
Introduction to Computer
Security Lecture Slides

© 2024 by Mihai Chiroiu & Florin Stancu
is licensed under Attribution-NonCommercial-ShareAlike 4.0

International

https://ocw.cs.pub.ro/courses/isc
https://ocw.cs.pub.ro/courses/isc
https://www.linkedin.com/in/mihaichiroiu/
https://www.linkedin.com/in/niflostancu/
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

Authentication and key
establishment

Who do we authenticate

• Users:
• The human operator
• Authentication is typically slow
• Local or over-the-wire
• Authentication only

• human brain cannot do proper cryptography just yet :((

• Principals
• User’s digital identity
• Authentication should be fast and scalable
• Mostly over-the-wire
• Goal: Authentication & key establishment

© Mihai Chiroiu 3

Identification vs authentication

• Identification means one-from-many
• Find your fingerprints in a police database

• Authentication means one-to-one relations
• Compare your (based on the username) input to a previously saved one

• Enrollment (can be slow, must be precise) vs Recognition (must be quick)

• Cooperation
• In identification, the user does not cooperate

• In authentication, the user is cooperative

4

AAA framework

• Identify
• Map a real-person/subject to a virtual account

• Authenticate
• Request a proof from the account

• Authorize
• Verify if the account can access a resource

• Accounting
• Log/monitor what the account is doing

© Mihai Chiroiu 5

Just authentication?

• Is authentication alone enough?

• Yes, for local systems (e.g., console/GUI login)

• Not very good for remote systems (e.g. telnet) -> session hijack

• Key establishment only?

• For anonymity purposes

• Not very practical (e.g. plain D-H over MitM channel)

• We need both!

© Mihai Chiroiu 6

Attacks?

Attack Short description

replay reusing a previously captured message in a later protocol run

reflection replaying a captured message to the originating party

relay forwarding a message in real time from a distinct protocol run

interleaving weaving together messages from distinct concurrent protocols

middle-person eavesdropping on communication

bruteforce for short credentials (e.g., PIN codes) – without rate limiting

dictionary using a heuristically prioritized list in a guessing attack

forward search feeding guesses into a one-way function, seeking output matches

pre-capture extracting client OTPs by social engineering, for later use

© Mihai Chiroiu 7

Authentication

© Mihai Chiroiu 8

The concept

• The authenticator (e.g. server, website) asks to prove that you are
who you pretend to be based on one or more pieces of evidence
called factors.

• May also be mutual: server also authenticates to the client!

• The evidence can be presented either directly (e.g. password
authentication) or indirectly by using it in cryptographic calculation
(e.g. challenge authentication protocol).

• Indirect proof use some form of cryptographic algorithms.
• Indirect proof also known as implicit authentication.

© Mihai Chiroiu 9

Types of factors

• Something you know (Knowledge Factor)

• Something you have (Possession Factor)

• Something you are (Inherence Factor)

• Other authentication attributes that can be used:
• Somewhere you are

• Someone you know

10

Chaining factors

• N-factor authentication
• Factors should be different

• N-step verification
• Can be same factor

© Mihai Chiroiu 11

https://rublon.com/blog/2fa-2sv-difference/

https://rublon.com/blog/2fa-2sv-difference/

Something you know - Passwords

• Require people to remember them
• Used on multiple occasions

• Shoulder surfing / key logging

• Can be enhanced through policies
• E.g. Minimum 20 characters

© Mihai Chiroiu 12

Something you know - Passwords

© Mihai Chiroiu 13

https://nordpass.com/most-common-passwords-list/

https://nordpass.com/most-common-passwords-list/

Something you know - Passwords

14© Mihai Chiroiu

https://xkcd.com/936/

https://xkcd.com/936/

Something you have

• Phone number / email?

