Integrarea sistemelor informatice

5

Suport curs nr. 1/p
Programator >> Arhitect
Modelare UML

2024-2025

C1/p — Modelare UML

2/ 62

Obiective

* Introducere/recapitulare UML
* |dentificarea diagramelor UML utile in modelarea sistemelor

3/ 62

Modeling with UML

o

Reference: Bernd Bruegge, Allen H. Dutoit, Object-Oriented Software Engineering Using UML,
Patterns, and Java, Third Edition, Pearson, ISBN: 0-13-606125-7

4/ 62

Overview: modeling with UML

* What is modeling?
* What is UML?

* UML diagrams
* Use case diagrams
* Class diagrams
* Sequence diagrams
e State (machine) diagrams
* Activity diagrams (workflow / flowchart)

5/ 62

What is modeling?

* Modeling consists of building an abstraction of reality.

* Abstractions are simplifications because:
* They ignore irrelevant details and
* They only represent the relevant details.

* What is relevant or irrelevant depends on the purpose
of the model.

6/ 62

Example: street map

Case Study

Path Planning for Unmanned Vehicle Motion Based on
Road Detection Using Online Road Map and Satellite
Image
http://dx.doi.org/10.1007/978-3-319-16631-5_32

Typical road detection: (a) Satellite images, (b) road
map images, (c) road network estimation results with
many additional detected road segments by our
proposed method.

http://dx.doi.org/10.1007/978-3-319-16631-5_32

Why model software?

e Software is getting increasingly more complex
* Windows 10 > 50 mil lines of code
* A single programmer cannot manage this amount
of code in its entirety.

* Code is not easily understandable by
developers who did not write it

* Modeling is a mean for dealing with complexity

* We need simpler representations for complex
systems

Image by svstudioart on Freepik

8/ 62

Systems, Models and Views

A model is an abstraction describing a subset of a system
* A view depicts selected aspects of a model
* A notation is a set of graphical or textual rules for depicting views

Examples:

e System: Aircraft

* Models: Flight simulator, scale model

* Views: blueprints, electrical wiring, fuel system

9/ 62

Systems, Models and Views

Flight
Simulator

Electrical
Wiring

Scale Model

10/ 62

Systems, Models and Views

*

System

Described by

*

Model

Airplane: System

Scale Model: Model

View

Depicted by

Flight Simulator: Model

BluePrints: View

Fuel System: View

Electrical Wiring: View

11/ 62

Application and Solution Domain

Modeling context

* Application Domain (Requirements Analysis)
* The environment in which the system is operating

 Solution Domain (System Design, Object Design)
* The available technologies to build the system

12/ 62

Object-oriented modeling

=T

\ |

Application Domain Solution Domain

Application Domain Model UML Pac kag e System Model

TrafficControl SummaryDisplay MapDisplay
=~ ~
TrafficController N < FlightPlanDatabase
Aircraft ~
FlightPlan Airport _ TrafficControl

13/ 62

What is UML? UNIFIED o
 UML (Unified Modeling Language)

MODELING ®
LANGUAGE -
* An emerging standard for modeling object-oriented software.

* Resulted from the convergence of notations from three leading object-oriented
methods:
e OMT (James Rumbaugh)
e OOSE (lvar Jacobson)
* Booch (Grady Booch)

* Reference: “The Unified Modeling Language User Guide”, Addison Wesley,
1999.

* Supported by several CASE tools (Computer Aided Software Engineering)
* Rational ROSE XDE
e Rational Rhapsody
* Together)
* etc.

