
Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Integrarea sistemelor informatice

Suport curs nr. 1/p

Programator >> Arhitect

Modelare UML

2024-2025

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

C1/p – Modelare UML

2/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

• Introducere/recapitulare UML

• Identificarea diagramelor UML utile în modelarea sistemelor

Obiective

3/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Modeling with UML

Reference: Bernd Bruegge, Allen H. Dutoit, Object-Oriented Software Engineering Using UML,
Patterns, and Java, Third Edition, Pearson, ISBN: 0-13-606125-7

4/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Overview: modeling with UML

•What is modeling?

•What is UML?

•UML diagrams
• Use case diagrams
• Class diagrams
• Sequence diagrams
• State (machine) diagrams
• Activity diagrams (workflow / flowchart)

5/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

What is modeling?

•Modeling consists of building an abstraction of reality.

•Abstractions are simplifications because:
• They ignore irrelevant details and
• They only represent the relevant details.

•What is relevant or irrelevant depends on the purpose
of the model.

6/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Example: street map

Case Study

Path Planning for Unmanned Vehicle Motion Based on
Road Detection Using Online Road Map and Satellite
Image
http://dx.doi.org/10.1007/978-3-319-16631-5_32

Typical road detection: (a) Satellite images, (b) road
map images, (c) road network estimation results with
many additional detected road segments by our
proposed method.

7/ 62

http://dx.doi.org/10.1007/978-3-319-16631-5_32

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Why model software?

• Software is getting increasingly more complex
• Windows 10 > 50 mil lines of code

• A single programmer cannot manage this amount
of code in its entirety.

• Code is not easily understandable by
developers who did not write it

• Modeling is a mean for dealing with complexity
• We need simpler representations for complex

systems

Image by svstudioart on Freepik

8/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Systems, Models and Views

• A model is an abstraction describing a subset of a system

• A view depicts selected aspects of a model

• A notation is a set of graphical or textual rules for depicting views

Examples:

• System: Aircraft

• Models: Flight simulator, scale model

• Views: blueprints, electrical wiring, fuel system

9/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Systems, Models and Views

System
View 1

Model 2
View 2

View 3

Model 1

Aircraft

Flight

Simulator

Scale Model

Blueprints

Electrical

Wiring
|

10/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Systems, Models and Views

System Model View
**

Depicted byDescribed by

Airplane: System

Blueprints: View Fuel System: View Electrical Wiring: View

Scale Model: Model Flight Simulator: Model

11/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Application and Solution Domain

Modeling context

• Application Domain (Requirements Analysis)
• The environment in which the system is operating

• Solution Domain (System Design, Object Design)
• The available technologies to build the system

12/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Object-oriented modeling

Application Domain Solution Domain

Application Domain Model System Model

Aircraft
TrafficController

FlightPlan
Airport

MapDisplay

FlightPlanDatabase

SummaryDisplay

TrafficControl

TrafficControl

UML Package

13/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

What is UML?

• UML (Unified Modeling Language)
• An emerging standard for modeling object-oriented software.
• Resulted from the convergence of notations from three leading object-oriented

methods:
• OMT (James Rumbaugh)
• OOSE (Ivar Jacobson)
• Booch (Grady Booch)

• Reference: “The Unified Modeling Language User Guide”, Addison Wesley,
1999.

• Supported by several CASE tools (Computer Aided Software Engineering)
• Rational ROSE XDE
• Rational Rhapsody
• TogetherJ
• etc.

14/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

15/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

UML diagrams

16/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

UML diagrams overview

Behavior (functional vs system)

• Use case diagrams
• Describe the functional behavior of the system as seen by the user.

• Activity diagrams
• Model the dynamic behavior of a system, in particular the workflow
• Flowchart

Structure

• Class diagrams
• Describe the static structure of the system
• Objects, Attributes, Associations

17/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

UML diagrams overview

Behavior (system)

• Sequence diagrams
• Describe the dynamic behavior between actors and the system
• and between system components

• State machine diagrams
• Describe the dynamic behavior of an individual object
• Alternate name: Statechart Diagram
• Finite State Automaton

18/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

UML diagrams overview

Structure (implementation)

• Component diagrams

• Deployment diagrams

Example: Deployment diagram

19/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

WatchUser WatchRepairPerson

ReadTime

SetTime

ChangeBattery

Actor

Use casePackage
Watch

> represent the functionality of the system from the user’s point of view

UML overview: Use case diagrams

|

20/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

1

2

push()

release()

1

1

blinkIdx

blinkSeconds()

blinkMinutes()

blinkHours()

stopBlinking()

referesh()

LCDDisplay Battery

load

1

2

1

Time

now

1

Watch

Class

Association

Multiplicity

Attribute
Operations

state

PushButton

UML overview: Class diagrams

Class diagrams represent the structure of the system

|

21/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

:LCDDisplay

blinkHours()

blinkMinutes()

refresh()

commitNewTime()

:Time

incrementMinutes()

stopBlinking()

:Watch

pressButton1()

pressButton2()

pressButtons1And2()

pressButton1()

:WatchUser

Object

Message

Activation

Actor

Lifeline

UML overview: Sequence diagrams

Sequence diagrams represent the behavior as interactions

|

22/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

State machine diagrams represent behavior as states and transitions

UML overview: State machine diagrams

BlinkHours

BlinkMinutes

IncrementHrs

IncrementMin.

