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Abstract— In this paper we consider the problem of a wireless
LAN selecting a channel to minimise interference with other
WLANSs. We focus on interfering infrastructure-mode networks,
where each access point (AP) or base station has a wired
backhaul link. We introduce a new fully distributed and self-
managed channel selection algorithm that does not require
direct communication between APs nor explicit estimation of
the network interference graph. The sole information required
by the algorithm is feedback to each WLAN on the presence
of interference on a chosen channel; such feedback is already
commonly provided by WLAN protocols such as 802.11. We
establish that convergence of the distributed algorithm is guar-
anteed provided that the channel selection problem is feasible.
Extensive simulation results are presented that demonstrate rapid
convergence under a wide range of network conditions and
topologies. While the scope of the present paper is confined to
infrastructure networks with static topology, the utility of the
proposed algorithm in situations where the network topology is
time-varying is briefly discussed.

I. INTRODUCTION

Increasingly, the trend is towards denser wireless LAN
deployments. One factor driving this trend is simply the
increasingly widespread uptake of WLAN technology, e.g. see
[1]. However, another is the strong correlation between link
rate and distance from an access point (AP)! With regard to
the latter, because the wireless medium is a broadcast one any
station operating at a low rate not only impacts that station
itself but also reduces the capacity of the entire wireless cell
(low rate transmissions occupy more time on the air than high
rate transmissions, thus reducing the available transmission
opportunities). Denser deployments of APs therefore offer the
potential to significantly increase network capacity. However,
a key challenge in realising this potential is the effective
management of the wireless spectrum to mitigate interference
between nearby APs, which tends to increase as deployments
become more dense.

We focus on interfering infrastructure-mode networks,
where each AP has a wired backhaul link. One approach
is to explicitly measure which APs (and associated wireless
stations) interfere with each other and to use this information
to directly optimise the allocation of wireless channels to APs,
e.g. see [2], [3]. This yields a centralised channel allocation

'In this paper we use the term AP to denote the co-ordinating station in
an infrastructure WLAN that is responsible for channel selection. There is
no intention to restrict consideration to a specific WLAN technology and the
AP here might equally be the access point in an 802.11 WLAN or the base
station in an 802.16 WLAN, etc. Each AP has an associated collection of
wireless stations, for which it provides backhaul access, and we refer to the
collection of stations plus AP as a WLAN.
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scheme. Centralised schemes are, however, simply not feasible
in many practical situations where interfering APs do not
belong to the same administrative domain; for example in
residential and commercial buildings where interfering wire-
less networks may be operated by different households or
businesses. Moreover, even when APs belong to a single
administrative domain it is often far from straightforward to
determine which APs are interfering with each other as (i) the
interference distance is generally larger than the distance at
which nodes can communicate (and so an AP cannot rely upon
reading packet headers to identify the source of interference)
and (ii) interference between APs is often time-varying in
nature due to changing environmental conditions.

It is therefore attractive to consider self-managed distributed
channel selection schemes that do not depend upon com-
munication of control information. One such self-managed
approach is for APs to simply select a channel randomly and
rely upon over-provisioning of channels to make it unlikely
that nearby APs choose the same channel. However, it is
clear that such a scheme is only really viable in situations
with few interfering WLANs and many spare channels. A
modified version of the 802.11 CSMA/CA scheme might also
be employed (e.g. see [4]), but this seems ill-suited to channel
allocation as it inevitably involves persistent “collisions” and
persistent changes in channel (or transmission slot), even when
the network topology is static.

In this paper we propose a new fully distributed algorithm
suited to dynamic channel selection by WLANSs. In this
scheme each AP employs a simple learning rule to adaptively
select the channel to transmit on. The algorithm does not
require direct communication between APs, hence it is referred
to as self-managed. The sole information required by the
algorithm is feedback to each AP on the presence of interfer-
ence on a given channel; such feedback is already commonly
provided by WLAN protocols such as 802.11. We show that
the algorithm is guaranteed to converge to an optimal solution
that minimises interference between WLANs provided this
is feasible. Moreover, we demonstrate the convergence is,
on average, remarkably fast under a wide range of network
conditions and topologies.

As an illustration of the potential capacity gain using the
proposed algorithm, we briefly consider a simple 802.11
WLAN example where APs are randomly located in a unit
square and the WLANs associated with two APs interfere
when the APs are located within a radius R of each other.
For simplicity, we assume that each WLAN is saturated i.e.

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 12, 2010 at 12:25 from IEEE Xplore. Restrictions apply.



35

30

N
o
T

mean aggregate throughput

! . : ! : . 7 "
5 10 15 20 25 30 35 40 45 50
graph size (#nodes)

Fig. 1. Mean aggregate network throughput (normalised by channel band-
width) vs network size with (i) all network nodes using same channel and
(ii) with optimal channel allocation (802.11b MAC with 11Mbs PHY and
1500 byte packets, random disk interference graphs with radius R=0.5, each
point plotted is the mean throughput taken over 100 random disk graphs,
for simplicity we assume that nodes always have a packet to send i.e. are
saturated)

always has a packet to send. Straightforward modification of
the Bianchi [5] throughput model to include the effect of the
interference pattern between WLANs (the standard Bianchi
model assumes that every node interferes with every other
node) yields the throughput predictions shown in Figure 1.
The throughput values shown are the aggregate of all WLANSs,
averaged over 100 example networks, and thus provide an
indication of the mean network capacity. Also shown in Figure
1 are the corresponding mean throughput predictions when
channels are optimally allocated to minimise interference
between WLANs?. Evidently, the potential capacity gain is
considerable.

II. RELATED WORK

Tassiulas and Ephremides [2] present a centralised algorithm
to maximise throughput in multi-hop wireless networks which
uses global knowledge of the queue lengths to decide routing
and scheduling/channel selection. Raniwala et al [6], [7] also
consider channel allocation schemes for multi-radio multi-hop
networks. Luo et al [4], [8] study a fair queueing model for
multi-hop WLANs which operates on the packet level. They
give a distributed implementation which seeks to approximate
their ideal centralised algorithm for allocating transmission
opportunities although this algorithm relies upon explicit com-
munication of state information between stations via packet
headers. All of these multi-hop scheduling problems require
that stations at both ends of a hop share a common channel and
thus fundamentally differ from the channel allocation problem
considered in the present paper.

