | 611 | 967

Radar with Horus tech. 161 | 193 107 | 302 | 423 142 | 195 106 | 332 | 483
£ 4000 is dependent on the application in use.
E 80 ‘ ——pq Latency can be reduced by presenting the location es-
g 3500 \ gg / timate incrementally using one sample at a time. The
& 3000 50 system need not to wait until it acquires thesamples
g 2500 \ gg all at once. Instead, it can give a more accurate estimate
5 \ 20 of the location as more samples become available by re-
= 2000 \ 18 porting the estimated location given the partial samples
2 1500 0.1 0.3 0.5 0.7 it has. Other factors that affect the choice of the value of
g 1000 \ n are the user mobility rate and the sampling rate. The
£ \ higher the user mobility rate or the sampling rate, the
2 500 \, lower the value ofs.
g » - : | .
< Nc?CIust. 0.1 0.3 0.5 0.7 5.3 User Profile

Threshold A common assumption of WLAN location determination

systems is that the user position follows a uniform distri-
Figure 17: Effect of the paramet&threshold on the  bution over the set of possible locations. Our analysis
average number of operations per location estimate foand experimentation [32] show that knowing the prob-
the first testbed. The sub-figure shows the same curvability distribution of the user position can reduce the
for Threshold = [0.1,0.7]. number of access points required to obtain a given accu-
racy. However, with a high density of access points, the
performance of thélorussystem is consistent under dif-
) ) o ferent probability distributions for the user position, i.e.,
5.1 Parametric vs Non-Parametric Distri-  the effect of the user profile is not significant with a high
butions density of access points. Systems can use this fact to re-

TheH t del the sianal st th distrib duce the energy consumed in the location determination
erorussystem can model tne signai strength distri u'algorithm by not using the user profile in the estimation

tions received from the access points using parametric o
T : rocess.
non-parametric distributions. The main advantage of th _
non-parametric technique is the efficiency of calculatingd.4  Effect of Different Hardware

the location estimate, while the parametric technique '®One of the hardware related questions is whether differ-

duces the radio map size and smooths the distributioRn hargware from different manufacturers are compati-
shape which leads to a slight computational advantage qf;o  That is, how does using different APs, mobile de-

the parametric technique over the non-parametric techyi.as or wireless cards affect the accuracy?

nique. Our experience with thelorus system shows that the
Laptop or PDA used for the calibration has no effect on
the accuracy if a different device is used in tracking. APs
The correlation handling and the continuous space esfrom different manufacturers can be used without affect-
timator modules each use more than one sample to ining the accuracy since the radio map captures the sig-
crease the accuracy of the system. However, a side effediature of the AP at each location (note that the second
of this increased accuracy is that the latency of calculattestbed uses mixed types of APs). The 802.11h specifica-
ing the location estimate increases. In general, we have #ons, however, require APs to have transmission power
tradeoff between the accuracy required and the latency afontrol (TPC) and dynamic frequency selection (DFS).
the location estimate. The higher the required accuracyThis presents an open research direction for the current
the higher the number of samples required and the higheWLAN location determination systems as they assume
the latency to obtain the location estimate. This decisiorthat the AP transmission power does not change over

5.2 Location Estimation Latency



drivers that support that interface. Under the Windows
OS, NDIS allowed us to perform the same functions.
Our experience with both systems shows that drivers
under Linux conform to the Wireless Extensions APIs
better than Windows Drivers do with the NDIS. For ex-
ample, under the Windows, some cards, like the Cisco
card, respond to scans with low frequency (every 2-3
seconds) and return only one AP. We hope that future
/z . versions of the driver will have better support for the
02 f o Horus —m— |  NDIS interface. Moreover for both systems, better ac-
/ e System [21] & tive scanning techniques needs to be developed to reduce
0

Probability

Radar ---e-- the scanning overhead.

1 2 3 4 5
Error Distance (Meter) 6 Related Work

(a) First testbed Many systems over the years have tackled the problem
| . of determining and tracking the user position. Examples
—I/G_._! include GPS [11], wide-area cellular-based systems [24],
/'/./5 infrared-based systems [4, 26], ultrasonic-based sys-
0.8 tems [19], various computer vision systems [16], and
,/Q _~® physical contact systems [18].
06 / o ® Compared with these systems, WLAN location de-
@

termination systems are software based (do not require
0.4 ; ' specialized hardware) and may provide more ubiquitous
% coverage. This feature adds to the value of the wireless
i | data network.

/ P Systemgﬁ o The Daedalus project [14] developed a system for
e __Radar e coarse-grained user location. A mobile host estimates
0 1 2 3 4 5 its location to be the same as the base station to which
Error Distance (Meter) it is attached. Therefore, the accuracy of the system is

limited by the access point density.

