
Introduction to Computer
Security Lecture Slides

© 2024 by Mihai Chiroiu & Florin Stancu
is licensed under Attribution-NonCommercial-ShareAlike 4.0

International

1© Mihai Chiroiu

https://ocw.cs.pub.ro/courses/isc
https://ocw.cs.pub.ro/courses/isc
https://www.linkedin.com/in/mihaichiroiu/
https://www.linkedin.com/in/niflostancu/
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

Application Security

2© Mihai Chiroiu

● “My software never has bugs. It just develops random features.”

● “You’re holding it wrong!”

● “Only one more bug left”

3© Mihai Chiroiu

Contents

● Software Vulnerabilities
○ Cause & classification

○ Memory safety bugs + examples

○ Defenses & mitigations

© Mihai Chiroiu 4

Software – the final frontier

• Access control and crypto are the bricks for building secure blocks

• Protocols/algorithms used to design useful blocks

• Software & hardware implements all of the above

• Vulnerabilities – flaws allowing unintended access in a system

Properties of a vulnerability

© Mihai Chiroiu

● Target application / system component

● Cause

● Severity

● Effect: Remote vs Local, e.g.:

○ Remote Code Execution (RCE): enter system via network;

○ Local Privilege Escalation: become root!

● Discovery/exploitation timeline (previously disclosed vs 0-day)

6

● Access control / business logic bugs

● Code injection

● Input validation (format string attacks, path traversal…)

● Memory safety: buffer overflow, dangling pointer, race condition,

information leak, use after free etc.

● Weak crypto, side channel attacks…
● UI confusion

● And many more!

Vulnerability causes

© Mihai Chiroiu 7

● EternalBlue - SMB Protocol Vulnerability (CVE-2017-0144)
https://research.checkpoint.com/2017/eternalblue-everything-know

● Microsoft Exchange RCE Vulnerability (CVE-2021-26857)
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers

● Flash Player (CVE-2018-15982)
https://securityaffairs.co/wordpress/78712/hacking/cve-2018-15982-flash-zero-day.html

● Log4J (CVE-2021-44228):
https://blog.cloudflare.com/inside-the-log4j2-vulnerability-cve-2021-44228/

Real World Examples

© Mihai Chiroiu 8

https://securityaffairs.co/wordpress/78712/hacking/cve-2018-15982-flash-zero-day.html
https://blog.cloudflare.com/inside-the-log4j2-vulnerability-cve-2021-44228/

Memory safety

● Chrome: 70% of all high
severity security bugs are
memory safety issues [1]

© Mihai Chiroiu 9

Intro: address space

● Userspace processes have virtual
memory

● Compiler (linker) / OS decide where
each segment goes.

● Address space layout has impact on
application’s security

© Mihai Chiroiu 10

Intro: stack frame

● Stack: function arguments, saves CPU state
(saved program counter, prev. frame, registers)
and local variables:

int f(int x) {

 int n;

 int buf[10];

 // ...

}

int main() {

 f(); // asm call f() <-- saves PC
}

© Mihai Chiroiu 11

Stack buffer overflow [2]

● Happens when a buffer’s is written after
its allocated size.

© Mihai Chiroiu

char buf[10];
char *input = “This text is larger than
expected”;

strcpy(buf, input);

12

Stack overflow (2)

© Mihai Chiroiu 13

Stack overflow (3)

● ret instruction will pop the return address
from the stack, then jump to it.

● CPU will execute the injected code
(shellcode).

● NOP sled when the address is not fixed:

© Mihai Chiroiu 14

Generic exploit steps [7]

● Find vulnerable input buffer (e.g., stack overflow)
● Find overwritable code pointer offset (e.g., saved

EIP)
● Inject/reuse shell code (attacker-defined)
● Corrupt code pointer with attacker value!
● …
● all your base are belong to us!