• Public / private key

• Symmetric key

© Mihai Chiroiu 15

Best: On a hardware token

(write+execute-only private keys)

Something you are

• Fingerprint

• Facial recognition

• Speech recognition

• Odour recognition

• Gait

16

Biometric properties

• Not 100% accurate
• Because of sensors

• Because of changes in biometrics

• Not 100% applicable
• E.g. Fingerprints w/o hands

• Typically hard to profile, easy to collect/verify
• E.g. Scanning of face multiple times to enable FaceID on Apple

17

Storing factors

© Mihai Chiroiu 18

Storing passwords

© Mihai Chiroiu

• Plain text – just don’t

• Hash(Password)

• Hash(Salt + Password)

• Hash(Salt + Password + Pepper)

19

Attacks on stored passwords

© Mihai Chiroiu

• Offline

• Online
• Rate-limit

• Lock out after N failed attempts

• Some cryptographic hardware devices are “online”!

20

Storing keys

• Which factor is a random key?

• Storage: software vs hardware
• Software-protected memory / files

• chmod 600

• E.g.: SSH keys, WebAuthn “passkeys”;

• Weakest something you have factor!

• Hardware Security Tokens / Trusted Platform Module
• Key becomes a stronger something you have!

• Requires online attacks => rate limiting, auto-wipe after 10 failures etc.!

© Mihai Chiroiu 21

Password managers

• One ring to rule them all
• Master key can be derived from password

• Use multiple factors (e.g., tokens)!

• Database storage: local or cloud

• Encourage different password per service:

password generators, integration with browsers

• Back it up / don’t forget/lose the keys!

© Mihai Chiroiu 22

Password-based key derivation

● Problem: passwords have arbitrary lengths

● Cryptographic algorithms require keys of specific lengths!

○ E.g., AES-256 requires 256-bits key => 32 bytes

● Solution: Key Derivation Functions (KDF):

○ DerivedKey = KDF(password, salt, iterations)

● Algorithms: PBKDF2, Argon2

© Mihai Chiroiu 23

FIDO2 / passkeys

• Previously: U2F: Universal Second Factor
• FIDO2 WebAuthn => asymmetric crypto!

• Give a unique public key to the web server (no reuse!)
• Use private key instead of password

• Private key must be stored on secure hardware!
• FIDO-certified security keys: Yubikey, SoloKey, NitroKey ;)
• Hardware validates 2nd factor:

• Something you know (PIN – rate limited!)
• Something you are (fingerprint, FaceID etc.)

• Must always enroll backup keys!

© Mihai Chiroiu 24

Key establishment protocols

© Mihai Chiroiu 25

● Symmetric (shared secret)

• How to ask for a known secret over insecure channels?

• Hash the password?

• Challenge-Response

● Asymmetric protocols

• Diffie-Hellman!

• Forward Secrecy

Authentication protocols

© Mihai Chiroiu 26

Burrows–Abadi–Needham logic (notation)

• ID
A
,ID

B
, ID

S

• An unique identifier for A, B and S (Trusted Server)

• k
A,B

• A key shared between A and B

• {ID
A
} K

A

• Encryption/signature of ID
A
 under the key of A

• A -> B : {ID
A
} k

A,B

• A send to B the message ID
A
 encrypted by the shared key of A and B

© Mihai Chiroiu 27

Plain Diffie-Hellman

1. A -> B : DH_A (ga mod p)

2. B -> A : DH_B, {ID
B
} K

A,B

(both obtain the same K
A,B

)

1. A -> B: {ID
A
} K

A,B

Classic MitM attack:

1. A -> T : DH_A

2. T -> B : DH_T

3. B -> T : DH_B, {ID
B
} K

T,B

4. T -> B : {ID
A
} K

T,B

5. T -> A : DH_T, {ID
B
} K

A,T

… etc

28© Mihai Chiroiu

Protocol for asymmetric encryption (STS
simplified)

