
Understanding TCP fairness over Wireless LAN
Saar Pilosof1, Ramachandran Ramjee2, Danny Raz1, Yuval Shavitt3, and Prasun Sinha2

1The Technion 2 Bell Laboratories 3Tel Aviv University
Dept. of Computer Science 101 Crawfords Corner Road Dept. of Electrical Engineering

Haifa 32000, Israel Holmdel, NJ 07733, USA Ramat Aviv 69978, Israel
{psaar,danny}@cs.technion.ac.il {ramjee,prasunsinha}@bell-labs.com shavitt@eng.tau.ac.il

Abstract— As local area wireless networks based on the IEEE
802.11 standard see increasing public deployment, it is important
to ensure that access to the network by different users remains
fair. While fairness issues in 802.11 networks have been studied
before, this paper is the first to focus on TCP fairness in 802.11
networks in the presence of both mobile senders and receivers. In
this paper, we evaluate extensively through analysis, simulation,
and experimentation the interaction between the 802.11 MAC
protocol and TCP. We identify four different regions of TCP
unfairness that depend on the buffer availability at the base
station, with some regions exhibiting significant unfairness of
over 10 in terms of throughput ratio between upstream and
downstream TCP flows. We also propose a simple solution that
can be implemented at the base station above the MAC layer
that ensures that different TCP flows share the 802.11 bandwidth
equitably irrespective of the buffer availability at the base station.

I. INTRODUCTION

Local area wireless networks based on the IEEE 802.11
standard are becoming increasingly prevalent with a current
installed base of 15 million homes and offices. The focus is
now turning to deploying these networks over hot spots such
as airports, hotels, cafes, and other areas from which people
can have untethered public access to the Internet.

As these networks see increasing public deployment, it
is important for the service providers to be able to ensure
that access to the network by different users and applications
remains equitable. Since the majority of applications in today’s
Internet use TCP, we focus on the problem of TCP fairness in
wireless LAN.

Fairness issues in wireless LANs have been studied exten-
sively [1], [2], [3], [4]. However, most of these solutions in-
volve changes to the Media Access Control (MAC) layer. This
is impractical given the wide deployment of these networks.
Also, while the focus of previous work has been on ensuring a
particular QoS level for a given flow, we are interested in TCP
fairness in the presence of both uploads and downloads i.e.
in the presence of both mobile senders and receivers, which
has not been considered by any prior work.

Consider a typical installation of a 802.11 based wireless
network where the mobile hosts access the network through a
base station or access point. Since the 802.11 protocol allows
equal access to the media for all hosts, the base station and
the mobile hosts all have equal access to the medium. If the
mobile hosts are all senders or all receivers, then they each
have equal share of the total available bandwidth. However,
consider the case when there is one mobile sender and the

rest are all mobile receivers. In this case, the base station and
the mobile sender get equal access to the media. This mobile
sender, therefore gets half of the channel bandwidth and the
remaining half is equally shared by all the mobile receivers.
Depending on the number of receivers, the sender can achieve
several times the bandwidth of the receivers. Thus, the very
equal access nature of the 802.11 media access protocol,
when applied to the standard installation of access through
a base station results in significant unfairness. This unfairness
problem is compounded further in the case of TCP because of
the greedy closed loop control nature of TCP and is the focus
of our paper.

In this paper, we evaluate extensively through analysis,
simulation, and experimentation the interaction between the
802.11 MAC protocol and TCP. We identify four different re-
gions of TCP unfairness that depend on the buffer availability
at the base station, with some regions exhibiting significant
unfairness of over 10 in terms of throughput ratio between
upstream and downstream TCP flows. We also propose a
simple solution that can be implemented at the base station
above the MAC layer. The solution ensures that different TCP
flows share the 802.11 bandwidth equitably irrespective of the
buffer availability at the base station.

The rest of the paper is organized as follows. In Section II,
we present the overview of the problem of TCP fairness over
802.11 networks. In Section III, we present simulation results
highlighting the four different regions of unfairness with
respect to the base station buffer availability. In Section IV, we
model the behavior of multiple mobile TCP hosts accessing
the 802.11 network through a base station. In Section V,
we discuss approaches for solving the fairness problem and
present our solution. In Section VI, we review related work
and finally in Section VII, we present our conclusions.

II. PROBLEM OVERVIEW

In order to illustrate the subtle interactions of TCP with an
unfair 802.11 MAC protocol, consider the simple case of one
mobile TCP sender and one mobile TCP receiver interacting
with the wired network through a base station.

We conducted a series of performance tests on a com-
mercial 802.11b network consisting of one base station and
three mobile users. In all tests we had two or three mobile
stations communicating to a server through the base station.
Table I summarizes the throughput ratios we observed in the
different settings with Ru representing the average TCP uplink

0-7803-7753-2/03/$17.00 (C) 2003 IEEE 863

MTU # of up flows # of down flows UDP flow Ru/Rd SD

1500 1 1 – 1.44 0.22
1500 2 2 – 1.58 0.23
1500 3 3 – 1.76 0.34
1500 4 4 – 1.80 0.27
1500 2 2 500/2ms 1.79 0.35
1500 2 2 1000/2ms 2.15 0.55

500 1 1 – 1.77 0.39
500 2 2 – 1.83 0.38
500 3 3 – 1.87 0.41
500 1 1 450/1ms 3.05 0.83
500 2 2 450/1ms 7.9 4.57

TABLE I

THE RATIO BETWEEN THE UP AND DOWN FLOW IN USING COMMERCIAL 802.11B

throughput and Rd representing the average TCP downlink
throughput. The ratios presented in the table are the average
of 5-10 runs and the standard deviation is presented in the last
column.