2We assume here that sufficient channels are available to make the optimum
allocation feasible. While 802.11b/g is limited to 3 orthogonal channels, other
technologies (e.g. 802.11a) support a much greater number. This issue is
discussed further in Section V.

Bejerano and Bhatia [3] consider a similar problem to the
present paper and give a framework for providing fairness,
QoS and high throughput in infrastructure-mode single-hop
802.11 networks where the access points have a wired back-
haul connection. Their fair slot assignment approach builds
on an approximation algorithm for the disk graph colouring
problem but is a centralised scheme. Leung and Kim [9]
consider a similar problem and propose a heuristic centralised
algorithm. Akella et al [1] study power control and rate
adaptation in the same setting, but do not consider algorithms
for channel allocation. The closest work to that in the present
paper is perhaps that of Kaufmann et al [10] who study a
distributed simulated annealing algorithm for channel selection
of WLANSs. Kaufmann et al model the interference on a certain
channel as a sum of received power from other APs on the
same channel and the background noise on that channel. Their
algorithm implicitly relies on a time parameter to control an
AP’s channel selection probabilities.

An extensive literature exists relating to channel assignment
in cellular phone networks and the reader is referred to
the survey paper by Narayanan [11] for details. Since the
channel assignment problem is NP-hard, numerous heuristic
schemes have been proposed that come with few, if any,
guarantees on performance. Notable exceptions include Sparl
and Zerovnik [12], Sudeep and Vishwanathan [13], Janssen et
al [14] and Narayanan and Shende [15] who study distributed
algorithms for frequency assignment in cellular networks and
provide competitive performance bounds. However, this work
concentrates on the cellular network case where the graph
is always a subgraph of the triangular lattice. Moreover, the
distributed algorithms considered require explicit communica-
tion of channel information between nodes within a k& hop
neighbourhood, whereas in the present paper we consider
schemes that do not require such direct communication.

The channel allocation problem considered here is equiva-
lent to graph colouring. The literature on graph colouring is
extensive but has mostly focussed on centralised algorithms
or on localised algorithms that use extensive message passing
such as Survey Propagation[16]. Finocchi et al [17] and
Kubale and Kuszner [18] analyse simple distributed colouring
algorithms. Their greedy algorithms simply use extra colours
if difficulties occur and so in general may achieve a colouring
that uses far from the minimum number of colours.

III. DISTRIBUTED ALGORITHM

Let ¢ denote the number of available channels and let each
AP maintain a ¢ element state vector p. Let p; denote the
ith element of p with Y ; p; = 1. We consider the following
distributed algorithm for updating p.

Algorithm: Distributed Channel Selection

1) Initialise p = [1/c,1/c,...,1/c]T

2) Toss a weighted coin to select a channel, with p; the
probability of selecting channel ¢. Measure the quality
of the channel: any interference measure can be used
that yields a “success” when interference/channel noise
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is within acceptable levels and “failure” otherwise. Thus,

we might , for example, use an aggregate measure

derived from multiple packet transmissions, direct mea-

surement of the channel SNR or some other approach.
3) On success on channel 4, update p as

pi = 1 (1)
pj = OVj#i )

i.e. on success we stay with that channel. This creates
a degree of “stickiness” which ensures that any channel
allocation that removes interference between WLANS is
an absorbing state.

4) On failure on channel ¢, update p as

(1 —b)pi A3)
(1 =b)p; +b/(c = 1)Vj #1i )

i.e. on a failed transmission multiplicatively decrease
the probability of using that channel, redistributing the
probability evenly across the other channels. b is a design
parameter, 0 < b < 1; the selection of the value of b is
considered in detail in the next section.

5) Return to 2.

The strategy adopted by this algorithm is a fairly simple
one. The station periodically measures the channel quality (the
interval between measurements need not be constant and can
be selected to respect the cost of switching channel and the
time needed to measure channel quality). When the channel
quality of acceptable, keep using the same channel. Otherwise,
randomly choose a channel with weighted probability based
on past experience. Note that on a failure there exists a non-
zero probability associated with every channel, albeit with less
weight on channels that are prone to failure.

We have the following main result on the convergence of
this algorithm. Let G denote the interference graph associated
with a wireless network; that is, there exists a vertex in G
corresponding to each WLAN and edges exist between each
pair of interfering WLANs. A proper channel allocation is
one where each WLAN uses a different channel from all of
its neighbours in G i.e. an allocation where WLANs do not
interfere.

Pi =
p; =

Theorem 1 Suppose each vertex in a graph G operates the
Distributed Channel Selection algorithm. A vertex makes a
successful transmission when it chooses a different channel
from all of its neighbours, otherwise the transmission may
fail. Assume that the number of available channels c is greater
than or equal to the chromatic number x of G (i.e. a proper
channel allocation is indeed feasible). Then the Distributed
Channel Selection algorithm converges, with probability one,
to a proper channel allocation.

Proof: We will show that in a determined finite amount
of steps the system has some minimum positive probability of
convergence. We show that starting from any configuration
the system can reach some standard state after two steps,

and can then potentially reach a state where every vertex
experiences a failure simultaneously, allowing convergence
without issues of independence. Hence the network always
has positive probability of global success and so will almost
surely converge.

First we show that if the system has reached a configuration
with some colour selection probabilities very small there is
a positive probability that it will return in two steps to a
standard state with all such probabilites on just collided nodes
lower bounded. Thus (with some probability) the initial colour
selection probabilities will have no effect on the probability of
a given evolution happening. After any step 1| there was either
global success (and convergence) or at least two vertices failed
by interfering with each other, referred to in the sequel as a
“collision”. Starting at time 7y we allow the system to evolve
for 2 more steps and lower bound the probability of the system
having no vertex with two consecutive same colour collisions.
Consider any vertex; after the first collision by choosing colour
11, it has probability pri; > % of choosing some specific
other colour 5 and probability pro > b of choosing any colour
other than ¢;. So the probability of two repeated collisions
at a specific vertex is pr3 < 1 — b. In the whole system the
probability of some vertex having two consecutive same colour
collisions is pry < n(1—b)— (5)(1—b)2+- -+ < 1. Hence with
some probability prs > 1 — pry > 0 the system has no vertex
with consecutive same colour collisions. Thus after these two
steps with probability prs all colour selection probabilities of
vertices which have just collided are strictly greater than cfl.