(CPU executes malicious instructions)

[7] SoK: Eternal War in Memory

Stack exploit mitigations

● DEP (data execution prevention) / No-execute (NX) bit
● defeated by ROP (return oriented programming)

● Address space layout randomization

● defeated by memory leaks

● Stack Canaries

● defeated by memory leaks, side channels, data overwrites

● Shadow Stack

© Mihai Chiroiu 16

Address Space Layout Randomization (ASLR)

© Mihai Chiroiu 17

• Implemented by most OSes

• Requires programs be compiled

as Position-Independent Code

• Segments can only be

randomized at startup!

• KASLR: randomize

kernel-space!

Stack Canaries

● Store random value between Saved EBP +

Saved EIP

● Before ret, check this random value
○ If modified, show error & exit

● Weaknesses:
○ memory leaks / side channels

○ canary guessing

Return to LibC

● Non-executable buffers? no problem!
○ reuse existing functions

● Example: jump to execve() / system()

etc.
○ Reminder: call args from %EBP - 0x08!

Top of stack

…

Arg1: pointer to “/bin/sh”

S.EIP: system() addr.

Saved EBP

…

vulnerable buf[10]

buffer overflow
write direction

EBP ->

Return oriented programming

© Mihai Chiroiu 22

What about exploiting .data?

© Mihai Chiroiu 23

struct msg_funcs {

 (void)(*init)(struct message *msg);

 (void)(*print)(struct message *msg);

 (void)(*clear)(struct message *msg);

}

struct message {

 const struct msg_funcs *funcs;

 int len;

 char text[255];

};

struct message all_messages[10];

// ...

int main() {

 // initialize modules …
 for (i=0; i<n; i++) {

 struct message *msg =

 &all_messages[i];

 msg->funcs.init(msg);

 gets(msg->text);

 }

}

Object Oriented Security

● C++ (and other OOP languages) use
virtual method tables for implementing
polymorphism

● Attacker replaces VTable pointers to
controlled memory

● When an object method is called, the
function pointer is loaded from the
attacker’s VTable

© Mihai Chiroiu 24

The Heap

● Dynamic Memory Allocation
○ malloc / new

● GLibC: one master arena, multiple heaps,

connected by linked lists
○ Virtual memory allocated by OS

(mmap or sbrk)

○ malloc() => returns a free chunk of

contiguous memory, fills metadata

○ free() => clears/resets chunk + metadata

Dangling Pointer

● Return / store a pointer to an object
that will become invalid after a while
(e.g., after free)

● Pointer still points to valid memory!
● Example: returning stack-local pointers

(function’s frame becomes invalid after
return)

● Dangerous, especially in OOP languages
(e.g.: C++) => attacker can override
objects’ VTable!

© Mihai Chiroiu 26

char *parse_name(char *input) {

 char buf[100];

 // process username

 return buf;

}

int main(...) {

 char *name = parse_name(argv[1]);

 process_more_data(argv[2]);

 if (strcmp(name, "admin") == 0)

 printf("Welcome master!\n");

}

Use After Free

● Free the memory of an object (not

needed anymore)

● Next, application allocates new

object with attacker-controlled data

● Another section of the application

uses the released object (still has

an old pointer stored in a variable)

● Are scripting languages safe?

➢ nope! ->

© Mihai Chiroiu 27

// Adobe Flash exploit (ActionScript)

ps = PSDK.pSDK;

ps.release();

ms = new MediaResource("jack",

 0x54336677, null);

try{

 ps.createDefaultContentFactory();

} catch (e:Error) { }

Size checks vs integer overflows

#define HEADER_SIZE 128

uint16_t payload_len = user_payload_size();

uint8_t *buffer = malloc((uint16_t)(payload_len + HEADER_SIZE));

// user gives a valid payload len: 65534

// 65534 + 128 overflows!

// => malloc allocates just 126 bytes...

…
read_input_into_buffer(buffer, len);

z

y

x

“fmt string”

[call printf]
saves EIP

saved EBP

[printf frame
below]

Format string attacks

• printf("x=%d, y=%d, z=%d", x, y, z)

• What if the user controls format string?
• printf(user_input)

• "%s": read string from address arg.

• "%X %X %X…": print args as hex

• Read-only vulnerability? Nope…
• "%n": consume next argument as address

(pointer) and store the number of bytes

written so far into it.

Just in Time + scripting => bytecode injection!