One can see that even for the basic case of one mobile
sender (upstream flow) and one mobile receiver (downstream
flow), there is no equal sharing of the bandwidth with the
sender receiving 1.44 times the receivers bandwidth. This is
interesting since one might expect a commercial system to
give higher priority to the base station such that there is a bias
towards the downstream flow and not the upstream flow, given
that the majority of applications today involve download rather
than upload. Also note that, when we increase the number of
flows, we see that the ratio also increases.

In order to test the sensitivity of this ratio to the base
station buffer size, we would like to vary the buffer size on the
wireless interface card at the base station. However, we did
not have direct access to the interface card. Hence, we decided
to use background UDP traffic, carefully spaced, to constrain
the buffer available to the two TCP flows. The packet size
(450-1000 bytes) and inter packet intervals (1-2 ms.) of the
UDP traffic is shown in Table I. We find that the divergence
between upstream and downstream throughput becomes much
more severe in the presence of background UDP traffic. We
also experimented with smaller Maximum Transmission Unit
(MTU) values and found that the throughput ratio reaches as
high as 8 in some cases. Thus, we find that as the buffer
available to the TCP flows is decreased, the ratio of the uplink
to the downlink TCP flow increases.

In order to gain a better understanding of the reasons for
this behavior, we installed sniffers on the wireless interface
and analyzed the captured packets. Note that since we used
commercial Microsoft products, we did not have access to the
kernel and thus we had to use scripts that compute an approx-
imation of the TCP window size. It appears that in all cases
the upstream TCP window size reaches its maximum size
(determined by the receiver window size) but the downstream
window size changes. Figure 1 presents the accumulated
received sequence number and the approximated window size
during the duration of the session for the downstream flow.
Note that the throughput in the first 150 seconds is very low;
the window increases at the beginning, when the upstream

flow is not yet using its full window (the upstream data is
not plotted) but at some point the window drops (again this
is not shown too well since we can only guess the window
size and in this case there are many lost packets). One can
clearly see, though, that the sequence number does not increase
immediately which indicates a timeout period and a very small
window. At time 150 seconds the upstream flow finished its
upload and terminated. At this time we can see that the window
increases and it remains between 9000 and 18000 bytes in the
congestion avoidance region. This is probably due to the fact
that the background UDP flow competes with it at the base
station.

0 50 100 150 200 250 300 350
0

1

2

3

4

5

x 10
4

P
en

di
ng

 W
in

do
w

 (
by

te
s)

Pending window size(bytes)
Sequence number

0 50 100 150 200 250 300 350
0

1

2

3

4

5
x 10

6MTU = 500, TCPWinSize = 65535, two TCPs, second downstream

Time(sec)

S
eq

ue
nc

e
nu

m
be

r

Fig. 1. Downstream TCP flow with background UDP: approximated TCP
window and throughput from testbed

While these experiments enabled us to verify our hypothesis
of throughput unfairness between upstream and downstream
TCP flows in 802.11 networks, a number of factors impact the
throughput ratio in a test-bed. These factors include wireless
link interference, base station buffer size, implementation
details of the 802.11 MAC layer etc. Furthermore, it is difficult
to obtain the values of some of these parameters (since it
is typically not made public by the manufacturer) and it is
impossible to isolate the impact of these parameters or study
the impact of varying these parameters in a test-bed setting. In

864

order to carry a rigorous study of this problem, we therefore,
use simulations instead of test-bed measurements. The results
of the simulation study are described in the next section.

III. SIMULATION STUDY

In order to identify the relevant parameters and to analyze
the up/down ratio we conducted a comprehensive simulation
study using the NS2 simulator [5]. We start with the basic
case of one mobile sender and one mobile receiver, and then
consider the multiple flow scenario.

A. One upstream and one downstream flow

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

0

1

2

3

4

5

6

7

8

9

10

to
ta

l T
P

 (
in

 M
bp

s)

Buffer Size (Packets)

T
hr

ou
gh

pu
t R

at
io

 o
f t

w
o

flo
w

s
U

P
/D

O
W

N

avg UP/DOWN TP ratio
Max ratio
MIN ratio
total TP (in Mbps)

Fig. 2. One upstream and one downstream flow scenario: observed up/down
ratio

In this case, we study the impact of the base station buffer
size on the throughput ratio. We set TCP receiver window
to 42 since in most commercial TCP implementations, the
window size is set by default to 216 which translates to about
42 packets, assuming an MTU of 1500 bytes. We vary the
base station buffer size from 6 to 85. The results are shown in
Figure 2. We also plot the total throughput in order to verify
that it remains stable. For each buffer size, we conducted 5
simulation runs, each simulating 100 seconds of transmission.
In addition to the average ratio, we also plot the maximum and
minimum ratios, i.e., the maximum (minimum) ratio that was
observed in any of the runs. The number of ACK packets
per data packet (denoted by α) was set to 1 since in the
most commonly used implementations of TCP this is the used
default value. All data packets were of size 1024 bytes. In
order to eliminate radio interference we placed the mobile
stations at a fixed point close enough to the base station.