We now describe a specific evolution of the system which
concludes with all vertices failing simultaneously, providing
some probability of global success after the next step. Using
the fact that all colour selection probabilites of colliding
vertices are lower bounded, after any collision any colour
choice is possible. Hence the probability prg of our specific
evolution (while very small) is strictly positive and lower
bounded. If we have not converged after the above 2 steps, then
two vertices k1 and ko, say, have just experienced a collision.
By way of notational convenience we say these two vertices
were visited at step 2. Suppose now that k; collides with
its first non visited neighbour k3 (if any) at step 3. Suppose
also that ko collides with its first non visited neighbour (if
any, potentially k3 also) at step 3 also. We say that such
vertices are visited at step 3. Inductively suppose now that a
vertex once visited collides with all its nonvisited neighbours
in consecutive steps. This is possible because a visited vertex
having just collided can potentially choose any colour. Note
that a vertex being visited simultaneously (along two different
equal length paths from k; and k, say) is also possible.

Suppose that once a vertex has collided with all its non-
visited neighbours it then repeatedly chooses colour 1 until
step 71 = Ty + 2 + md x D. We note that as a vertex ky
is colliding with its nonvisited neighbours some of them may
become visited from other vertices before they collide with
ky; we suppose then that k4 does not visit such vertices.

We assume without loss of generality that the graph is
connected. Thus at time 77 — 1 it is possible for every vertex
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to have been visited and to be choosing colour 1. Hence every
vertex is colliding and any possible colour configuration is
possible. So we can finally suppose that at step 7} that every
vertex selects a colour so that no collisions occur.

Using finiteness and assuming that all colour selection
probabilities of failing vertices are lower bounded after the first
two steps, there is some probability pr7 > 0 such that prg >
pry irrespective of the initial colour selection probabilities and
which vertices collided initially. Defining prg = pryprs to
ensure no repeated collisions in the first two steps we can say
that every 2 + md x D steps the system will converge with
probability at least prg. Hence after j(2 + md x D) steps we
have converged with probability at least 1 — (1 — prg)? which
converges to 1 as j — oo. |

Comments

1) Clock Synchronisation. Although, for simplicity, we as-
sume slotted time in the foregoing analysis, Theorem 1
carries over without change to the situation where clocks
are not synchronised. All that is required is that a proper
channel allocation results in no transmission failures (we
neglect the impact of non-interference related channel
noise), while use of the same channel by neighbouring
WLANS (i.e. a non-proper allocation) induces transmis-
sion failures with positive probability.

2) Hidden nodes. The presence of hidden nodes corre-
sponds to directed links in the network interference
graph. That is, hidden nodes induce transmission failures
in neighbouring WLANS that share the same channel but
do not themselves experience failures. Provided that the
number of channels is sufficiently large (generally larger
than the chromatic number of the associated undirected
graph) so that all absorbing states of the distributed
channel selection algorithm are feasible, the algorithm
also converges to a proper channel allocation on directed
graphs.

3) CSMA/CA. Although both are stochastic algorithms, the
proposed distributed channel selection algorithm differs
from CSMA/CA type algorithms in many fundamental
respects. For example, for a given network of WLANs
the channel selection algorithm converges to a static allo-
cation with no packet collisions, whereas the CSMA/CA
algorithm incurs a persistent packet collision overhead.

4) Learning Automata. The proposed channel selection
algorithm is closely related to learning automata, see
for example [19]. However, previous work has largely
focussed on individual automata rather than the inter-
connection of a large number of automata, with few
results known about the properties of interconnected
learning automata. To our knowledge, Theorem 1 is
one of the first convergence results for interconnected
learning automata.

IV. CONVERGENCE RATE

Theorem 1 guarantees that the Distributed Channel Selec-
tion algorithm converges to a solution that minimises inter-

ference, provided we have enough channels for the allocation
problem to be feasible, but says nothing about the rate of
convergence i.e. the number of iterations of the algorithm
needed before convergence to a proper channel selection.
Since graph colouring is known to be an NP-hard problem
in general, tight bounds on convergence rate are non-trivial to
obtain. In this section we use simulation studies to explore the
convergence rate of the algorithm under a range of network
conditions and topologies.

A. Impact of Learning

We begin by investigating the impact on convergence rate
of the learning elements of the Distributed Channel Selection
algorithm, namely Steps 3 and 4. We can remove these steps to
yield a crude algorithm which assigns a constant probability to
each channel and thus evolves as a uniform random walk over
every possible combination of channel allocations; while this
is guaranteed to converge eventually since the random process
is ergodic, it is clear that the convergence rate of this algorithm
will generally be extremely slow. More interesting is a modi-
fication of this crude algorithm to add the “stickiness” step 3
whereby an AP settles on a successful channel, but which upon
failure still assigns uniform probability to every channel (i.e. in
the Distributed Channel Selection algorithm step 4 is replaced
by “On failure update p to [1/c,1/c,...,1/c]T”). Figure 2
plots the mean number of iterations to converge versus the
number of wireless nodes for this strategy and for the full
Distributed Channel Selection algorithm?. In this example the
network interference graph is modeled as a random disk graph;
that is, APs are uniformly randomly located in a unit square
and the WLANSs associated with two APs interfere when the
APs are located within a radius R of each other. A “failure”
or “collision” occurs when neighbouring nodes select the
same channel at a given iteration of the channel allocation
algorithm, and a “success” when a node selects a different
channel from all of its neighbours. Each of the convergence
time values plotted are the average over 1000 randomly chosen
disk graphs. The impact of the learning step 4 is evident: e.g.
for a 30 node graph the learning step yields an improvement
of four orders of magnitude in mean convergence time.

We can gain further insight into convergence behaviour as
follows. Let F; (k) denote the probability that AP i experiences
a failure at iteration k, and let F'(k) denote the probability
that any AP experiences a failure at iteration k. A proper
channel allocation induces a failure probability F' of zero.
The Distributed Channel Selection algorithm is a stochastic
learning algorithm and it is therefore of interest to consider the
expected failure probability F[F(k)], where the expectation is
taken over an ensemble of runs of the algorithm each starting
from the same initial probabilities specified in Step 1. Figure
3 plots E[F(k)] versus iteration number %k for a randomly

3Note that in Figure 2 for each graph the number of channels is set equal
to the chromatic number x (calculated using the DSATUR algorithm); that
is, we use the minimum possible number of channels for a feasible solution.
The impact on the convergence rate of using larger numbers of channel is
discussed in detail later.
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Fig. 2. Mean number of iterations to converge to a proper channel allocation
vs number of nodes in interference graph for uniform random strategy and
stochastic learning strategy (random disk graphs with radius R=0.5, mean is
taken over 1000 graphs, channel number ¢ = x, learning scheme parameters:
b=0.1)

selected 10 node disk graph. The expectation is taken over a
1000 run ensemble. The data on a log scale and it can be seen
that the rate of convergence appears to be exponential.