BlinkSeconds IncrementSec.

StopBlinking

[button1&2Pressed]

[button1Pressed]

[button2Pressed]

[button2Pressed]

[button2Pressed]

[button1Pressed]

[button1&2Pressed]

[button1&2Pressed]

State
Initial state

Final state

Transition

Event

|

23/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

UML core conventions (for all diagrams)

• Rectangles are classes or instances

• Ovals are functions or use cases

• Instances are denoted with an underlined names
• myWatch:SimpleWatch

• Joe:Firefighter

• Types are denoted with non underlined names
• SimpleWatch

• Firefighter

• Diagrams are graphs
• Nodes are entities
• Arcs are relationships between entities

PurchaseTicket

zonePrices

getZones()

getPrice()

TariffSchedule

24/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

1. Use case diagrams

• Used during requirements specification
to represent external behavior

• Actors represent roles – a type of user
of the system

• Use cases represent a sequence of
interaction for a type of functionality

• The use case model is the set of all use
cases. It is a complete description of the
functionality of the system and its
environment

Passenger

PurchaseTicket

25/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Use case diagrams: Actors
• An actor models an external entity which

communicates with the system:
• User

• External system

• Physical environment

• An actor has a unique name and an optional
description

• Examples:
• Passenger: A person in the train

• GPS satellite: Provides GPS coordinates

Passenger

26/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Use case diagrams: Use cases
A use case represents a class of functionality
provided by the system as an event flow.

A use case consists of:
• Unique name

• Participating actors

• Entry conditions

• Flow of events

• Exit conditions

• Special requirements

PurchaseTicket

27/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Use case diagrams: Example
Name: Purchase ticket

Participating actor: Passenger

Entry condition:

• Passenger standing in front of
ticket distributor.

• Passenger has sufficient money to
purchase ticket.

Exit condition:

• Passenger has ticket.

Event flow:

1. Passenger selects the number of
zones to be traveled.

2. Distributor displays the amount
due.

3. Passenger inserts money, of at
least the amount due.

4. Distributor returns change.

5. Distributor issues ticket.

Anything missing?

Exceptional cases!

28/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

The <<extends>> relationship

• <<extends>> relationships represent
exceptional cases that are factored out of the
main use case for clarity.

• Use cases representing exceptional flows can
extend more than one use case.

• The direction of a <<extends>> relationship is
to the extended use case

Passenger

PurchaseTicket

TimeOut

<<extends>>

NoChange

<<extends>>OutOfOrder

<<extends>>

Cancel

<<extends>>

|

29/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

The <<includes>> relationship

• <<includes>> relationship represents
behavior that is separated from the main use
case for the purpose of reuse.

• The direction of a <<includes>> relationship
is to the <using> use case (that is using the
included use case).

Passenger

PurchaseSingleTicket

PurchaseMultiCard

NoChange

<<extends>>

Cancel

<<extends>>

<<includes>>

CollectMoney

<<includes>>

|

30/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Use case diagrams: summary

• Use case diagrams represent external behavior

• Use case diagrams are useful as an index into the use cases (see them
all on a diagram)

• All use cases need to be described for the model to be useful

31/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

2. Class diagrams

• Class diagrams represent the structure of the system.

• Used
• during requirements analysis to model problem domain concepts

• during system design to model subsystems and interfaces

• during object design to model classes.

32/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Abstract Data Types & Classes
Watch

time
date

CalculatorWatch

SetDate(d)

EnterCalcMode()
InputNumber(n)

calculatorState

• Abstract data type
• Special type whose implementation is hidden

from the rest of the system.

• Class:
• An abstraction in the context of object-

oriented languages
• A class encapsulates both state (variables)

and behavior (methods)

33/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Classes

• A class represents a concept

• A class encapsulates state (attributes) and behavior (operations).

• Each attribute has a type.

• Each operation has a signature.