1. A -> B : DH_A

2. B -> A : DH_B, { {DH_A, DH_B}

pub
A
 } K

A,B

3. A -> B: { {DH_A, DH_B} pub
B
}

K
A,B

• We assume each party has

private/public keys

• Public key being know to all

entities

• The problem is how to distribute

public keys

• Public Key Infrastructure

• Pretty Good Privacy

29© Mihai Chiroiu

Symmetric authentication

• Given A and B who trust S, A and B should be able to create a

shared key k
A,B

 for secret communication

• k
A,B

should be know only to A and B (and possibly to S)

• A and B should know that

k

A,B
is newly generated

• A and B should authenticate each other

• Why? Enterprise authentication!

© Mihai Chiroiu 30

Protocol for symmetric encryption (1)

Protocol steps

1. A -> S : ID
A
, ID

B
I am A, give me key for B

1. S -> A : k
A,B

(key get transferred in unencrypted
form)

1. A -> B : ID
A
, k

A,B
(key get transferred in unencrypted
form)

Possible attacks

• An attacker with MITM
capabilities gets k

A,B

31© Mihai Chiroiu

1. A -> S : ID
A
, ID

B
I am A, give me key for B

1. S -> A : {k
A,B

} k
A,S

,{k
A,B

} k
B,S

(key encrypted with common secret
between A,S)

1. A -> B : ID
A
 ,{k

A,B
} k

B,S

(key also encrypted with common
B,S secret)

Protocol for symmetric encryption (2)

Protocol steps Possible attacks (1)

1. A -> S : ID
A
, ID

B

2. S -> A : {k
A,B

} k
A,S

,{k
A,B

} k
B,S

3. A -> T : ID
A
 ,{k

A,B
} k

B,S

4. T -> B: ID
T
 ,{k

A,B
} k

B,S

(Trudy replaces the identity A
presented to B!)

32© Mihai Chiroiu

Protocol for symmetric encryption (2)

Protocol steps

1. A -> S : ID
A
, ID

B

2. S -> A : {k
A,B

} k
A,S

,{k
A,B

} k
B,S

3. A -> B : ID
A
 ,{k

A,B
} k

B,S

Possible attacks (2)

33© Mihai Chiroiu

1. A -> T : ID
A
, ID

B

2. T -> S : ID
A
, ID

T

3. S -> T : {k
A, T

} k
A,S

,{k
A, T

} k
T,S

4. T -> A: {k
A, T

} k
A,S

,{k
A, T

} k
T,S

5. A -> T : ID
A
 ,{k

A, T
} k

 T,S

Trudy in the middle…

Protocol for symmetric encryption (3)

Protocol steps

1. A -> S : ID
A
, ID

B

2. S -> A : {k
A,B

,ID
B
} k

A,S
,{k

A,B
 , ID

A
}

k
B,S

3. A -> B : {k
A,B

, ID
A
} k

B,S

Possible attacks

Replay of old broken key

1. A -> T : ID
A
, ID

B

2. T -> A : {k’
A,B

 , ID
B
} k

A,S
,{k’

A,B
 ,

ID
A
} k

B,S

3. A -> B : ID
A
 ,{k

A,B
 , ID

A
} k

B,S

34© Mihai Chiroiu

Protocol (4) - Needham-Schroeder (1978)

Protocol steps

1. A -> S : ID
A
, ID

B
 , Nonce

A

2. S -> A : {k
A,B

, ID
B
, N

A
, {k

A,B
, ID

A
}

k
B,S

} k
A,S

3. A -> B : {k
A,B

, ID
A
} k

B,S

4. B -> A : {N
B
} k

A,B

5. A -> B : {N
B
-1} k

A,B

Possible attacks - Denning Sacco

Replay of old broken key

1. T -> B : {k’
A,B

 , ID
A
} k

B,S

2. B -> T : {N
B
} k’

A,B

3. T -> B : {N
B
-1} k’

A,B

35© Mihai Chiroiu

Protocol for symmetric encryption (5)