The RADAR system [5] uses the RF signal strength
as an indication of the distance between the transmitter
and receiver. During an offline phase, the system builds
a radio map for the RF signal strength from a fixed num-
ber of receivers. During normal operation, the RF signal
strength of the mobile client is measured by a set of fixed
time. receivers and is sent to a central controller. The central

The main factor that may affect the accuracy whencontroller uses a K-nearest approach to determine the lo-
changing hardware is the wireless card. Our experienceation from the radio map that best fits the collected sig-
shows that cards from the same manufacture are intenal strength information.
changeable. The good news is that a linear mapping ex- The Aura system proposed in [22] uses two tech-
ists between different NICs [13]. Unfortunately, some of niques: pattern matching (PM) and triangulation, map-
the cards in the market are so noisy [27] that with thisping and interpolation (TMI). The PM approach is very
linear mapping the obtained radio map is not represensimilar to the RADAR approach. In the TMI technique,
tative of the environment. We found that Orinoco cardsthe physical position of all the access points in the area
and Cisco cards are stable, in terms of signal-strengtheeds to be known and a function is required to map sig-
measurements. nal strength onto distances. They generate a set of train-
. ing points at each trained position. The interpolation of
5.5 Operating System Interface the training data allows the algorithm to use less training
We implemented théHorus system under both Linux datathanthe PM approach. During the online phase, they
and Windows. The main functionality we require from use the approximate function they got from the training
the OS is support for issuing scan requests and returrdata to generate contours and they calculate the intersec-
ing the results. Under the Linux OS, the wireless exten+tion between different contours yielding the signal space
sions [1, 2] give us a common interface to query differentposition of the user. The nearest set of mappings from

Probability

(b) Second testbed

Figure 18: CDF of the performance of thirussystem
and theRadarand the probabilistic system.



the signal-space to the physical space is found by applyhandling small-scale variations. The perturbation tech-
ing a weighted average, based on proximity, to the signahique enhances the average distance error by more than
space position. 25% for the first testbed and more than 21% for the sec-
The Nibble location system, from UCLA, uses a ond testbed. Moreover, the worst-case error is reduced
Bayesian network to infer a user location [8]. Their by more than 30% for the two testbeds.
Bayesian network model include nodes for location, The basicHorustechnique chooses the estimated lo-
noise, and access points (sensors). The signal to noisgation from the discrete set of radio map locations. We
ratio observed from an access point at a given locatiortlescribed two techniques for allowing continuous-space
is taken as an indication of that location. The systemestimation: theCenter of Massechnique and th&ime-
also quantizes the SNR into four levels: high, medium,Averagingtechnique. Using th&€enter of Masgech-
low, and none. The system stores the joint distributionnique, the accuracy of thdorus system was increased
between all the random variables of the system. by more than 13% for the first testbed and by more than
Another system, [21], uses Bayesian inversion to re-6% for the second testbed compared to the basic tech-
turn the location that maximizes the probability of the re- nique. TheTime-Averagingechnique enhances the per-
ceived signal strength vector. The system stores the sigdermance of théHorussystem by more than 24% for the
nal strength histograms in the radio map and uses theffirst testbed and more than 15% for the second testbed.
in the online phase to estimate the user location. YetThe two techniques are independent and can be applied
another system, [17], applies the same technique to thgether.
robotics domain. We also compared the performance of therus sys-
The Horus system is unique in defining the possible tem to the performance of ttiRadarsystem. We showed
causes of variations in the received signal strength vecthat the average accuracy of therus system is better
tor and devising techniques to overcome them, namelyhan the Radar system by more than 89% for the first
providing the correlation modeler, correlation handler,testbed and 82% for the second testbed. The worst case
continuous space estimator, and small-space comperrror is decreased by more than 93% for the first testbed
sator modules. Moreover, it reduces the computationahnd 70% for the second testbed. Comparing the prob-
requirements of the location determination algorithm byapilistic system in [21] to théforus system shows that
applying location-clustering techniques. This allows thethe average error is decreased by more than 35% for the
Horus systento achieve its goals of high accuracy and first testbed and 27% for the second testbed. The worst

low energy consumption. case error is decreased by more than 78% for the first
7 C lusi testbed and 70% for the second testbed. These results
onclusions show the effectiveness of the proposed techniques. In

In this paper, we presented the design of therus terms of computational requirements, tHerus system
system: a WLAN-based location determination systemis more efficient by more than an order of magnitude.
We approached the problem by identifying the various The proposed modules are all applicable to any of
causes of variations in a wireless channel and developeiiie current WLAN location determination systems. We
techniques to overcome them. We also showed the varishow the result of applying the techniques of Herus
ous components of the system and how they interact. system to theRadarsystem. The results show that the

TheHorussystem models the signal strength distribu- average distance error is reduced by more than 58% for
tions received from access points using parametric anthe first testbed and by more than 54% for the second
non-parametric distributions. By exploiting the distribu- testbed. The worst case error is decreased by more than
tions, theHorus system reduces the effect of temporal 76% for the first testbed and by more than 48% for the
variations. second testbed.