. I . . I .
0 20 40 60 80 100 120
iteration #

Fig. 3. Mean failure probability vs number of iterations (randomly selected
10 node disk graph with chromatic number x of 6, channel number ¢ = ¥,
mean is over 1000 runs, b = 0.1)

This is initially somewhat surprising as the channel alloca-
tion problem is equivalent to graph colouring, which is known
to be NP-hard, and thus exponentially fast convergence is
unexpected. To understand this behaviour, we note that the
plot is of the expected failure probability. Figure 4 shows two
example realisations of the failure probability F' (rather than
E[F)) for the same graph as in Figure 3. It can be seen that
the failure probability evolves in a complex manner before
decaying rapidly to zero at some threshold time, 7, after
which F' remains identically equal to zero. The exponential
decay of E[F] can therefore be interpreted as prob[r > k|
decaying exponentially with k. That is, although it is possible
for some realisations of the stochastic learning process to
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Fig. 4. Example realisations of failure probability time history (randomly
selected 10 node graph with chromatic number x of 6, channel number ¢ = ¥,
b=0.1)

be slow to converge, as might be expected for an NP-hard
problem, convergence appears nevertheless to be rather rapid
on average.

B. Choice of Learning Parameter b

We next consider the choice of the the parameter b in
the distributed channel selection algorithm. This parameter
determines how quickly an AP discounts previous successes
on a channel (or failures on other channels) on experiencing
transmission failures on that channel. When b = 0, we have
that no action is taken on failures. That is, when b = 0 an
AP simply settles forever on the first channel on which it
experiences a successful transmission. It is easy to see that
this greedy strategy will not, in general, converge to a proper
channel allocation. We therefore require b > 0. For b > 0 we
have that the algorithm reduces the probability of choosing a
channel, uniformly increasing the probability of choosing the
remaining channels. Hence, failures can lead to selection of a
new channel, regardless of previous successes. As b is made
larger, failures are penalised more greatly and the “inertia” or
“stickiness” of the system decreases. Small inertia allows the
system to escape from poor choices of channel allocation but
if the inertia is too small then convergence is slowed. Figure
5 plots the mean number of iterations to converge to a proper
channel allocation versus the choice of learning parameter b
used. It can be seen that as b approaches O the convergence
time rapidly increases, as expected (recall that we know the
algorithm can fail to converge when b = 0). As b approaches
1 the convergence time also rises as a consequence of the
small inertia in the system. We can see that values of b in
the range 0.1-0.3 yield the fastest convergence times for a
range of interference levels (results are shown for interference
radius R=0.25, 0.5, 0.75), with the convergence rate largely
insensitive to the value used within this range.
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C. Impact of Channel Over-provisioning

In addition to considering situations where the number of
channels is selected to be equal to the chromatic number x
of the network interference graph (i.e. we use the minimum
possible number of channels for a feasible solution), it is also
interesting to study the impact on convergence rate of over-
provisioning the number of channels. Intuitively, as the number
of available channels is increased we expect that the channel
allocation problem becomes easier. Figure 6 plots the mean
number of iterations for the Distributed Channel Selection
algorithm to converge versus the channel provisioning (as a
percentage of the chromatic number). As expected, we can
see that the convergence time decreases as the level of over-
provisioning is increased. However, what is perhaps more
interesting is that it can also be seen that the impact of even
a relatively small amount of over-provisioning can be very
considerable. For example, 25% additional channels over and
above the minimum required for a feasible solution yields
more than an order of magnitude reduction in convergence
time, while 50% yields nearly two orders of magnitude re-
duction. This level of reduction is largely insensitive to the
interference graph parameters, see for example Figure 7.

V. PERFORMANCE GAIN FROM INTERFERENCE
MANAGEMENT

In this section we briefly consider in more detail the
potential gain in network throughput that can be achieved
by proper channel allocation. A key issue in assessing the
potential gain is the impact of interference on the MAC
layer performance. We consider in particular two contrasting
examples: (i) a naive centralised MAC scheduler that schedules
a transmission in every available slot and (ii) an 802.11
CSMA/CA MAC scheduler. Figures 8 and 9 plot the mean per
node throughput as a function of the offered load in a network
of interfering WLANS. As before, we assume that the WLANSs
are uniformly randomly distributed in a unit square and that
transmissions by WLANs within a distance R interfere (so that
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Fig. 6. Mean number of iterations to converge to a proper channel allocation
vs number of nodes in interference graph and channel provisioning relative to
chromatic number x (random disk graphs with radius R=0.5, mean is taken
over 1000 graphs, b = 0.1)
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Fig. 7. Mean number of iterations to converge to a proper channel allocation
vs number of nodes in interference graph and disk radius R of graph.
(#channels is 1.25x (25% over-provisioning)), random disk graphs, mean is
taken over 1000 graphs, b = 0.1)

simultaneously transmissions on the same channel result in a
failed transmission). For simplicity, we also assume that time
is slotted and every WLAN always has a packet to send in each
transmission slot. Packet arrivals are exponentially distributed
and the impact of queueing dynamics is ignored (small queues
are used).

It can be seen from Figure 8 that a naive centralised MAC
scheduler yields eventually zero throughput as the network
offered load is increased. This is because as the offered load
at each WLAN increases, the local MAC scheduler eventually
schedules a transmission in every available transmission slot.
Hence, interfering WLANS sharing the same channel generate
packet collisions in every slot and the achieved throughput is
zero. Note that in practice link rate adaptation and a more
sophisticated scheduler would yield better performance. Also
shown in Figure 8 is the corresponding network throughput
when the proposed distributed channel allocation is used.
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Fig. 8. Mean per node throughput (normalised by maximum physical
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scheduler. Results are shown when (i) all nodes use the same channel for
transmissions and when (ii) our distributed channel allocation algorithm is
used. (20 node random disk graphs with radius R=0.5, channel number
c=/chi, results are the average over 100 graphs, b = 0.1).
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Fig. 9. Mean per node network throughput (normalised by maximum
physical throughput) versus normalised offered load for 802.11b CSMA/CA
MAC scheduler. Results are shown when all nodes use the same channel for
transmissions and when our distributed channel allocation algorithm is used.
(11Mbs PHY and 1500 byte packets, 20 node random disk graph with radius
R=0.5, results are the average over 100 graphs, b = 0.1).

