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Authorization,
Access Control,

Operating System Security



Access control

(1) Identify
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(2) Authenticate

(3) Authorize

(4) Audit



Examples of Access Control

• Social Networks: access to personal information. 

• Web Browsers: access only to a website (same origin policy).

• Operating Systems: one user cannot arbitrarily access/kill another 

user’s files/processes.

• CPU Memory Protection: code in one region (e.g., Ring 3), cannot 

access the data in another more privileged region (e.g. Ring 0). 

• Firewalls: If a packet matches with certain conditions, it will be 

dropped.
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PEI Model [1]
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Security and system goals

Policy models

Enforcement models

Implementation models

Trusted Computing Technology

Necessarily Informal

Formal/quasi-formal

System block diagrams, Protocol flows

Pseudo-code

Actual code

What

How



Vocabulary 

• Basic abstractions:
• Subjects

• Objects

• Rights

• A subject is an entity who wishes to access a certain object, which is 

a resource (e.g., a file or a network packet). The different modes of 

access (e.g., reading, writing) are called permissions.

© Mihai Chiroiu 6



Vocabulary – Users and Principals

A Principal is an User authenticated in a context
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Real World User
Principals - Unit of Access 
Control and Authorization



Vocabulary – Users and Principals

Example: the user can emit principals with downgraded privileges
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User

Principals

Mihai

Mihai.top-secret (TS)

Mihai.Confidential (C)

Mihai.Unclassified (U)

Mihai.secret (S)



Vocabulary – Principals and subjects

A subject is a program executing on behalf of a principal
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Principal

Subjects

Mihai.TS

Chrome

Thunderbird

Winamp

PowerPoint



Vocabulary

• The relation between Users and Principals is One-To-Many
• Allows accountability of user’s actions, use least privileges required for a 

task

• E.g., service accounts / API keys (authentication w/o password)

• For simplicity, a principal and subject can be treated as identical 

concepts. 
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Vocabulary - Objects

• An object is anything on which a subject can perform 
operations (mediated by rights)

• Usually objects are passive, for example:
• File
• Directory (or Folder)
• Memory segment

• But, subjects (e.g., processes) can also be objects, with 
specific operations

• kill
• suspend
• resume

© Mihai Chiroiu 11



Access control models
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Access control enforcement

• Discretionary access controls (DAC) – the access of objects (or 
subjects) can be  propagated from one subject to another. 
Possession of an access right by a subject is sufficient to allow 
access to the object.

• Mandatory access controls (MAC) – the access of subjects to 
objects is based on a system-wide policies (based on security labels) 
that can be changed only by the administrator.

• Role-Based Access Control (RBAC) – can be configured as both MAC 
or DAC, access to objects is based on roles.
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Access control enforcement

• Attribute-Based Access Control (ABAC) – properties of an object are 

used when usage decision are made.

• Usage Control (UCON) – generalization of access control to include 

authorization, obligations, conditions (e.g., quotas), continuity and 

mutability of attributes. 
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Discretionary access controls
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DAC

• No precise definition. 

• Basically, DAC allows access rights to be propagated at subject’s 

discretion
• often has the notion of owner of an object

• used in UNIX, Windows, etc. 
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Formal rule representation

• Let S be the set of all subjects, O the set of all objects, and P the set 

of all permissions. The description of access control can be given by 

a set A ⊆ S × O × P. 

• When new permissions are added, triplets are added to A; when 

they are removed (revoked), triplets are deleted.
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Matrix Representation 

• An access control matrix is a matrix (Ms,o) whose rows are subjects 

and columns are objects. Element (Ms,o) ⊆ P is the set of 

permissions that subject S is authorized for object o.
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catalog.csv cat-anonim.txt /dev/kmem /sbin/sudo PID 1001

Root rw rwx - rwx kill

mihai rw rw - rx kill

student - r - rx -

guest - - - - -

Objects (and Subjects)

Subjects



Access Control Lists (ACL)

• An access control list is a set {Ao | o ∈ O}, one element for each 

object. The elements of the list are the pairs (s, p) of subjects s who 

have permission p to that object.
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catalog.csv cat-anonim.txt /sbin/sudo

root: rw root: rw root: rwx

mihai: rw mihai: rw mihai: rx

student: r student: r



Classic POSIX Model

● Objects: files; Permissions: R, W, X + specials (SUID/SGID/sticky)

● Subjects: users, groups, others

● Stored as bit masks (written in base 8 – octal) on inodes

20

➜ ls -l /usr/bin/ping
-rwxr-xr-- 1 root admin 92K Jan 18 08:05 /usr/bin/ping

Bit mask: 111|101|100 => octal 754

● Modern OSes support Full Access Control Lists
○ multiple subjects!



• Alternate access control implementation: each user stores a list of 
his/hers capabilities instead of objects’ storing ACLs.