• The class name is the only mandatory information.

zonePrices

getZones()

getPrice()

TariffSchedule

Table zonePrices

Enumeration getZones()

Price getPrice(Zone)

TariffSchedule

Name

Attributes

Operations

Signature

TariffSchedule

|

34/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Relationships

• Class diagrams may contain the following relationships:
• Association, aggregation, dependency,

realization/implementation, and inheritance

• Notation:

Association Aggregation Dependency

Inheritance Realization

35/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Associations

Zero or more0..*

One or more1..*

Zero or one0..1

Specified range2..7

Exactly one
1

• Associations denote relationships between classes.

• The multiplicity of an association end denotes how many objects the
source object can legitimately reference.

36/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Associations

One-to-one association

One-to-many association
37/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Associations

Many-to-many association

38/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

From Problem Statement to Object Model

Problem Statement: A course enrols many students. Each student can
enrol to a course and is uniquely identified by a student ID.

Class diagram

39/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

From Problem Statement to Object Model

Problem Statement: A course enrols many students. Each student can
enrol to a course and is uniquely identified by a student ID.

Java Code

public class Course {

 private ArrayList<Student> students = new ArrayList<Student>();

 // ...

}

Public class Student {

 private int id;

 private ArrayList<Course> courses = new ArrayList(Course)();

 public boolean enrol(int courseId){

 // ...

 }

}
40/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Aggregation

• An aggregation is a special case of association denoting a “consists of” hierarchy.

• The aggregate is the parent class, the components are the children classes.

• A solid diamond denotes composition, a strong form of aggregation where
components cannot exist without the aggregate. (e.g., Bill of Materials)

41/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Association > Aggregation > Composition

42/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Inheritance

• The children classes inherit the attributes and
operations of the parent class.

• Inheritance simplifies the model by eliminating
redundancy.

Button

ZoneButtonCancelButton

43/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Object Modeling in Practice: A Banking System

• Find new objects

• Define names, attributes and methods

• Find associations between objects

• Label the associations

• Determine the multiplicity of the associations

44/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Object Modeling in Practice: A Banking System

• Find new objects

• Define names, attributes and methods

• Find associations between objects

• Label the associations

• Determine the multiplicity of the associations

45/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Object Modeling in Practice: A Banking System

• Find new objects

• Define names, attributes and methods

• Find associations between objects

• Label the associations

• Determine the multiplicity of the associations

46/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Object Modeling in Practice: A Banking System

• Categorize

47/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Packages

• A complex system can be decomposed into
subsystems, where each subsystem is
modeled as a package

• A package is a UML mechanism for
organizing elements into groups (usually
not an application domain concept)

• Packages are the basic grouping construct
with which you may organize UML models
to increase their readability.

48/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

3. UML sequence diagrams

• Used during system design
• to refine subsystem interfaces and interactions

• Also used during requirements analysis
• To refine use case descriptions

• to find additional objects (“participating objects”)

• Classes are represented by columns

• Messages are represented by arrows

• Activations are represented by narrow rectangles

• Lifelines are represented by dashed lines

selectZone()

pickupChange()

pickUpTicket()

insertCoins()

Passenger
TicketMachine

49/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Nested messages

• The source of an arrow indicates the activation which sent the message

• An activation is as long as all nested activations

• Horizontal dashed arrows indicate data flow

• Vertical dashed lines indicate lifelines

selectZone()

Passenger
ZoneButton TariffSchedule Display

lookupPrice(selection)

displayPrice(price)

price

Dataflow

…to be continued...

|

50/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Iteration & condition

• Iteration is denoted by a * preceding the message name

• Condition is denoted by boolean expression in [] before
the message name

Passenger
ChangeProcessor

insertChange(coin)

CoinIdentifier Display CoinDrop

displayPrice(owedAmount)

lookupCoin(coin)

price

[owedAmount<0] returnChange(-owedAmount)

Iteration

Condition

…to be continued...

…continued from previous slide...

*

|

51/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Creation and destruction

• Creation is denoted by a message arrow pointing to the object.

• Destruction is denoted by an X mark at the end of the destruction activation.

• In garbage collection environments, destruction can be used to denote the end
of the useful life of an object.

Passenger
ChangeProcessor

…continued from previous slide...

Ticket

createTicket(selection)

free()

Creation

Destruction

print()

|

52/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Sequence diagram summary

• UML sequence diagram represent behavior in terms of interactions

• Time consuming to build but can reveal fine details (interactions)

• Complement the class diagrams (which represent structure)

53/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

4. State machine diagrams

BlinkHours

BlinkMinutes

IncrementHrs

IncrementMin.

BlinkSeconds IncrementSec.