● Defeats W⊕X
● JIT Spraying:
VAL = (VAL + 0xA8909090)|0;

VAL = (VAL + 0xA8909090)|0;

=> just in time compiles it into:
00: 05909090A8 ADD EAX, 0xA8909090

05: 05909090A8 ADD EAX, 0xA8909090

offset pointer with +1 byte:
03: 90 NOP

04: A805 TEST AL, 05

© Mihai Chiroiu 30

Microsoft: BlueHatIL - Trends, challenge, and shifts in software vulnerability
mitigation

© Mihai Chiroiu 31

Control Flow Integrity

© Mihai Chiroiu 32

Data oriented attacks

● Memory overflows…

non-control flow exploit?

int authenticated = 0;

struct user_info *user_ptr =

 auth_users[last_idx];

int username[100];

gets(username);

// meanwhile: check name & password

if (authenticated) {

 user_ptr->valid = 1;

 strcpy(user_ptr->name, username);

 last_idx++;

}

Data oriented attacks (2)

● Memory overflows =>

non-control exploit
○ Defeat W⊕X, stack canaries, CFI

etc. (we don’t alter code

execution)!

● Data Oriented Programming

Gadgets
○ Pointer write access => write to

ANY program variable!

int authenticated = 0;

struct user_info *user_ptr =

 auth_users[last_idx];

int username[100];

gets(username);

// meanwhile: check name & password

if (authenticated) {

 user_ptr->valid = 1;

 strcpy(user_ptr->name, username);

 last_idx++;

}

Data integrity

● Easy: check bounds after each read / write of any variable!

● Softbounds + CETS
○ compile-time transformations for enforcing spatial safety and temporal

safety for C

○ Huge overhead!

● Write Integrity Tracking / Data Flow Integrity / Data Space

Randomization

Protection mechanism summary

Is zero-vulnerabilities software possible?

● Yep! qmail [6]
○ Mail Transfer Agent by David Bernstein, 1995 (last version: 1.03, 1998)

○ Zero security vulnerabilities so far!

● Security practices:
○ Keep It Simple Stupid (KISS)

○ Unix Philosophy (modular development, each component KISS)
■ Separate functions into multiple unprivileged binaries

○ Don't parse! Pass uniform/binary messages between programs!

○ Write careful code, avoid libc (gets, printf, malloc/free etc.)!

● Scripting (Python, JS etc.) / Java / C#?
○ not if you need performace (e.g., games, system level stuff)…

● Rust / GoLang / Zig (etc.)
○ still able to write “unsafe” code

(e.g., syscalls / hardware interfaces / code optimizations)
● Stronger typing systems:

○ Pure-functional programming (e.g., Haskell)
○ ATS (write both code + mathematical proofs!) => HARDEST

● Backwards compatibility…
○ no money to rewrite everything from scratch
○ use secure coding practices, static analysis tools etc.
○ hardware pointer/boundary checks (Intel MPX, ARM PAC)

Memory safety defense?

References

[1] https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/

[2] https://security-summer-school.github.io/binary/

[3] https://www.exploit-db.com/docs/english/28476-linux-format-string-exploitation.pdf

[4] https://sourceware.org/glibc/wiki/MallocInternals

[5] https://infosecwriteups.com/use-after-free-13544be5a921

[6] https://blog.acolyer.org/2018/01/17/some-thoughts-on-security-after-ten-years-of-qmail-1-0/

[7] SoK: Eternal War in Memory https://www.ieee-security.org/TC/SP2013/papers/4977a048.pdf

[8] https://people.scs.carleton.ca/~paulv/toolsjewels.html

https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/
https://security-summer-school.github.io/binary/
https://www.exploit-db.com/docs/english/28476-linux-format-string-exploitation.pdf
https://sourceware.org/glibc/wiki/MallocInternals
https://infosecwriteups.com/use-after-free-13544be5a921
https://blog.acolyer.org/2018/01/17/some-thoughts-on-security-after-ten-years-of-qmail-1-0/
https://www.ieee-security.org/TC/SP2013/papers/4977a048.pdf
https://people.scs.carleton.ca/~paulv/toolsjewels.html