Protocol steps

1. B -> A : ID
B
 , N

B

2. A -> S : ID
A
, ID

B
 , N

A
 , N

B

3. S -> A : {k
A,B

, ID
B,

 N
A

} k
A,S

,

 {k
A,B

 , ID
A
 , N

B
 }k

B,S

4. A -> B : {k
A,B

 , ID
A
 , N

B
 }k

B,S

Possible attacks

• None of the above

36© Mihai Chiroiu

Notes on protocols - Abadi and Needham [2]

• If the identity of a principal is essential to the meaning of a message, it is
prudent to mention the principal’s name explicitly in the message.

• Be clear about why encryption is being done.
• When a principal signs material that has already been encrypted, it

should not be inferred that the principal knows the content of the
message.

• Be clear about what properties you are assuming about nonces.
• If timestamps are used as freshness guarantees, then the difference

between local clocks at various machines must be much less than the
allowable age of a message.

© Mihai Chiroiu 37

Digital Identity

© Mihai Chiroiu 38

Single Sign-On (SSO)

• Password managers

• Enterprise level SSO
• Same-domain authentication

• Kerberos, RADIUS with LDAP / Active Directory databases

• Federated Identity
• Cross-domain authentication

• Based on assertions containing the result of authentication
• Factors cannot be shared between domains

• RADIUS, OpenID Connect, SAML etc.

© Mihai Chiroiu 39

Kerberos

• Developed by MIT in 1983
• Was banned for export till 2000 by US

• Used for key establishment between multiple entities
• The Kerberos server is trusted by all entities

• Assumes existing pre-shared keys between entities and Kerberos server

• Can be adapted to multiple symmetric encryption algorithms
• Kerberos v5 uses AES

© Mihai Chiroiu 40

Kerberos

• The adversary can compromise the network, not the host (e.g.

secrets, keys)

• Based on fixed Needham–Schroeder protocol

• Uses tickets to create a legitimate session key

© Mihai Chiroiu 41

Kerberos (v1)

1. A -> KAS : ID
A
, ID

B
 , N

A

• KAS = Kerberos Authentication Server

2. KAS -> A : {k
A,B

, ID
B
, T

KAS
, N

A
} k

A,KAS
 , {k

A,B
 , ID

A
 , T

s
} k

B,KAS

• T
s
 = Timestamp server

3. A -> B : {k
A,B

 , ID
A
 , T

KAS
} k

B,KAS
, {ID

A
 , T

A
} k

A,B

• k
A,B

: session key between A and B

• {k
A,B

 , ID
A
 , T

KAS
} k

B,KAS
: ticket for A to used when contacting B

• T
a
 > T

KAS
: B needs to validate time window by comparing T

a
 and

T
KAS

© Mihai Chiroiu 42

Kerberos (v2)

• Usually the shared key between A and KAS is deducted from a user

input/password

• The previous version of the protocol requires credentials input every

connection to a new application server (B)

• Ticket granting separate from user authentication
• User authenticates using passwords with KAS and receives session key for

Ticket Granting Service

• Entities use session key to require tickets for multiple applications

© Mihai Chiroiu 43

SAML

© Mihai Chiroiu 44

RADIUS /
EAP

© Mihai Chiroiu 45

References

[1] “Protocols for Authentication and Key Establishment”, Colin Boyd,
Anish Mathuria, Douglas Stebila, 2020

[2] Abadi, M., Needham, R.: Prudent engineering practice for
cryptographic protocols. In: IEEE Symposium on Research in Security
and Privacy, pp. 122–136. IEEE Computer Society Press (1994)

[3] Computer Security and the Internet: Tools and Jewels, Paul C. van
Oorschot. Springer, 2021.
https://people.scs.carleton.ca/~paulv/toolsjewels.html

© Mihai Chiroiu 46

https://people.scs.carleton.ca/~paulv/toolsjewels.html