We showed that the correlation of the samples from As part of our ongoing work we are experimenting
the same access point can be as high as 0.9. Expenvith different clustering techniques. Automating the
ments showed that under the independence assumptioradio-map generation process is a possible research area.
as the number of averaged samples increases, the pérhe Horus system provides an API for location-aware
formance degrades. Therefore, we introduced the corapplications and services. We are looking at designing
relation modeler and handling modules that use an auand developing applications and services ovetHtbeus
toregressive model for handling the correlation betweersystem. A possible future extension is to dynamically
samples from the same access point. Using the modiehange the system parameters based on the environment,
fied technique, the system average accuracy is enhancedch as changing the averaging window size as the user
by more than 19% for the first testbed and 11% for thespeed changes or using a time-dependent radio map. We
second testbed. are also working on the theoretical analysis of different

TheHorussystem uses thieerturbationtechnique for  components of the system.



Our experience with thelorus system showed that it

has achieved its goals of:

(13]

e High accuracy: through a probabilistic location de- [14]
termination technique, using a continuous-space es-
timator, handling the high correlation between sam-[1°]
ples from the same access point, and the perturba-

tion technique to handle small-scale variations.

e Low computational requirements: through the use

of clustering techniques.

[16]

(17]

The design of Horus also allows it to achieve scalabil-[;g)
ity to large coverage areas, through the use of clustering
techniques, and to large number of users, through the dis-
tributed implementation on the mobile devices and due td°]

the low energy requirements of the algorithms.

Moreover, the techniques presented in this paper maif°!
be applicable to other RF-technologies such as 802.11a,

802.11g, HiperLAN, and BlueTooth.

Acknowledgments

This work was supported in part by the Maryland In-

[21]

(22]

formation and Network Dynamics (MIND) Laboratory, [23]
its founding partner Fujitsu Laboratories of America, [24]

and by the Department of Defense through a University.,
of Maryland Institute for Advanced Computer Studies

(UMIACS) contract.

(26]

Availability 271
The MAPI APl and the Linux device drivers are available
for download at [1]. (28]
References

[29]

[1] http://lwww.cs.umd.edu/users/moustafa/Downloads.htm.

[2] http:/iwww.hpl.hp.com/personal/Jedourrilhes/.

[3] http://lwww.orinocowireless.com.

[4] Azuwma, R. Tracking requirements for augmented real®om-
munications of the ACM 3& (July 1997).

[5] BAHL, P., AND PADMANABHAN, V. N. RADAR: An In-
Building RF-based User Location and Tracking SystemERE
Infocom 200QMarch 2000), vol. 2, pp. 775-784.

[6] BAHL, P., RDMANABHAN , V. N., AND BALACHANDRAN, A.

(30]

(31]

Enhancements to the RADAR User Location and Tracking Sys-[32]
tem. Tech. Rep. MSR-TR-00-12, Microsoft Research, February

2000.

[7] Box, G. E. P., &NKINS, G. M., AND REINSEL, G. C. Time
Series Analysis: Forcasting and Contrthird ed. Prentice Hall,
1994.

[8] CASTRO, P., CHIU, P., KREMENEK, T., AND MUNTZ, R. A

(33]

Probabilistic Location Service for Wireless Network Environ- [34]

ments.Ubiquitous Computing 200@September 2001).

(9]
[10]

[11]

[12]

CASTRO, P., AND MUNTZ, R. Managing Context for Smart
SpaceslEEE Personal Communicatiof® CTOBER 2000).
CHEN, G., AND KoTz, D. A Survey of Context-Aware Mobile
Computing Research. Tech. Rep. Dartmouth Computer Science
Technical Report TR2000-381, 2000.
ENGE, P., AND MISRA, P. Special issue on GPS: The Global
Positioning System.Proceedings of the IEEEJanuary 1999),
—172.
GWON, Y., JAIN, R.,AND KAWAHARA, T. Robust Indoor Loca-
tion Estimation of Stationary and Mobile Users.IEEE Infocom
(March 2004).

HAEBERLEN, A., FLANNERY, E., LADD, A., RuDYs, A.,
WALLACH, D., AND KAVRAKI, L. Practical Robust Localiza-
tion over Large-Scale 802.11 Wireless Networks.10th ACM
MOBICOM (Philadelphia, PA, September 2004).