Figure 9 shows the corresponding results when an 802.11
CSMA/CA MAc scheduler is employed. These results are
obtained using the finite load 802.11b model developed in
[20], modified to include a general interference graph. The
CSMA/CA scheme is elastic, increasing the average interval
between transmission attempts as the channel becomes more
heavily loaded and/or as the level of interference increases.
As a result, the throughput does not fall to zero as the offered
load increases, even when all WLANS share the same channel.
It can nevertheless be seen that the throughput gain achieved
by allocation of channels to minimise interference remains
considerable.

These performance gains are, of course, contingent on the
availability of sufficient channels to allow interference between

WLANS to be minimised. Figure 10 illustrates the dependence
of packet loss due to colliding transmissions on the number
of available channels when the proposed distributed channel
allocation algorithm is used. In this example, each interfering
WLAN is saturated i.e. always has a packet to send, and a
naive centralised MAC scheduler is used. For small numbers
of channels, almost all packet transmissions collide and the
achieved throughput is very low (in line with the previous
discussion). As the number of channels is increased, it can
be seen that the loss rate decreases, falling below 10%, on
average, when 9 channels are available. Figure 11 shows the
corresponding mean per node throughput values. As might
be expected, when only a very small number of channels are
available, no channel allocation is capable of yielding good
performance and it is necessary to extend consideration to, for
example, joint channel allocation and power control in order
to mitgate interference. This is, however, beyond the scope of
the present paper.

mean packet loss rate
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Fig. 10. Mean packet loss rate (ratio of losses to transmission attempts)
versus number of available channels for naive centralised MAC scheduler and
saturated WLANSs. (20 node random disk graphs with radius R=0.5, results
are the average over 100 graphs, b = 0.1).

VI. NON-STATIONARY TOPOLOGIES

Although the focus of the present paper is primarily on
collections of infrastructure mode WLANSs where the interfer-
ence graph is static, we briefly consider the impact of time-
variations in the interference graph on the performance of our
distributed channel selection scheme. Time-variations might
arise from factors including changes in traffic load as certain
WLANS become idle, from AP mobility and/or from changes
in environmental conditions.

Suppose that the interfering WLANs have converged on
an optimal channel allocation that minimises interference.
Changes in the interference graph will then typically require
adjustment of these channel allocations. During the adjust-
ment period, the channel allocations are sub-optimal and AP
transmissions may interfere, resulting in packet loss. We can
therefore measure the cost of changes in the interference graph
via the number of packet losses induced. Intuitively, we expect
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Fig. 11.  Mean per node network throughput (normalised by maximum
physical throughput) versus number of available channels for naive centralised
MAC scheduler and saturated WLANSs. (20 node random disk graphs with
radius R=0.5, results are the average over 100 graphs, b = 0.1).

that provided changes in the interference graph occur slowly,
compared with the convergence time of the channel selection
scheme, the level of packet losses will be small.

mean collision rate
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Fig. 12.  Packet loss overhead (ratio of losses to transmission attempts)
induced by topology changes vs rate of interference graph change. (Mean
number of nodes 20, nodes are added/deleted at exponentially distributed
intervals with mean rate given by the x-axis to random disk graph with radius
R=0.25, a maximum of 5 channels are available, results are the average over
100 graphs, b = 0.1).

Figure 12 presents simulation results showing the mean
packet loss (as a proportion of total packet transmissions) as
a function of the rate of change of the interference graph. The
results are the average over 100 random disk graphs each with
a mean of 20 nodes. Nodes are randomly added/deleted at time
intervals which are exponentially distributed, with the rate of
change of the interference graph given by the reciprocal of the
mean number of iterations between node addition/deletion. A
maximum of only 5 channels are assumed available (so that
at some instants the channel allocation problem may in fact
not be feasible). It can be seen that, as expected, the rate of
packet loss increases with the rate of change of the network

interference graph. Observe, however, that the absolute rate of
packet loss remains low even in rapidly changing conditions;
for example, the packet loss rate is only 10% of transmissions
even when a node is added/deleted from the network on
average every 5 iterations. Recall that an iteration of the
channel selection algorithm corresponds to the duration of a
single packet transmission and so might be on the order of
Ims or less. Although owing to space limitations we do not
explore performance under changing conditions further in the
present paper, we do comment that these results indicate the
potential utility of the proposed distributed algorithm.

VII. CONCLUSIONS

In this paper we consider the problem of a wireless LAN
selecting a channe 1 to minimise interference with other
WLANs. We introduce a new fully distributed channel se-
lection algorithm that does not require direct communication
between APs; that is, the algorithm is self-managing. The sole
information required by the algorithm is feedback to each
AP on the presence of interference on a chosen channel;
such feedback is already commonly provided by WLAN
protocols such as 802.11. We establish that convergence of the
distributed algorithm is guaranteed provided that the channel
allocation problem is feasible. While we do not as yet have
full analytic results relating to the rate of convergence of
the distributed algorithm, extensive simulation results are
presented that demonstrate rapid convergence under a wide
range of network conditions and topologies. While the scope
of the present paper is confined to infrastructure networks
with static topology, the utility of the proposed algorithm
in situations where the network topology is time-varying is
briefly discussed.

VIII. ACKNOWLEDGEMENTS

This work was supported by Science Foundation Ireland
grant IN3/03/I346. The authors would like to thank Ken
Dufty, David Malone and Rick Middleton for many helpful
discussions.

REFERENCES

[1] A. Akella, G. Judd, P. Steenkiste, and S. Seshan. “Self management in
chaotic wireless deployments”. In MobiCom 05: Proceedings of the 11th
annual international conference on Mobile computing and networking,
2005

[2] L. Tassiulas, A. Ephremides, “Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks”, IEEE Transactions on Automatic Control, 37 (12), 1992.

[3] Y. Bejerano, S.-J. Han and L. (Erran) Li, “Fairness and load balancing
in wireless LANs using association control”, MobiCom ’04, 2004.

[4] H. Luo, P. Medvedev, J. Cheng, S. Lu, “A self coordinating approach
to distributed fair queuing in ad hoc wireless networks”, Proc. of IEEE
INFOCOM 01, 2001.

[5] G. Bianchi, “Performance analysis of IEEE 802.11 distributed coordi-
nation function”, IEEE Journal on Selected Areas in Communications,
18(3):535-547, March 2000.