It can be observed from our results that the base station
buffer size indeed plays a critical role in determining the ratio
between the flows. There are basically four distinguishable
regions. The first region corresponds to the case where the
buffer size is over 84 packets and the throughput ratio is one.
This reflects the case where the buffer is large enough to
accommodate the maximum receiver window of both flows,
thus resulting in loss-free transmission in both upstream and

downstream directions. The second region is when the base
station buffer size is between 42 and 84 packets. In this region
the ratio decreases sharply from 10 to 1. The third region
corresponds to the case where the base station buffer size is
between 6 and 42 packets and the ratio seems to vary between
9 and 12. The fourth region is when the buffer size is smaller
than 6 packets. The results for this region are very noisy with
the average serving as a poor representation of the dynamics.
In Section IV, we analyze this behavior in more details using
a simple model and explain why the ratio varies as shown in
Figure 2.

0 10 20 30 40 50 60 70 80 90
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

rtt
l
in.res

Buffer Size (Packets)

S
ec

on
ds

avg RTT down
avg RTT up

Fig. 3. One upstream and one downstream flow scenario: RTT values

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

Buffer Size (Packets)

Lo
ss

 P
ro

ba
bi

lit
y

packets loss rate
acks loss rate

Fig. 4. One upstream and one downstream flow scenario: data and ACK
loss rate

In order to gain a better understanding of the reasons for
this behavior we also plot the average Round Trip Time (RTT)
of both flows in Figure 3 and the loss rate for the data and
ACK packets in Figure 4. One can see that the RTT increases
monotonically with the base station buffer size without any
significant rate changes. The loss behavior is a bit more

865

complex. To start with, the data packet loss rate is always
higher than the ACK loss rate, and the dependency on the
buffer size is not linear. We explain some of this behavior in
Section IV.

In order to better understand the behavior of the wireless
MAC layer, and the interaction with the TCP feedback mech-
anism, we plot in Figure 5, the accumulative throughput in
packets sent by the MAC layer for each one of the stations. For
the base station, we plot the ACK and data packets separately.
Note that the information in this figure is accumulative, i.e.,
the wide dotted line indicates the total number of packets sent
by the base station, and the difference between this line and
the lower dashed line represent the amount of ACK packets
sent by the base station. One can see that when the buffer size
is smaller than 42 the relative share of each stream is almost
fixed. This sharing results in the 1:10 ratio. When the buffer
becomes larger the downstream traffic represented both by the
downstream data packets and the corresponding ACK packets
increases, which makes the ratio in figure 2 to decrease. This
is reflected by the fact that when the base station buffer size
is large (> 84), the height of the dashed line and the distance
between the Down Ack and the Up packets lines is the same
(about 600 packets).

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3
x 10

4

Base Buffer Size

T
hr

ou
gh

pu
t i

n
pa

ck
et

s

Base packets
Base UP acks
Down acks
Up packets

Fig. 5. Amount of packets sent through the MAC layer for different buffer
sizes

B. Multiple flows

In this section, we consider several mobile users with multi-
ple up/down flows. We consider two cases. First, we simulate
the case of one upstream and multiple downstream flows and
second, we simulate the case of equal number of multiple
upstream and downstream flows. For these experiments, we
fix the base station buffer size at 100 packets, modeling
commercial 802.11 products. In these simulations each mobile
host is sending or receiving one flow. Again we conducted 5
runs for each data point, lasting for 100 seconds of simulation
time, and plot the average value.

1 2 3 4 5 6 7
0

1

2

3

4

5

6

0

1

2

3

4

5

6

to
ta

l T
P

 (
in

 M
bp

s)

Number of flows

T
hr

ou
gh

pu
t R

at
io

 o
f f

lo
w

s
U

P
/D

O
W

N

avg UP/DOWN TP ratio
Max ratio
MIN ratio
total TP (in Mbps)

Fig. 6. Throughput ratio as a function of the number of downstream flows
with one upstream flow

We plot the throughput ratio as a function of the number of
downstream flows. In the first case(one upstream and multiple
downstream flows) (Figure 6), we can see that the ratio is
almost linear, i.e., all the downstream flows share the same
resources while the total throughput remains stable.