14/ 62

State Charts) Harel 1987

(Ada/Booch)

Booch

(00SA)

Wirfs-Brock Shlaer/Mellor

Gibson/Goldberg Coad/Yourdon

1990
(Booch'91 T _—{oONT
Methodologies * ph u.a.

proliferate [Booch '93 Jacobsen

[Fusion OODA
Booch (OMT '94 N (OOSE 94 ERIEmEn Martin/Odell
Rumbaugh
1 OOPSLA '95
o U

Mature practice .y amigos” (UML 0.9
Graham Henderson Sell

er
1997 Accepted by OMG Nov. 97 [UML 1.1 (OPEN/OML) (RD)

L Unified Colemanu.a. CiEHEGEOED
Standardization Process
Accepted by 1SO Okt.2000 (UML 1.3 \RUP_’__O EPJ
Published Nov. 2000 UML 1.4
March 2003 (| UML 1.5
2005 2005(_UML 2.0 |
Language (' Eer'l\J"tEble
: 2007(UML 2.1.2 A
proliferate i)\[SysML 1.1) (BPMN 1.1)
2008 (UML 2.2

15/ 62

UML diagrams

Diagram

T

Behaviour Structure
Diagram Diagram
JA\ JA\
I | | I
Activity State Class Component Object
Diagram Machine Diagram Diagram Diagram
Diagram
Interaction Use Case Composite Deployment Package Profile
Diagram Diagram Structure Diagram Diagram Diagram
Diagram
JA
I I |
Communication || Interaction Sequence Timing
Diagram Overview Diagram Diagram Notation: UMLIﬁ
Diagram

16/ 62

UML diagrams overview

Behavior (functional vs system)

e Use case diagrams
* Describe the functional behavior of the system as seen by the user.

* Activity diagrams
* Model the dynamic behavior of a system, in particular the workflow
* Flowchart

Structure

* Class diagrams
* Describe the static structure of the system
* Objects, Attributes, Associations

17/ 62

UML diagrams overview

Behavior (system)

e Sequence diagrams
* Describe the dynamic behavior between actors and the system
* and between system components

e State machine diagrams
* Describe the dynamic behavior of an individual object

* Alternate name: Statechart Diagram
* Finite State Automaton

18/ 62

UML diagrams overview

Structure (implementation
 Component diagrams
* Deployment diagrams

dd Deployment of Components)

«devices
Presentation Server

«execdtion enviranmenta
:Application Server

PolicyAdminl.war

edevices
:Policy Server

«<execution enviranments
:Application Server

PolicyServerjar

UInderwriting & Rating Server

wdevices

«<executionEnmviranment»
:Application Server

:UnderwritingEngine.jar

«executionEnviranments
:Rules Engine

Rating Rules

RatingEngine.jar ‘

To be clustered to mest
througput needs

wdevices

:Product Server

«execution

Server

:Rules Engine

ProductServer.jar

Product Rules

edevices
Workstation

PorductServerULexe

edevices
:Database Server

«cexecttion environments
:RDBMS

‘ iting Rules ‘

adevices
:Directory Server

«cexecution environments
:LDAP Server

ser & Group

cdevices
:Document Server

:Document Management

ystem

Example: Deployment diagram

19/ 62

UML overview: Use case diagrams

Package Use case}
Watch \\
Q& ReadTime

A SetTime

WatchUser WatchRepairPerson

)

Q0

ChangeBattery

> represent the functionality of the system from the user’s point of view
20/ 62

UML overview: Class diagrams

[Association

release() \

Attr@ Operations

blinkMinutes ()
blinkHours ()
stopBlinking()
referesh ()

Class diagrams represent the structure of the system

Time

Multiplicity Watch
1 1 1
2 1] | 2
PushButton LCDDisplay Battery
state blinkIdx load
push () blinkSeconds ()

now

21/ 62

UML overview: Sequence diagrams

% Actor Object
~WatchUser

Watch :LCDDisplay —Time
! |
blinkHours () l

blinkMinutes (). l]

| incrementMinute

||] - refresh ()

| pressButtonl

| /éressButtonl
pd

N
ﬁ\/lessag e pressButton2
Y,

pressButton d2 ()

|__commitNewTime @

stonBlink:iM_(_le|

T
|
|
Activation |

|
Lifeline
|

I
Sequence diagrams represent the behavior as interactions

22/ 62

UML overview: State machine diagrams

State
i% nitial state}

[button1&2Pre%Séd] lbuttonZPréi7ed]
\\?linkHouré: Increment

.. [buttonlPressed]
%Transmorﬂ
\i

[buttonl&2Presged] ™~ [butt°n2Pre;7ed] >
I tM;