[6] A. Raniwala, K. Gopalan, T. Chiueh, “Centralized Algorithms for Multi-
channel Wireless Mesh Networks”. ACM SIGMOBILE Mobile Computing
and Communications Review (MC2R), 2004.

[7] A.Raniwala, T. Chiueh. “Architecture and algorithms for an IEEE 802.11-
based multi-channel wireless mesh network”. In Proceedings of IEEE
International Conference on Computer Communications, 2005.

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 12, 2010 at 12:25 from IEEE Xplore. Restrictions apply.



[8] H. Luo, S. Lu, “A topology independent fair queueing in ad hoc
wireless networks”, Proc. of the 2000 International conference on network
protocols, 2000.

[9] B.J.Leung, K.K.Kim, “Frequency assignment for IEEE 802.11 wireless
networks”. Proc. 58th IEEE Vehicular Technology Conference, 2003.
[10] B. Kauffmann, F. Baccelli, A. Chaintreau, K. Papagiannaki, C. Diot,
“Self Organization of Interfering 802.11 Wireless Access Networks,”,

INRIA Technical Report, August 2005.

[11] L. Narayanan, “Channel assignment and graph multicoloring,” Hand-
book of wireless networks and mobile computing, Wiley series on parallel
and distributed computing, 2002.

[12] P. Sparl, J. Zerovnik, “2-local 5/4-competitive algorithm for multicol-
oring triangle-free hexagonal graphs”, Information Processing Letters 90,
2004.

[13] K. S. Sudeep, S. Vishwanathan, “A technique for multicoloring triangle-
free hexagonal graphs”,’ Discrete Mathematics 2002.

[14] J. Janssen, D. Krizanc, L. Narayanan, S. M. Shende, “Distributed on-
line frequency assignment in cellular networks,” Proc. of the 15th annual
symposium on theoretical aspects of computer science, Lecture Notes in
Computer Science Vol. 1373, 1998.

[15] L. Narayanan, S. M. Shende, “Static frequency assignment in cellular
networks”, Algorithmica 29 (2001).

[16] A. Braunstein, M. Mezard, R. Zecchina, “Survey propagation: an algo-
rithm for satisfiability”, Random Structures and Algorithms, 2005

[17] 1. Finocchi, A. Panconesi, R. Silvestri, “Experimental analysis of a
simple, distributed vertex coloring algorithms”, Algorithmica 41 (2005).

[18] M. Kubale, L. Kuszner, “A better practical algorithm for distributed
graph coloring,” Proc. of IEEE PARELEC’02, 2002.

[19] K. Narendra, M. A. L. Thathachar, “Learning Automata: an introduc-
tion”, Prentice Hall, 1989.

[20] Duffy, K., Malone, D., Leith,D.J., Modelling the 802.11 DCF under het-
erogenous finite load. Proc. Workshop of Resource Allocation in Wireless
Networks, Trento, Italy, 2005.

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on January 12, 2010 at 12:25 from IEEE Xplore. Restrictions apply.



Experimental Implementation of Optimal WLAN
Channel Selection Without Communication

D.Malone, P. Clifford, D.Reid, D.J.Leith
Hamilton Institute, National University of Ireland, Maynooth, Ireland

Abstract—{[1] proposed a simple decentralised algorithm for
channel allocation that is provably correct and requires no
message passing or common administrative control between
interfering WLANS. In this paper we implement this algorithm
using a standard 802.11 hardware testbed and demonstrate
that it does indeed offer the potential for effective channel
allocation in realistic environments. This includes environments
with complex, spatially varying noise and channel dependent
propagation behaviour and with time-varying load.

I. INTRODUCTION AND TESTBED SETUP

For the Communication Free Learning (CFL) algorithm
itself, a full list of references and a survey of related work
please see [1].

The testbed consists of 10 PC-based embedded Linux boxes
based on the Soekris net4801, 5 boxes configured as APs in
infrastructure mode and 5 as client stations. We also use 5
PCs acting as monitoring stations to collect measurements to
ensure that there is ample disk space, RAM and CPU resources
available for collection of statistics. These machines are setup
as five WLANs (denoted WLAN A - WLAN E) located in
a university office space as shown in Figure 1. All systems
are equipped with an Atheros AR5004G 802.11a/b/g mini-
PCI card with an external antenna. All nodes use a Linux
2.6.16.20 kernel and the MADWiFi wireless driver. All of the
systems are also equipped with a wired Ethernet port, which
is used for control of the testbed. Specific vendor features on
the wireless card, such as turbo mode, are disabled. Channel
scanning is also disabled as we use the CFL algorithm for
channel selection. Unless otherwise stated, all of the tests
are performed using the 802.11a physical transmission rate
of 18 Mbps with RTS/CTS enabled and the channel number
explicitly set. With this PHY rate and using 1500 byte packets,
the achieved throughput in an isolated WLAN is measured to
be approximately 13 Mbps.

To generate wireless network traffic and to measure through-
put we use mgen. While many different network monitoring
programs and wireless sniffers exist, no single tool provides all
of the functionality required and so we have used a number
of common tools including tcpdump. Network management
and control of traffic sources is carried out using ssh over the
wired network.

II. IMPLEMENTATION OF CFL ALGORITHM

The CFL algorithm requires no special hardware support
and, in addition to avoiding message passing, does not require

This work was supported by Science Foundation Ireland grant IN3/03/1346.

Fig. 1. Plan showing wireless node locations.

clock/slot synchronisation between interfering WLANs. The
algorithm is implemented as a user-space perl script that
runs on each WLAN AP. WLAN-wide channel switching
is achieved by a broadcast instruction from the AP that is
received by a user-space script running on each WLAN client
station, which then uses the iwconfig command to change
channel.

The CFL algorithm requires a measure of channel quality.
We initially investigated using the RSSI value returned by the
AP wireless NIC. However, we found this value to be unre-
liable — when channel quality is degraded due to interfering
WLANS it is quite possible for the background noise level to
be low yet for the frame error rate to be high due to colliding
transmissions. We therefore use a direct measure of frame error
rate as our channel quality metric. Channel quality is estimated
from the average frame error rate measured over a 10 second
interval; this duration was chosen experimentally.