1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of flows

T
hr

ou
gh

pu
t R

at
io

 o
f f

lo
w

s
U

P
/D

O
W

N

avg UP/DOWN TP ratio
Max ratio
MIN ratio
total TP (in M byte)

Fig. 7. The ratio as a function of the number of downstream flows with
equal number of upstream and downstream flows

In the second case where we have equal number of multiple
upstream and downstream flows, the situation becomes much
more severe. In this case (see Figure 7) we can see average
ratios of up to 800. This is due to the fact that the ACKs of the
upstream flows clutter the base station buffer and as a result
many of the downstream flows experience significant timeouts
due to packet drops at the base station buffer, thus exacerbating
the unfairness that is already present in the network. Again,
as we show in the next section, even when the buffer is being
cluttered and the ACK loss rate is high, upstream flows still
arrive at the maximum window size, while downstream flows
struggle with a window of 0-2 packets.

866

IV. MODELING TCP ACCESS

In order to understand the issues behind the observed unfair
behavior of TCP over wireless LAN, and to try to develop
tools that enable a more equitable usage of the bandwidth
resources, we conducted an analytical study of the problem.
We start with the simple case where there are only two users
in the system, one sending data upstream and one retrieving
data downstream.

A. One upstream and one downstream flow

As described in the previous section, the behavior in this
case depends heavily upon the size of the buffer at the base
station, denoted by B, and the TCP receiver window size,
denoted by w. We assume that all losses in the system occur
due to buffer overflows at the base station.

A basic observation, that is the first step towards under-
standing the behavior, is that when the window size is large
enough (more will be said about what is “large enough” later
in this section) a loss of an acknowledgment packet has no
real influence on the sender window size. This is due to the
cumulative acknowledgment nature of TCP whereby the next
ACK packet will have the appropriate sequence number and
make up for the loss of the previous ACK packet. Thus, the
upstream TCP window size will increase until it reaches w,
and will remain at that size throughout the duration of the
connection (assuming no packet loss from other sources).

The downstream TCP window size, however, changes con-
siderably, depending on B and w, since TCP reacts to loss
of each data packet by halving its window (unlike the loss
of ACK packets which have no effect on the upstream TCP
source, as discussed above). Clearly if the base station buffer
is larger than twice the TCP receiver window size (or more
accurately (α+1)w), all packets will have room in the buffer,
and no packets will be dropped. In this case, the fair allocation
of bandwidth to the three stations by the wireless MAC layer,
guarantees a fair allocation of the bandwidth to the two TCP
flows since the transmission time for ACKs is relatively very
small. Indeed, if we look at Figure 2, we can see that when
the base station buffer size is larger than 84 (twice the TCP
receiver window size since as explained before α is one, both
in our simulation and real traces) the ratio is one.

However, when for smaler values of B we can see that
the upstream flow gets a larger share of the overall available
capacity. A simplified explanation of the system’s behavior
in this case is the following. Consider the base station buffer
in a steady state. It has at most αw ACK packets, and thus
B−αw slots are available for the down link flow. Due to TCP’s
behavior in the congestion avoidance region, the average usage
of this buffer will be 3

4 -th, since whenever the window size
goes over the number of available slots, a packet is lost,
this is detected by the sender when it detects three duplicate
ACKs, and the window decreases to half of its value. Thus, the
window size will vary between B−αw

2 and B − αw, and the
average window size will be 3(B−αw)

4 . In such a case the ratio
between the downstream throughput and upstream throughput
is given by

R̄ =
4w

3(B − αw)

This simple explanation predicts a value that is not too
far away from the measured one when B is large (more
than 1.5w), but it does not provide a good explanation for
smaller values of B (see Figure 8, the dot-dashed ‘naive ratio’
line). The main problem with it is that it assumes that the
base station buffer is basically full with αw acknowledgment
packets all the time. This is definitely not the case since for
smaller B values most of the time there are significantly fewer
acknowledgment packets in this buffer, and therefore there is
much more room for data packets of the downstream flow.

We now focus on obtaining a more accurate model of the
unfairness problem. One can model the base station buffer as a
bounded size queuing system (M/M/1/K), of size B (assuming
that a packet is cleared from the buffer only after it has been
successfully transmitted). In this system the service rate is the
rate (in packets per time unit) the base station is served by
the wireless MAC layer, and the arrival rate is Rd + αRu,
where Rd and Ru are the rates of the downlink and uplink
TCP flows, respectively. The probability that such a queue in
its stable state has exactly k packets in the buffer is given by
[6, pg. 104]

pk =
1 − ρ

1 − ρk+1 ρk, (1)

where ρ is the ratio between the arrival rate and the service
rate. Using α = 1, we get

ρ =
Ru + Rd

Ru
= 1 + R̄, (2)

where R̄ = Rd

Ru
. The drain rate is Ru because the rate that the

base station gets is equal to the rate of the upstream since we
can assume that both buffers are never empty (this cannot be
said about the uplink acknowledgment buffer which may be
empty at some times during the transmission). Plugging (1 +
R̄)k ≈ 1 + kR̄ which is valid for small enough R̄, and Eq. 2
in the formula for pB (Eq. 1), the drop rate p is approximated
as

p =
1 + BR̄

B + 1
. (3)

However, both p and R̄ are unknown at this stage. In order to
obtain another relation between these two parameters we use
the well known results of Padhye et al. [7] that approximate
TCP throughput under various conditions. If we assume that
no timeouts occur, we can use Eq. (20) from [7] and get
Rd = 1