\3linkMinE}2§ ncremen
Event
[buttonlPressed]

\\
[uttonl &2Presgedi ~ [button2Pressedi
\BlinkSecyeks >€ncremen%
V V l/

GtopBlin%@%Fi nal StateJ

State machine diagrams represent behavior as states and transitions

23/ 62

UML core conventions (for all diagrams)

* Rectangles are classes or instances TariffSchedule

e Ovals are functions or use cases zonePrices
getZones ()

* Instances are denoted with an underlined names getPrice ()
* myWatch:SimpleWatch

* Joe:Firefighter
e Types are denoted with non underlined names Q

* SimpleWatch _
e Firefighter PurchaseTicket

* Diagrams are graphs
* Nodes are entities
* Arcs are relationships between entities

24/ 62

1. Use case diagrams

* Used during requirements specification
to represent external behavior

* Actors represent roles — a type of user

Passenger of the system
\ * Use cases represent a sequence of
interaction for a type of functionality

* The use case model is the set of all use
cases. It is a complete description of the
PurchaseTicket functionality of the system and its

environment

25/ 62

Use case diagrams: Actors

* An actor models an external entity which
communicates with the system:

* User
e External system
* Physical environment

Passenger * An actor has a unique name and an optional
description

e Examples:
e Passenger: A person in the train
 GPS satellite: Provides GPS coordinates

26/ 62

Use case diagrams: Use cases

A use case represents a class of functionality
provided by the system as an event flow.

Q A use case consists of:

PurchaseTicket * Unigque name
Participating actors

Entry conditions
Flow of events

Exit conditions
Special requirements

27/ 62

Name: Purchase ticket

Participating actor: Passenger

Entry condition:

* Passenger standing in front of
ticket distributor.

* Passenger has sufficient money to
purchase ticket.

Exit condition:

* Passenger has ticket.

Use case diagrams: Example

Event flow:

1. Passenger selects the number of
zones to be traveled.

2. Distributor displays the amount
due.

3. Passenger inserts money, of at
least the amount due.

4. Distributor returns change.

5. Distributor issues ticket.

Anything missing?

Exceptional cases!

28/ 62

The <<extends>> relationship

¢ <<extends>> relationships represent
exceptional cases that are factored out of the
Passenger .)
| main use case for clarity.

Q * Use cases representing exceptional flows can
extend more than one use case.

PurchaseTicket
* The direction of a <<extends>> relationship is

0
<<extends>> to the extended use case

<<extends>}
<:::::::> <<extends>> <:::::::>
OutOfOrder <<extends>> TimeOut
Cancel NoChange

29/ 62

The <<includes>> relationship

% « <<includes>> relationship represents
\ behavior that is separated from the main use

P
assenger case for the purpose of reuse.

* The direction of a <<includes>> relationship

PurChaseMUltlcard is to the <using> use case (that is using the

PurchaseS:LngleT:Lcket included use case).
<<includes>>
<<includes>>
CollectMoney

<<extend§i;/7 “\\f<extends>>

D D

NoChange Cancel
30/ 62

Use case diagrams: summary

* Use case diagrams represent external behavior

* Use case diagrams are useful as an index into the use cases (see them
all on a diagram)

e All use cases need to be described for the model to be useful

31/ 62

2. Class diagrams

* Class diagrams represent the structure of the system.
* Used

e during requirements analysis to model problem domain concepts
* during system design to model subsystems and interfaces
* during object design to model classes.