To allow scripting entirely within user-space we took ad-
vantage of RTS/CTS. Using tcpdump to monitor packets
transmitted, over 10 second intervals we collected statistics
on (i) RTS transmissions for which no CTS handshake was
received, (ii) transmissions for which the RTS/CTS handshake
was successful but the data packet transmission was not
ACKed, and (iii) transmissions with successful RTS/CTS and
data/ACK handshakes. We label (i) as CSMA/CA collisions,
(i1) as frames lost due to interference and (iii) as successful
transmissions. The first of these labels is approximate as
RTS/CTS handshakes may be lost due to interfering trans-
missions or noise. However, the CFL algorithm only requires
a coarse good/bad measure of channel quality and we find that
measuring channel quality by the percentage of type (ii) events
and thresholding at 10% is effective. We are also investigating
other measures [2].

316
1-4244-0663-3/07/$20.00 ©2007 IEEE

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on July 6, 2009 at 12:40 from IEEE Xplore. Restrictions apply.



IIT1. NATURE OF INTERFERENCE ENVIRONMENT

First we attempted to characterise the interference environ-
ment in our testbed.

Throughput (Mbps)

01 02 03 04 05 06 07 08 09 10 1
Channel #

Fig. 2. Baseline throughput for WLAN C versus channel number in 2.4GHz
band (no other WLANS active).

The testbed hardware supports operation both in the 802.11a
5GHz band and in the 802.11b 2.4GHz band. Spectrum
analyzer measurements revealed little external interference in
the SGHz band (a noise floor of around -80dB being typical),
significant external interference was observed in the 2.4GHz
band. Figure 2 shows measured throughput versus channel
number in the 802.11b band for WLAN C — none of the other
WLANS active here, so there is no testbed related interference.
It can be seen that there exists significant background noise on
channels 7-10. We note that the level of external interference
is strongly location dependent and is essentially negligible for
WLANSs B and E which are located approximately 10m further
than WLAN C from the interference source.

Figure 3 shows measurements of the mean rate of successful
transmissions versus channel number when a single WLAN is
active (WLAN E). Measurements are repeated about an hour
apart. The time-varying nature of the channel quality is evident
— e.g. compare channels 48 and 153.

Also marked on Figure 3 are error bars that indicate the
standard deviation of the error time history measured over a
period of 50s. It is evident that variations in channel quality
also occur on shorter time-scales. This is shown in more detail
in Figure 4 which shows an example time history of measured
channel quality over a period of approximately 60 minutes. It
can be seen, for example, that the error rate rises to around
15% for a period of about 10 minutes early in this experiment,
then falls to around 3% after approximately 30 minutes.

Our measurements indicate that the level of interference
between WLANS can be strongly channel dependent. Figure 5
shows the measured interference level between WLANs B and
C as the channel number is varied. We found this effect to be
particularly pronounced in the 5GHz band, with a significantly
lower level of channel dependence measured in the 802.11b
2.4GHz band.

A. Spatial Reuse

To investigate the level of spatial reuse feasible in our
testbed, we measured the frame error rate between pairs of

Throughput (Mbps)

36 40 44 48 52 56 60
Channel #

64 149 153 157 161 165

Throughput (Mbps)

3 40 44 48 52 56 60
Channel #

64 149 153 157 161 165

Fig. 3. Measured throughput with a single WLAN active (no interfering
WLANS). Measurements are shown for WLAN E over the range of 802.11a
channels. The upper and lower plots are about 1 hour apart. Observe the
substantial variation in throughput both with channel number and time.
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Fig. 4. Example of time-varying channel quality.

WLANs as the channel used by one WLAN was varied.
Initially we consider the behaviour when the 802.11a SGHz
band is used. Figure 6(a) shows the measured throughputs of
WLANS A and E when WLAN E is held fixed on channel 36
while the channel used by WLAN A is varied between channel
36 and channel 64. Figure 6(b) shows the corresponding
measurements for WLANs C and E. Note that unlike in
802.11b/g, 802.11a channels are not numbered consecutively
i.e. channels 36 and 40 are in fact adjacent. Observe from
Figure 1 that WLANs A and E are located adjacent to each
other whereas WLANs C and E are located approximately 10m
apart. We therefore expect that a larger separation in channels
is needed between WLANs A and E than between WLANs C
and E and indeed our measurements support this prediction.
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Packet error rate

36 40 44 48 52 56 60 64
Channel #

Fig. 5. Measured interference induced error rate versus channel number in
5GHz band. Here WLANs B and C both transmit CBR traffic on the same
channel. Plot shows measured packet error rate at WLAN C as the channel
number used for transmission is varied (with WLANs B and C always sharing
the same channel)..

It can be seen that when WLAN A is located on channel 56
and above, the aggregate network throughput is 26Mbps which
is approximately the maximum combined capacity that can be
achieved by two independent WLANS for the 802.11a settings
used here. Observe also that both WLANSs achieve throughputs
i.e. network capacity is allocated equally. However, when
WLAN A is on a channel that is closer to that of WLAN
E we have that (i) the aggregate network throughput falls
substantially and (ii) the WLANSs can experience dramatically
different throughputs (e.g. when WLAN A uses channels 44
or 48 it achieves a throughput close to zero, while WLAN E
achieves throughput close to 12Mbps). The latter unfairness
is associated with hidden node type effects that occur when
the WLANSs operate on channels that are sufficiently close
for their transmissions to interfere yet not so close that they
can successfully decode each others transmissions. When the
WLANSs operate on the same channel, they can decode each
others transmissions since the WLANS are located near to
each other and thus the 802.11 CSMA/CA operation fairly
allocates the available bandwidth. However, the aggregate
network throughput is half that achieved when the WLANSs
operate on orthogonal channels.

This behaviour can be contrasted with that of WLANs
C and E. It can be seen from Figure 6(b) that even when
WLANS C and E use adjacent channels the aggregate network
throughput is nevertheless close to 26Mbps. Note that WLANs
C and E are located only 10m apart, yet the attenuation due
to walls etc when combined with the attenuation between
adjacent channels is sufficient to effectively yield orthogonality
of transmissions.

IV. COMMUNICATION-FREE CHANNEL ALLOCATION
ALGORITHM EXPERIMENTAL RESULTS
A. Convergence to non-interfering channel allocation

To demonstrate the CFL algorithm for channel selection, we
simultaneously generated traffic between the nodes on each

WLAN A Throughput S WLAN A Throughput SD 7+
WLAN E Throughput B WLAN E Throughput SD %

Total SD

Throughput (Mbps)

36 40 44 48 52 56 60 64
Chanpel #

(a) WLANs A and E (x-axis marks channel used by
WLAN A).