RTTd

√
3α/2p, Where RTTd is an average RTT of the

downlink flow. We also know that Ru = w/RTTu since as
explained before, the upstream flow is bounded by the receiver
window size. Thus we have:

R̄ =
RTTu

RTTd

√
3α

2w2p
. (4)

Since most of the delay of both flows is due to waiting in the
base station buffer, and it is equal, we will assume for now

867

that RTTu

RTTd
= 1 (see Figure 3 which substantiates this). Using

(3) and (4) we get:

1 + BR̄

B + 1
=

3
2w2R̄2

Solving this equation we get the following expression for
R̄ as a function of B and w:

R̄ =
−1
3B

+
4 · 2

2
3 w2

(81 B2 w4 + 81 B3 w4 − 4 w6 + X)
1
3 12B

+
2 · 2

1
3
(
81 B2 w4 + 81 B3 w4 − 4 w6 + X

) 1
3

12Bw2
(5)

where X =
√

w8
(
−16w4 + (81B2 + 81B3 − 4w2)2

)
.

One can now plot R̄ as a function of B where w is set to
be 42; this is the dashed ‘Computed ratio’ in Figure 8 in the
region 6-42. In order to verify our calculation for the region we
are interested in (B ≈ 42, R̄ ≈ 1/10) we can use 1+B ≈ B
and 1 + BR̄ ≈ BR̄, and get: R̄ = (3

2w2)1/3 = 1
10.56 . This

means that in the interesting region 6 < B ≤ 42 the ratio is
almost constant and about 1 : 10, as reported by the simulation
results.

One interesting question that arises is, can we use this latter
analysis also in the region B > 42? From a first look it appears
that there is no problem; the drop probability will decrease
(by very little though) and this may cause Rd to increase. The
reason this will not work is that the analysis in [7] assumes
a uniform (with respect to the window size) loss probability.
This is definitely not the case for our scenario. If B > αw
and the only loss is due to buffer overflow, losses occur in
the downlink flow only when the window size is large. Thus
the effective window size for the downlink flow is composed
from a fixed part of size B − αw, and a part that reflects
the interaction with the acknowledgments in the base station
buffer. However, when losses occur, the window size drops to
half of its previous value, therefore the effective window size
is approximated by

√
3α
2p + 3(B−αw)

4 , and we get the following
ratio.

R̄ =
RTTu

w ∗ RTTd
(
√

3α

2p
+

3(B − αw)
4

). (6)

In this case we get a more complicated relation for R̄. The
predicted values of R̄ are represented in the graph in Fig 8
indicated by the ”computed ratio” curve in the range 42-85.
One can observe that in this region the computed ratio indeed
explains the observed values very accurately. Moreover, for
w = 42 this curve matches the value described earlier for the
6-42 region since in this case B − αw = 0.

Note that while our model produces an excellent fit with
the simulation for the region with buffer size greater than
42, it only produces a reasonable fit in the 6-42 buffer size
region and does not yet fully explain the variations present.
One possible drawback of our analytical model is that the
M/M/1/K assumes a ”nice” arrival behavior. This is not the
case when we consider TCP data packets. In some cases TCP

will generate 2 packets back-to-back. This situation occurs
when the window size is increased by more than the MTU.
In particular, in the congestion avoidance region, this back-to-
back phenomena happens every ‘window size’ packets on the
average.

For example, when the buffer size is 40, the average TCP
window of the downstream flow is about 4 (42/10), and thus
the data packet loss rate is in fact 1.25 times the ACKs loss
rate. This fits well with the measured rate as reported in
Figure 4 for this region. However, this observation does not
provide a complete explanation for the micro dependency of
the rate on B in this region. We are currently examining this
issue in more detail.

B. Small Buffer

Now, consider the case where the available buffer size for
each flow is very small. We want to evaluate the upstream flow
in this case. As mentioned earlier, TCP reaction to a loss of a
number of acknowledgment packets can be either getting into a
timeout, or increasing the window until it reaches the receiver
window size. This is due to the fact that acknowledgment loss
cannot result in three duplicate ACK as the acknowledgment
number in each new ACK packet is different (assuming no
data packet loss). Therefore, when the base station buffer size
becomes very small (1-2 per flow) the connection throughput
becomes very chaotic.

To better understand the state where the system spends
most of its time in this situation, we can use the discrete
time Markov chain of Figure 9. Each state in the Markov
chain represents the window size of the uplink TCP sender.
We only considered exponentially increasing steps, and thus
state i represents a state where TCP window size is 2i (state
0 represents a window size of 1 etc.). Once in state i, we can
either go to state 0 (i.e. to window size 1) if a timeout occurs (it
happens only if all ACK packets are lost, and the probability
for that is p2i

), otherwise we double the window size thus
moving to state i+1 with probability 1− p2i

. Intuitively, one
can expect the system to be working with full window size or
in the reset state (state 0) as explained below.