32/ 62

Abstract Data Types & Classes

Watch
* Abstract data type e ime
* Special type whose implementation is hidden date
from the rest of the system. SetDate (d)
* Class: AN

* An abstraction in the context of object-
oriented languages

* A class encapsulates both state (variables) CalculatorWat¢
and behavior (methods)

calculatorState

EnterCalcMode ()
InputNumber (n)

33/ 62

Cla Sses TariffSchedule

Table zonePrices

Enumeration getZones ()
% Name } Price getPrice (Zone)
TariffSchedule _
zonePrices { Attributes J Signhature }
getZones ()
getPrice() ‘?ii

Operations} TariffSchedule

* Aclass represents a concept

* A class encapsulates state (attributes) and behavior (operations).
* Each attribute has a type.

* Each operation has a signature.

* The class name is the only mandatory information.
34/ 62

Relationships

* Class diagrams may contain the following relationships:

e Association, aggregation, dependency,
realization/implementation, and inheritance

* Notation:

Association

Aggregation

=

Inheritance

Dependency

=

Realization

35/ 62

Assoclations

e Associations denote relationships between classes.
* The multiplicity of an association end denotes how many objects the

source object can legitimately reference.

0.1

2.7

Exactly one

Zero or more
One or more

Zero or one

Specified range

36/ 62

Assoclations

Country City

name name

0..1 has capital 1

One-to-one association

Polygon Line

name name

draw() draw()

One-to-many association

37/ 62

Assoclations

Student Course
id id
*
name takes name
enrol(courseld) enrolStudent(studentid)

Many-to-many association

38/ 62

From Problem Statement to Object Model

Problem Statement: A course enrols many students. Each student can
enrol to a course and is uniquely identified by a student ID.

Class diagram

Student

id

name

takes

Course

enrol(courseld)

id

name

enrolStudent(studentlid)

39/ 62

From Problem Statement to Object Model

Problem Statement: A course enrols many students. Each student can
enrol to a course and is uniquely identified by a student ID.

Java Code

public class Course {
private Arraylist<Student> students = new ArrayList<Student>() ;

/...
}

Public class Student {
private int id;
private ArrayList<Course> courses = new ArrayList(Course) () ;
public boolean enrol (int courselId) {
/] ...
}

}
40/ 62

Aggregation

* An aggregation is a special case of association denoting a “consists of” hierarchy.

* The aggregate is the parent class, the components are the children classes.

Polygon

name

draw()

Line

name

>

Student

id

name

&

draw()

* A solid diamond denotes composition, a strong form of aggregation where
components cannot exist without the aggregate. (e.g., Bill of Materials)

Grade

assignGrade(courseld)

id

value

assignGrade(studentld)

Association > Aggregation > Composition

Association

Aggregation

Composition

42/ 62

Inheritance

Button

CancelButton

ZoneButton

 The children classes inherit the attributes and

operations of the parent class.

* Inheritance simplifies the model by eliminating

redundancy.

43/ 62

Object Modeling in Practice: A Banking System

Find new objects

Define names, attributes and methods

Find associations between objects

Label the associations

Determine the multiplicity of the associations

44/ 62

Object Modeling in Practice

Bank

. A Banking System

Name

Account

Customer

GetAccounts()

Amount

Currency

Name

GetAccounts()

Find new objects

Deposit()
Withdraw()

GetBalance()

Define names, attributes and methods

Find associations between objects

Label the associations

Determine the multiplicity of the associations

45/ 62

Object Modeling in Practice: A Banking System

Bank

Account

Customer

Name

GetAccounts()

Amount

Currency

Name

Find new objects

Deposit()
Withdraw()

GetBalance()

GetAccounts()

Define names, attributes and methods

Find associations between objects
Label the associations

Determine the multiplicity of the associations

46/ 62

Object Modeling in Practice: A Banking System

* Categorize

Bank Account Customer
Name Amount Name
GetAccounts() C Currency C GetAccounts()
Deposit()
Withdraw()
GetBalance()
Ja\
SavingsAccount CheckingAccount MortgageAccount
Withdraw() Withdraw() Withdraw()

47/ 62

Packages

* A complex system can be decomposed into
subsystems, where each subsystem is
modeled as a package

* A package is a UML mechanism for
organizing elements into groups (usually
not an application domain concept)

* Packages are the basic grouping construct

with which you may organize UML models
to increase their readability.