[ AN Throughput s WLAN C THGughpur S0+ + = TowaISD |
WLAN E Throughput === WLAN E Throughput SD %

Throughput (Mbps)

36 40 44 48 52 56 60 64

(b) WLANs C and E (x—céi‘;:iz"marks channel used by
WLAN O).

Fig. 6. Measuring potential for channel reuse. Using the 802.11a 5GHz band,
WLAN E is held fixed on channel 36 while the channel used by second WLAN
is varied. Measurements are shown for WLANs A and E and for WLANs C
and E. Height of histogram indicates aggregate throughput of both active
WLANS. Light shaded area marks throughput of WLAN E and dark shaded
area marks throughput of second WLAN. Also marked on the histogram are
the standard deviations of the throughput, which give a measure of throughput
variability — it can be seen that the standard deviations are consistently low.
WLANS A and E are located adjacent to each other whereas WLANs C and
E are located approximately 10m apart.

of the five WLANS. To create a relatively demanding channel
allocation task, the channel allocation algorithm was restricted
(via scripting) to the use of four 802.11a channels. Initially,
all WLANSs are started on the same channel.

Figure 7 shows traces of the channel selection time his-
tories for each of the five WLANs as we run the CFL
algorithm. Throughput significantly increases once a non-
interfering channel allocation is selected, yielding a substantial
increase in network capacity: the aggregate throughput from
50-60 seconds is approximately 51 Mbps compared with 11.31
Mbps when the WLANs all use the same channel. That is,
we obtain approximately a factor of four increase in network
capacity through appropriate channel selection.

B. Convergence Rate

Figure 7 shows that the network converges to a non-
interfering channel allocation in approximately 20 iterations.
The duration of an iteration is determined by the time required
to sense channel quality and is set to 10s in our tests yielding
an overall convergence time of 200s. Of course, during this
convergence period the network continues to achieve a signif-
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Fig. 7. WLAN channel time histories. Five WLANSs, four available channels.
Note that in this example the network settles on only three channels.

icant level of throughput. Hence, the cost of the convergence
period in terms of throughput is limited.

Secondly, the simulation analysis in [1] indicates that the
CFL algorithm converges rapidly under a wide range of
conditions and this is confirmed in our experimental tests. For
example, the mean convergence time measured over 10 tests is
five iterations with five WLANS and four available channels.

C. Controlling local channel reuse

Observe in Figure 7 that WLAN B and WLAN D settle
on the same channel. It can be seen from Figure 1 that these
WLANS are located near to each other and on closer inspection
of packet traces we find that the nodes in these WLANSs are
visible to each other (no hidden nodes). That is, both nodes
involved in a collision are able to detect that the collision
occurred, thus the 802.11 CSMA/CA MAC is able to schedule
transmissions properly and the frame error rate (i.e. packet
losses not associated with CSMA/CA collisions) is low. Since
our objective here in allocating channels is to avoid hidden
node and interference related problems, this behaviour is as
expected. Indeed, it seems desirable in dense deployments as
it increases the level of channel reuse. That is, channel reuse
is possible not only between WLANS located so far apart that
their transmissions do not interfere, but also between WLANSs
located close together so that CSMA/CA operates correctly.

It is straightforward to force nearby WLANs to use dif-
ferent channels by observing beacons; this has been verified
experimentally.

D. Impact of external/channel dependent interference

Our measurements of the testbed interference environment
highlight the presence of external interference sources in the
2.4GHz band, and the channel dependent nature of the level
of interference between WLANS.

Returning to the channel dependent interference between
WLANs B and C noted in Figure 5, we recorded statistics on
the channels selected by these WLANs over a series of 10
tests. In line with Figure 5 we find that, as expected, the CFL
algorithm settles on either channel 36,40 or 64 and avoids the
lower quality channels. Similarly, in the case of WLAN E it
can be seen from Figure 3 that the quality of certain channels
can be strongly time-varying. We can also observe in Figure

3 that certain channels are consistently of good quality, e.g.
channels 36-44 and 60-64. Our measurements confirm that
the CFL algorithm automatically adapts to channel dependent
interference by avoiding the low quality channels and settling
on the good quality channels.

E. Time-varying network conditions

NetA

NelB NelC ————_NelD NelE

153 fepres

Channel #

52 | ‘
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36 |-

0 20 40 60 80 100 120
Iteration

Fig. 8. Example of a new WLAN becoming active. Four WLANSs active
initially, with fifth WLAN beginning at time 60.

The level of interference between WLANs is dependent
on the traffic load on each WLAN. In particular, when a
WLAN carries no traffic and therefore generates essentially
no interference. Importantly, when a WLAN that has been
inactive becomes active, we require to allocate a channel
to that WLAN and this may require reconfiguration of the
channel allocations used by other nodes. Since the CFL
algorithm is convergent (i.e. stays settled on a non-interfering
channel allocation once it has found one), it can be left running
at all times. Changes in the network, such as a previously
dormant WLAN becoming active, that create new interference
will then automatically activate the CFL algorithm to adapt the
channel allocation to restore a non-interfering allocation. This
is illustrated in Figure 8. Here, we start with four WLANSs
which quickly settle on a non-interfering channel allocation.
At iteration 60 of the CFL algorithm, a fifth WLAN is
activated (i.e. begins transmitting traffic). It can be seen that
the network automatically reconfigures its channel allocation
to accommodate this new WLAN and quickly settles on a new
non-interfering configuration. At time 50 the total throughput
was 50.1Mbps; at time 120 this had increased to 60.3Mbps.

V. CONCLUSIONS

[1] discusses valuable theoretical properties of the CFL
algorithm; in this paper we have demonstrated its ease of
implementation and its practicality in a wide range of challeng-
ing real world conditions. The algorithm is flexible enough to
perform well even when not operating in the regime assumed
by the theory.

REFERENCES

[1] Leith,D.J., Clifford, P., “A Self-Managed Distributed Channel Selection
Algorithm for WLANSs”. Proc. ACM/IEEE RAWNET, Boston, 2006.

[2] Malone, D.W., Clifford,P., Leith,D.J., 2006, MAC Layer Channel Quality
Measurement in 802.11. IEEE Communcations Letters, February, 2007.

319

Authorized licensed use limited to: The Library NUI Maynooth. Downloaded on July 6, 2009 at 12:40 from IEEE Xplore. Restrictions apply.