StopBlinking

[button1&2Pressed]

[button1Pressed]

[button2Pressed]

[button2Pressed]

[button2Pressed]

[button1Pressed]

[button1&2Pressed]

[button1&2Pressed]

StateInitial state

Final state

Transition

Event

|

State Machine diagrams represent behavior as states and transitions
54/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

5. Activity diagrams

• An activity diagram shows flow control within a system

• An activity diagram is a special case of a statechart diagram in which
states are activities (“functions”) instead of states

• Activities can be further decomposed (modeled by another activity
diagram)

Handle
Incident

Document
Incident

Archive
Incident

55/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Activity Diagrams: Modeling Decisions

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

56/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Activity Diagrams: Modeling Concurrency

• Synchronization of multiple activities

• Splitting the flow of control into multiple threads

SynchronizationSplitting

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

57/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Activity Diagrams: Swimlanes

• Actions may be grouped into swimlanes to denote the object or
subsystem that implements the actions.

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Dispatcher

FieldOfficer

58/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

What should be done first? Coding or Modeling?

• It all depends..

• Forward Engineering:
• Creation of code from a model
• Greenfield projects

• Reverse Engineering:
• Creation of a model from code
• Interface or reengineering projects

• Roundtrip Engineering:
• Move constantly between forward and reverse engineering
• Useful when requirements, technology and schedule are changing frequently

59/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

UML Summary

• UML provides a wide variety of notations for representing many
aspects of software development
• Powerful, but complex language

• Can be misused to generate unreadable models

• Can be misunderstood when using too many exotic features

• We can start by creating:
• Functional models: use case diagram

• Object models: class diagram

• Dynamic models: sequence diagrams, state machine and activity diagrams

60/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

UML seems complicated?

• You can model 80% of most problems by using about 20% UML

61/ 62

Integrarea Sistemelor Informatice – Curs, sl.dr.ing. Alexandru Predescu, 2023

Resources

• StarUML Documentation

• Bernd Bruegge & Allen H. Dutoit, Object-Oriented Software
Engineering - Using UML, Patterns, and Java

62/ 62

https://docs.staruml.io/working-with-uml-diagrams/use-case-diagram
https://uim.fei.stuba.sk/wp-content/uploads/2018/02/Object-oriented-Software-Engineering-3rd-Edition.pdf
https://uim.fei.stuba.sk/wp-content/uploads/2018/02/Object-oriented-Software-Engineering-3rd-Edition.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Modeling with UML
	Slide 5: Overview: modeling with UML
	Slide 6: What is modeling?
	Slide 7: Example: street map
	Slide 8: Why model software?
	Slide 9: Systems, Models and Views
	Slide 10: Systems, Models and Views
	Slide 11: Systems, Models and Views
	Slide 12: Application and Solution Domain
	Slide 13: Object-oriented modeling
	Slide 14: What is UML?
	Slide 15
	Slide 16: UML diagrams
	Slide 17: UML diagrams overview
	Slide 18: UML diagrams overview
	Slide 19: UML diagrams overview
	Slide 20
	Slide 21: UML overview: Class diagrams
	Slide 22: UML overview: Sequence diagrams
	Slide 23: UML overview: State machine diagrams
	Slide 24: UML core conventions (for all diagrams)
	Slide 25: 1. Use case diagrams
	Slide 26: Use case diagrams: Actors
	Slide 27: Use case diagrams: Use cases
	Slide 28: Use case diagrams: Example
	Slide 29: The <<extends>> relationship
	Slide 30: The <<includes>> relationship
	Slide 31: Use case diagrams: summary
	Slide 32: 2. Class diagrams
	Slide 33: Abstract Data Types & Classes
	Slide 34: Classes
	Slide 35: Relationships
	Slide 36: Associations
	Slide 37: Associations
	Slide 38: Associations
	Slide 39: From Problem Statement to Object Model
	Slide 40: From Problem Statement to Object Model
	Slide 41: Aggregation
	Slide 42: Association > Aggregation > Composition
	Slide 43: Inheritance
	Slide 44: Object Modeling in Practice: A Banking System
	Slide 45: Object Modeling in Practice: A Banking System
	Slide 46: Object Modeling in Practice: A Banking System
	Slide 47: Object Modeling in Practice: A Banking System
	Slide 48: Packages
	Slide 49: 3. UML sequence diagrams
	Slide 50: Nested messages
	Slide 51: Iteration & condition
	Slide 52: Creation and destruction
	Slide 53: Sequence diagram summary
	Slide 54: 4. State machine diagrams
	Slide 55: 5. Activity diagrams
	Slide 56: Activity Diagrams: Modeling Decisions
	Slide 57: Activity Diagrams: Modeling Concurrency
	Slide 58: Activity Diagrams: Swimlanes
	Slide 59: What should be done first? Coding or Modeling?
	Slide 60: UML Summary
	Slide 61: UML seems complicated?
	Slide 62: Resources