-
-
-
.
A~

Userlnterface

BusinessServices

¥

BusinessObjects

48/ 62

3. UML sequence diagrams

% e Used during system design

. : : : :
i cketMachine to refine subsystem interfaces and interactions

Passenger

: * Also used during requirements analysis
selectZone |‘_“| * To refine use case descriptions

* to find additional objects (“participating objects”)

insertCoins () =i

* Classes are represented by columns

* Messages are represented by arrows

ickupChange i * Activations are represented by narrow rectangles
‘ \ * Lifelines are represented by dashed lines
pickUpTicket () Li

!

49/ 62

Nested messages

ZoneButton TariffSchedul4 Display

Passenger

selectZone ()] b
lookupPrice (selection)

v

g displayPrice (price)

[Dataflow\f_ : D

...to be continued...

The source of an arrow indicates the activation which sent the message

An activation is as long as all nested activations

Horizontal dashed arrows indicate data flow

Vertical dashed lines indicate lifelines

50/ 62

Iteration & condition

...continued from previous slide...

ChangeProcessor| | CoinIdentifier Display CoinDrop
Passenger , , , :
4‘*%EsertChange(coid) _ i
»—— lookupCoin (coin)
| F—
Iteratlon displayPrice (c:bwedAmount) o

[Conditionj/f

[owedAmount<0]: returnChange (-owedAmount)

...to be continued...

]

* |teration is denoted by a * preceding the message name

e Condition is denoted by boolean expression in [| before
the message name

51/ 62

Creation and destruction

% ...continued from previous slide...

ChangeProcessor
Fassenger : Creation}
createTick ection)
—_
Ticket
print () !
- free() .. Destruction}

* Creation is denoted by a message arrow pointing to the object.
e Destruction is denoted by an X mark at the end of the destruction activation. |

* In garbage collection environments, destruction can be used to denote the end
of the useful life of an object.

52/ 62

Sequence diagram summary

 UML sequence diagram represent behavior in terms of interactions
* Time consuming to build but can reveal fine details (interactions)
* Complement the class diagrams (which represent structure)

53/ 62

4. State machine dlagra

Inltlal state
[button1&2Pre%ééd] [button2Pressed
BllnkHouri: Increment
NG
~<[Tran3|t|orﬂ
[buttonlPressed]
\i .
[button1&2Pre%ééd] N\ [buttonZPressed]
llnlen/}2§ IncrementM}
g .
Event
\\\ [buttonlPressed]
N\
[button1&2PreisedT————\\ [button2Press
l llnkSecjjds <§;cremen::}

v

C } @%Fmal state}
StopBlink

State Machine diagrams represent behavior as states and transitions

54/ 62

5. Activity diagrams

* An activity diagram shows flow control within a system

Handl e\ Docgme% Archive
Inc:.dery Inc:l.dery =\ Incident

* An activity diagram is a special case of a statechart diagram in which
states are activities (“functions”) instead of states

* Activities can be further decomposed (modeled by another activity
diagram)

55/ 62

Activity Diagrams: Modeling Decisions

fire & highPriori tA}]A

[lowPriority]
Open <> Allocat
Inc1dent B esource
[
[not fire & highPriorygt
T
ire
v j
Notif \
Police Chief

56/ 62

Activity Diagrams: Modeling Concurrency

* Synchronization of multiple activities

* Splitting the flow of control into multiple threads

O

{

Allocate
Resources

\ o
Open
Incidentl/}

{

Coordinate

i

O

Resources

=

Document
Incident

Archive
Incident

)

57/ 62

Activity Diagrams: Swimlanes

* Actions may be grouped into swimlanes to denote the object or
subsystem that implements the actions.