Once a connection reaches a full window size it needs to
loose w ACK packets to reset the window size. On the other
hand, if the window size is very small, say 2, we only need
to loose two packets to reset the counter. An exact analysis of
the Markov chain of Figure 9 shows that the system spends
almost all its time working at full window size, many orders
of magnitude more than in all the other states combined. The
exact difference depends on p. In line with our initial intuition,
the analysis shows that if the system is not working with a full
window, it is most likely working with window size equal to
1, i.e., in the reset state. Note, that the above model does not
capture the full behavior of the TCP connection since there
are issues involving doubling the initial timeout window and
eventually flows may just give up and close connection. This is
the reason for the very noisy results we get when the window
size per flow operates at small values. We note that we tested
this scenario with a buffer of 2 through NS2 simulations and

868

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20
Ratio

Buffer Size (Packets)

T
hr

ou
gh

pu
t R

at
io

 o
f t

w
o

flo
w

s
U

P
/D

O
W

N

avg UP/DOWN TP ratio
Max ratio
MIN ratio
Computed ratio
naive ratio

Fig. 8. Analysis versus simulation results

0 1 2 n-1 n
1 − p2n−2

p2

1 − p2
1 − p4

1 − p

p4

p2n−1

p2n

Fig. 9. Markov chain

the upstream flow always ends up with the maximum window
size.

C. Multiple flows

For multiple downstream flows, we can say that the same
amount of “free” buffer space is divided among all n down-
stream flows, and therefore each one gets 1/n of the bandwidth
and the ratio increases by a factor of n. However, this is not
completely true since the utilization of the buffer space is
better when a number of flows are involved. This explains
the almost linear behavior of Figure 6. In order to get a
more precise explanation of the ratio when the buffer is small,
consider again Eq. 1. For this case ρ is give by

ρ =
Ru + nRd

Ru
= 1 + nR̄, (7)

where we assume that all downstream flows get the same
average rate E[Rd], and R̄ = E[Rd]

Ru
. Again, if nR̄ is small

enough we can use (1 + nR̄)k ≈ 1 + knR̄ and the drop rate

p is approximated by the following formula.

p =
1 + nBR̄

B + 1
(8)

Eq. 4 is still valid, and thus, in this case, we get the following
equation:

1 + nBR̄

B + 1
=

3
2w2R̄2

This region, however, is not the one shown in Figure 6, since
the region there represents B = 100, w = 42. For this case we
should use Eq. 6; in this case the ratio between the upstream
flow and each of the n down stream flows is expressed by the
following formula.

R̄n =
√

3α

2npw2 +
3(B − αw)

4nw
(9)

In this case, for small n, the available buffer is actually more
than the receiver window. Figure 10 plots the ratio R̄n/R̄1 for
B − αw = 100 − 42 = 58 and p = 1/100. One can see that

869

the analysis nicely matches the observed behavior from the
simulation.

1 2 3 4 5 6 7
0

1

2

3

4

5

6

0

1

2

3

4

5

6

to
ta

l T
P

 (
in

 M
bp

s)
Number of flows

T
hr

ou
gh

pu
t R

at
io

 o
f f

lo
w

s
U

P
/D

O
W

N

avg UP/DOWN TP ratio
Max ratio
MIN ratio
total TP (in Mbps)
Computed ratio

Fig. 10. One upstream and n downstream flows: observed and computed
ratio

V. OUR SOLUTION

In this section, we are interested in a solution that results in
upstream and downstream TCP flows having an equal share
of the 802.11 wireless bandwidth (throughput ratio of 1). The
solution needs to operate above the MAC layer since changes
to the MAC layer could involve expensive hardware upgrades
given the wide deployment of 802.11 networks.

We first consider a simple intuitive solution of having
separate queues for TCP and ACK packets at the base station
with T packets for TCP data and A packets for TCP ACKs.
Based on the discussion in the previous section, since dropping
of several ACKs can not result in the TCP sender to back off
due to the cumulative ACK feature of TCP, sizing of the ACK
buffer, A, to ensure fair access to upstream and downstream
flows becomes impossible to predict. The most we can do
is create a timeout in this connection periodically in order
to reduce the uplink utilization. This solution is clearly not
effective.

Another feasible solution is to fake duplicated ACK packets
thus forcing TCP to reduce the up stream window size.
Alternatively, we can discard data packets for this flow (in
the upstream direction). This solution will indeed reduce the
window size but it is complicated. More importantly, this
scheme wastes bandwidth as it either deletes data packets that
already have been transmitted, or creates more duplicated ACK
packets that use the limited resources (bandwidth and buffer
space).

Our solution is to use the advertised receiver window field
in the acknowledgment packets towards the TCP sender. This
field represents the available space at the receiver and lowering
the receiver window can help throttle the TCP sender. Thus,
by manipulating the receiver window at the base station, we
can ensure that the TCP sender window is limited to what
ever value we decide. A similar approach was used in [8] for

improving TCP performance over interconnected ATM and IP
networks.

If there are n flows in the system and the base station has
a buffer of size B, we set the receiver window of all the TCP
flows to be the minimum of the advertised receiver window
and �B/n�. This is performed by modifying the receiver
window field of the ACK packets flowing through the base
station. Note that this approach makes intuitive sense since if
the base station (bottleneck node) is unable to buffer packets
for the TCP source, it is better to throttle the source than drop
packets. Also note that this approach accommodates different
buffer sizes and number of flows and tries to deliver equitable
bandwidth to all flows.