HoDEs, T. D., KATZ, R. H., SCHREIBER, E. S.,AND ROWE,

L. Composable ad hoc mobile services for universal interaction.
In 3rd ACM MOBICOM(September 1997), pp. 1-12.
KRISHNAN, P., KRISHNAKUMAR, A., Ju, W. H., MALLOWS,

C., AND GANU, S. A System for LEASE: Location Estima-
tion Assisted by Stationary Emitters for Indoor RF Wireless Net-
works. InIEEE Infocom(March 2004).

KRUMM, J.,ET AL. Multi-camera multi-person tracking for Easy
Living. In 3rd IEEE Int'l Workshop on Visual Surveillan¢Pis-
cataway, NJ, 2000), pp. 3-10.

LAabD, A. M., BEKRIS, K., RuDYs, A., MARCEAU, G.,
KAVRAKI, L. E., AND WALLACH, D. S. Robotics-Based Lo-
cation Sensing using Wireless Ethernet8th ACM MOBICOM
(Atlanta, GA, September 2002).

ORR, R. J.,AND ABOWD, G. D. The Smart Floor: A Mech-
anism for Natural User Identification and Tracking. Qonfer-
ence on Human Factors in Computing Systems (CHI 20Dig
Hague, Netherlands, April 2000), pp. 1-6.

PRIYANTHA, N. B., CHAKRABORTY, A., AND BALAKRISH-
NAN, H. The Cricket Location-Support system. @&th ACM
MOBICOM (Boston, MA, August 2000).

Roos, T., MYLLYMAKI , P.,AND TIRRI, H. A Statistical Mod-
eling Approach to Location EstimationlEEE Transactions on
Mobile Computing 11 (January-March 2002), 59-69.

RoOS, T., MYLLYMAKI , P., TiRRI, H., MISIKANGAS, P.,AND
SIEVANEN, J. A Probabilistic Approach to WLAN User Loca-
tion Estimation. International Journal of Wireless Information
Networks 93 (July 2002).

SMAILAGIC, A., SIEWIOREK, D. P., ANHALT, J., KOGAN, D.,
AND WANG, Y. Location Sensing and Privacy in a Context Aware
Computing EnvironmentPervasive Computin(2001).
STALLINGS, W. Wireless Communications and Netwarks
first ed. Prentice Hall, 2002.

TEKINAY, S. Special issue on Wireless Geolocation Systems and
Services|EEE Communications Magazirg&pril 1998).

] THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGI-

NEERS INC. |EEE Standard 802.11 - Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) specifications.
WANT, R., HOPPER A., FALCO, V., AND GIBBONS, J.The Ac-
tive Badge Location SystemACM Transactions on Information
Systems 1A (January 1992), 91-102.

YEO, J., BANERJEE, S.,AND AGRAWALA, A. Measuring traffic
on the wireless medium: experience and pitfallsTéshnical Re-
port, CS-TR 4421, Department of Computer Science, University
of Maryland, College ParkDec. 2002).

Yousser M. Horus: A WLAN-Based Indoor Location Deter-
mination SystemPhD thesis, University of Maryland at College
Park, May 2004. Submitted for SigMobile Dissertation Page.
YOUSSEF M., ABDALLAH, M., AND AGRAWALA, A. Mul-
tivariate Analysis for Probabilistic WLAN Location Determina-
tion Systems. IThe Second Annual International Conference on
Mobil)e and Ubiquitous Systems: Networking and Serv{daly
2005).

YOUSSEFR M., AND AGRAWALA, A. Small-Scale Compensation
for WLAN Location Determination Systems. MeEE WCNC
2003(March 2003).

YOUSSEFR M., AND AGRAWALA, A. Handling Samples Corre-
lation in the Horus System. IEEE Infocom(March 2004).
YOUSSER M., AND AGRAWALA, A. On the Optimality of
WLAN Location Determination Systems. I8ommunication
Networks and Distributed Systems Modeling and Simulation
ConferencdJanuary 2004).

YOUSSEE M., AGRAWALA, A., AND SHANKAR, A. U. WLAN
Location Determination via Clustering and Probability Distribu-
tions. INIEEE PerCom 2008March 2003).

YOUSSEE M., AGRAWALA, A., SHANKAR, A. U., AND NOH,

S. H. A Probabilistic Clustering-Based Indoor Location Deter-
mination System. Tech. Rep. UMIACS-TR 2002-30 and CS-
TR 4350, University of Maryland, College Park, March 2002.
http://www.cs.umd.edu/Library/TRs/.

Notes

1The normalization is used to ensure that the sum of the probabili-
ties of all locations equals one.