Allocate Dispatcher

Resources

Coordinate Archive
Resources Incident
FieldOfficer
Document
Incident

Open \\\
Incidentl/}

AN S

58/ 62

What should be done first? Coding or Modeling?

* It all depends..

* Forward Engineering:
* Creation of code from a model

* Greenfield projects)
* Reverse Engineering:
* Creation of a model from code

* Interface or reengineering projects

* Roundtrip Engineering:
* Move constantly between forward and reverse engineering
* Useful when requirements, technology and schedule are changing frequently

59/ 62

UML Summary

 UML provides a wide variety of notations for representing many
aspects of software development
* Powerful, but complex language
* Can be misused to generate unreadable models
& * Can be misunderstood when using too many exotic features

* We can start by creating:
* Functional models: use case diagram
* Object models: class diagram
 Dynamic models: sequence diagrams, state machine and activity diagrams

60/ 62

UML seems complicated?

* You can model 80% of most problems by using about 20% UML

UML Real world

modeling
)

80%

61/ 62

Resources

 StarUML Documentation

e Bernd Bruegge & Allen H. Dutoit, Object-Oriented Software
Engineering - Using UML, Patterns, and Java

62/ 62

https://docs.staruml.io/working-with-uml-diagrams/use-case-diagram
https://uim.fei.stuba.sk/wp-content/uploads/2018/02/Object-oriented-Software-Engineering-3rd-Edition.pdf
https://uim.fei.stuba.sk/wp-content/uploads/2018/02/Object-oriented-Software-Engineering-3rd-Edition.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Modeling with UML
	Slide 5: Overview: modeling with UML
	Slide 6: What is modeling?
	Slide 7: Example: street map
	Slide 8: Why model software?
	Slide 9: Systems, Models and Views
	Slide 10: Systems, Models and Views
	Slide 11: Systems, Models and Views
	Slide 12: Application and Solution Domain
	Slide 13: Object-oriented modeling
	Slide 14: What is UML?
	Slide 15
	Slide 16: UML diagrams
	Slide 17: UML diagrams overview
	Slide 18: UML diagrams overview
	Slide 19: UML diagrams overview
	Slide 20
	Slide 21: UML overview: Class diagrams
	Slide 22: UML overview: Sequence diagrams
	Slide 23: UML overview: State machine diagrams
	Slide 24: UML core conventions (for all diagrams)
	Slide 25: 1. Use case diagrams
	Slide 26: Use case diagrams: Actors
	Slide 27: Use case diagrams: Use cases
	Slide 28: Use case diagrams: Example
	Slide 29: The <<extends>> relationship
	Slide 30: The <<includes>> relationship
	Slide 31: Use case diagrams: summary
	Slide 32: 2. Class diagrams
	Slide 33: Abstract Data Types & Classes
	Slide 34: Classes
	Slide 35: Relationships
	Slide 36: Associations
	Slide 37: Associations
	Slide 38: Associations
	Slide 39: From Problem Statement to Object Model
	Slide 40: From Problem Statement to Object Model
	Slide 41: Aggregation
	Slide 42: Association > Aggregation > Composition
	Slide 43: Inheritance
	Slide 44: Object Modeling in Practice: A Banking System
	Slide 45: Object Modeling in Practice: A Banking System
	Slide 46: Object Modeling in Practice: A Banking System
	Slide 47: Object Modeling in Practice: A Banking System
	Slide 48: Packages
	Slide 49: 3. UML sequence diagrams
	Slide 50: Nested messages
	Slide 51: Iteration & condition
	Slide 52: Creation and destruction
	Slide 53: Sequence diagram summary
	Slide 54: 4. State machine diagrams
	Slide 55: 5. Activity diagrams
	Slide 56: Activity Diagrams: Modeling Decisions
	Slide 57: Activity Diagrams: Modeling Concurrency
	Slide 58: Activity Diagrams: Swimlanes
	Slide 59: What should be done first? Coding or Modeling?
	Slide 60: UML Summary
	Slide 61: UML seems complicated?
	Slide 62: Resources