In order to implement such a solution one needs to keep a
counter that approximates the number of current TCP flow in
the system. Knowing the exact number of active flows may
be problematic since some open connections may be actually
idle. A more problematic point is that in many cases it is
hard to determine whether the TCP connection is up stream
or down stream, since connection may carry data in both
directions. However this is not an issue for us since, regardless
of the direction, we count each TCP flow (identified by the IP
addresses and the port numbers) as a valid flow.

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

0

1

2

3

4

5

6

to
ta

l T
P

 (
in

 M
bp

s)

Number of flows

T
hr

ou
gh

pu
t R

at
io

 o
f f

lo
w

s
U

P
/D

O
W

N

avg UP/DOWN TP ratio
Max ratio
MIN ratio
total TP (in Mbps)

Fig. 11. Throughput ratio when using receiver window manipulation

In order to verify if this approach delivers fair share to
TCP flows, we performed simulations with varying buffer sizes
and multiple number of upstream and downstream flows and
computed the throughput ratio. In our simulation we use a
base station buffer size of 100 packets; we simulated 5 runs
for each n, each run lasting 100 seconds. Before each run
we set the receiver window to be �100/n� Figure 11 plots
the throughput ratio of upstream and downstream flows and
shows that a 1:1 ratio is maintained, resulting in fair allocation
of bandwidth. Furthermore, also note that the total throughput
is maintained as the number of flows increases substantiating
the fact that the overhead of this approach is minimal.

The impact of this very simple solution is made clear
when we recall that in the same scenarios earlier, without the

870

modified receiver window solution, we saw ratios of 1:800
(see Figure 7). This is explained by the fact that the large
number of ACK packets do not flood the buffer any more and
each flow gets its fair share of the buffer space. Note that
we increased the number of flows up to 26 in order to verify
that even when the receiver window is set to the value of one
packet, we still experience fair allocation of the bandwidth
without any noticeable reduction in the total throughput.

In order to check if this solution works well in the real
environment, we ran again some of the tests reported in Table
I, but this time we set TCP receiver window at all receivers to
a smaller value. In particular, when we used UDP background
traffic with an MTU of 500 bytes, two upstream and two
downstream flows, and we set the receiver window size to
be 2000 bytes (instead of the default 65000) we observe a
ratio of 1.007 with standard deviation of 0.0005 (compared
to a ratio of 7.9 with default receiver window size). This is a
strong indication that the proposed solution indeed works in
commercial settings.

VI. RELATED WORK

Fairness over 802.11 based Wireless LANs (WLANs) has
been studied by several researchers. Lu et al. [2] were the
first to identify the problem (under a UDP traffic model)
of fairness among users in a wireless LAN. Their solution,
to the problem was a centralized scheduling algorithm to
be performed at the BS. In addition, their solution required
a special MAC algorithm where slots for transmission are
specifically allocated to the other stations based on scheduling
algorithm. Nandagopal et al. [3] suggest a fairness model that
also identify the difference between node fairness and flow
fairness. The model is used to compare the fairness achieved
by different backoff mechanisms.

Another line of research [9] suggests to employ bandwidth
reservation over MA channels in order to support quality of
service (QoS). This approach can be suited for flows that have
specific QoS requirement.

Several researchers have also proposed new MAC layers to
provide fair channel access. Sobrinho and Krishnakumar [10]
suggested a scheme called blackburst where channel jamming
is used to find the real-time sender with the longest waiting
time (and thus the higher priority). Deng and Chang [1]
suggested to change the backoff period according to a station
priority. The lower the priority the higher is the maximum
backoff period a station can draw. Barry et al. [11] followed
this line and suggested to use two distinct backoff periods
for two priority classes. Vaidya et al. [4] suggested a clever
distributed algorithm that calculates the backoff period for
the stations such that the resulted access to the channel will
closely match the Self-Clocked Fair Queuing (SCFQ [12])
scheduling. Recently, Aad and Castelluccia [13] suggested
three differentiation mechanisms based on scaling of the
congestion window, modifying the IFSs, and changing the
maximum frame length.

However all these studies were either focused on UDP traffic
or the fairness of MAC layer in isolation. Moreover, none of

these papers present the effect of available buffer at the base
station and the interaction of 802.11 MAC protocol on the user
level unfairness observed at the TCP layer. Research on inter-
action of TCP over 802.11 based ad hoc networks [14], [4],
[15] has taken factors such as mobility and multiple hops into
account. However, the unfairness problems in 802.11 based
WLAN installations arising due to buffer size availability has
neither been studied nor observed before.

VII. DISCUSSION AND CONCLUSION

In this paper we presented fairness issues in 802.11 net-
works for TCP flows, and extensively evaluated the interaction
between the 802.11 MAC protocol and TCP through analysis,
simulations (on ns2) and experimentation. We found that
the buffer size at the base station plays a key role in the
observed unfairness. Based on simulations, we observed that
the unfairness in TCP throughput ratio between upstream and
downstream flows could be as high as 800. In our experiments,
we were able to easily create simple scenarios exhibiting
throughput ratio of about 8 times among TCP flows. Using a
bounded size queuing system (M/M/1/K) we explained TCP’s
behavior and interaction with the MAC layer. The analysis
identified four regions of TCP unfairness that depend on the
buffer availability at the base station. Our proposed solution
for alleviating the unfairness problem that uses advertised
window manipulation at the base station, was tested on the
simulator and in our testbed. It was shown to provide fair TCP
throughput for any available buffer size or number of flows at
the base station. Through our analysis we have been able to
explain most of our TCP unfairness observations. However,
there are still several open avenues that we are currently
pursuing, some of which are as follows:

• Channel losses: In our simulations and analysis, we
have assumed that the channel is error free. However, a
lossy channel may result in packet drops due to channel
error. In addition, link layer reliability mechanisms may
introduce additional delays that may affect the fairness.
Our analysis model needs to be extended to take these
factors into account.

• TCP flows with different RTT: In our experiments as
well as simulations, all the flows terminated at the same
point in the wired network. This resulted in equal RTT
for all flows and also helped in simplifying our analysis.
However, the unfairness behavior can be different from
the prediction based on our model if the flows have
different RTTs. The analysis can be extended to take
different RTTs into account.

• Providing higher share of the media to the BS: Our
analysis is based on node level fairness provided by
the 802.11 MAC protocol. The TCP unfairness behavior
will be different if a MAC layer that provides user level
fairness [1], [11], [4], [13] rather than node level fairness
is used. Analysis of TCP behavior with such solutions
and augmenting our proposed solution is part of ongoing
work.

871

• Interaction with IPSec: The solution proposed in this
paper cannot be used if the flow uses end-to-end IPSec
since the transport headers will not be visible to the
intermediary. This limitation is also true for all perfor-
mance enhancing proxies, which are especially critical for
wireless networks where bandwidth is a scarce resource.
One way to tackle this issue is to use a split security
model where the end hosts using IPSec trusts parts of
the payload (such as transport headers) with the network
intermediary. We are currently investigating this issue.

REFERENCES

[1] D.-J. Deng and R.-S. Chang, “A priority scheme for IEEE 802.11 DCF
access method,” IEICE Transactions on Communications, vol. E82-B,
no. 1, pp. 96–102, Jan. 1999.

[2] S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless packet
networks,” in ACM SIGCOMM’97, Cannes, France, Sept. 1997.

[3] T. Nandagopal, T. Kim, X. Gao, and V. Bharghavan, “Achieving MAC
Layer Fairness in Wireless Packet Networks,” in ACM Mobicom 2000,
Boston, MA, USA, Aug. 2000.

[4] N. H. Vaidya, P. Bahl, and S. Gupta, “Distributed fair scheduling in a
wireless LAN,” in MobiCom 2000, Boston, MA, USA, Aug. 2000.

[5] K. Fall and K. Vardhan, “ns notes and documentation,” The
source code and installation information available at http://www-
mash.cs.berkeley.edu/ns/, 1999.

[6] L. Kleinrock, Queueing Systems, Volume 1: THEORY. John Wiley and
Sons, 1973.

[7] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: a Simple Model and its Empirical Validation,” in ACM
Sigcomm 1998, 1998.

[8] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, “Explicit window
adaptation: a method to enhance tcp performance,” IEEE/ACM Trans-
actions on Networking, vol. 10, no. 3, pp. 338–350, 2002.

[9] R. Yavatkar, D. Hoffman, Y. Bernet, F. Baker, and M. Speer, “SBM
(subnet bandwidth manager): A protocol for RSVP-based admission
control over IEEE 802-style networks,” May 2000, internet RFC 2814.

[10] J. L. Sobrinho and A. S. Krishnakumar, “Real-time traffic over the
IEEE 802.11 medium access control layer,” Bell-Labs Technical Journal,
vol. 1, no. 2, pp. 172–187, Autumn 1996, appeared also in Globecom’96,
Nov. 1996.

[11] M. Barry, A. T. Campbell, and A. Veres, “Distributed control al-
gorithms for service differentiation in wireless packet networks,” in
INFOCOM’01, Anchorage, AK, USA, Apr. 2001.

[12] S. J. Golestani, “A self-clocked fair queuing scheme for broadband
applications,” in INFOCOM’94, Toronto, Canada, June 1994, pp. 636–
646.

[13] I. Aad and C. Castelluccia, “Differentiation mechanisms for IEEE
802.11,” in INFOCOM’01, Anchorage, AK, USA, Apr. 2001.

[14] G. Holland and N. H. Vaidya, “Analysis of TCP performance
over mobile ad hoc networks,” in Proceedings of IEEE/ACM
MOBICOM ’99, August 1999, pp. 219–230. [Online]. Available:
citeseer.nj.nec.com/holland99analysis.html

[15] K. Tang, M. Correa, and M. Gerla, “Effects of ad hoc mac layer medium
access mechanisms under tcp,” MONET, vol. 6, no. 4, pp. 317–329,
2001.

872

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