• Storing capabilities means giving to each subject tokens which give them 
access to the permissions they are entitled 

Capability Lists
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catalog.csv cat-anonim.txt /dev/kmem /sbin/sudo PID 1001

Root rw rw rw rwx kill

mihai rw rw - rx kill

student - r - rx -

guest - - - - -



• Posix API descriptors:
int fd = open("/etc/passwd", O_RDWR);

Code flow: fork() -> setuidgid() -> exec()

-> new process inherits fd (the authorization “token”)

• Linux: per-process capabilities

• Windows: Security Identifier (SID) on Active Directory

Capability examples

© Mihai Chiroiu 22



ACL vs. Capabilities

• ACL require authentication of subjects 

• Capabilities do not require authentication of subjects, but do 

require unforgeability and control of propagation of capabilities. 

Usually implemented through cryptography.

• The Confused Deputy Problem [1986]
• E.g.: Cross-Site Scripting / Forgery (XSS / CSRF), setuid privilege escalation 

(e.g., sudo)

• Solution: bundle resource access together with capability
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DAC Problems

• The underlying philosophy of DAC is that subjects can determine 

who has access to their objects
• There is a difference, though, between trusting a person and trusting a 

program

• The copies of a file are not controlled

• Trojan Horse attack [1970]
• Solution: use MAC ☺
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Trojan Horse attack
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Principal B cannot read file F

File F

File G

ACL

A:r
A:w

B:r
A:w

Good Program

Trojan 
Horse

Principal A

read

write



Buggy software can become Trojan Horses

• When a subject (e.g., buggy software) is exploited, it executes the 

code / intention of the attacker, while using the privileges of the 

user who started it!

• This means that DAC-only systems cannot be trusted with classified 

information!
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Principle of Least Privilege

• Each subject should have only necessary privileges!
• Privilege elevation / dropping

• Unix: setuid() / setgid() family of system calls

• Example POSIX scenario:
• Only root can open ports <= 1024
• Web server (e.g., apache2) starts as root
• Opens log files, sockets etc. when root then drops all root privileges (user 

changes to www-data)!
• Modern alternative: Linux capabilities (CAP_NET_BIND_SERVICE)

• Better yet: DAC + Mandatory Access Control!
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Mandatory access controls
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• Assigning access rights based on regulations by a central authority

• Implemented using a “reference monitor”
• Small Trusted Computing Base (TCB) [John Rushby, 1981, OSP]

• Kernel < Hypervisor < Hardware

• TOCTTOU (Time Of Check To Time of Use) problem:
• authority checks access to an object

• unknowingly to him, attacker replaces object with another one

• privileged subject operates on attacker controlled object!

Mandatory Access Control

© Mihai Chiroiu 29



MAC implementations

• Type Enforcement (e.g.: SELinux)
• Subjects => grouped in domains (labels)

• Objects => grouped in types (another / same kind of labels)

• Domain-Domain + Domain-Type permissions

• If a MAC rule fails => DAC not checked, access denied!

30

# TE rule: allow passwd_t shadow_t : file {read, write …}
# ls -Z /etc/shadow
-r----  root   root  system_u:object_r:shadow_t  shadow
# ps -aZ
gigel:user_r:passwd_t   16532 pts/0 00:00:00 passwd



Modeling Access Control

• Multi-level security (MLS)
• Bell-LaPadula (BLP)

• Biba Model

• Chinese Wall
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Multi-level security (MLS)

• The capability of a computer system to carry information with 

different sensitivities

• Bell-LaPadula (BLP) Model [1973]

• Biba Model
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Unclassified

Confidential

Secret

Top Secret

dominance can flow



BLP Model

• Aims to capture confidentiality (read) requirements only

• Modelled as transitions through a set of states, starting from an 

initial state.
• State = Object, access matrix, current access information

• State transition rules describe how a system can go from one state 

to another

• Each object has a classification level

• Each subject s has a security clearance
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BLP Model

• A state is secure if:
• A) Simple Security Property (SS): no subject may read data at a higher level

• B) The *(Star)-Property (SP): no subject may write data at a lower level 

(due to the fear of Trojan Horse / information leaks)

• A system is secure if and only if every reachable state is secure. 
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BLP Problems

• No communication (e.g., acknowledges) from High to Low

• Not all system components can be enforced by BLP, e.g., memory 

management must have access to all levels
• Called “trusted subjects” (part of TCB)

• Can overwrite high and more important files
• Prevent overwrites unless same level!
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BLP Problems

• Covert channels cannot be blocked by star-property
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Timing / size of packets being 
sent 

Top 
Secret

Unclassified

High Trojan Horse 
Infected Subject

Low Trojan Horse 
Infected Subject



Biba Model

• Integrity is also very important

• Each subject (process) has an integrity level; Each object has an 

integrity level ; Integrity levels are totally ordered 

• NO read down; NO write up
• BLP upside down

• The integrity of an object is the lowest level of all the objects that 

contributed to its creation
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Biba Model

• Used by Windows

• E.g., A Internet Explorer Browser can download a file (created with a 

low integrity level) and read everything in the system. It cannot 

write to a higher level object.
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Chinese Wall (Brewer and Nash model) 
[1989]
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O1

O3
O8O4 O9O6

O7O2 O5

Company 
Datasets (CD1)

Company 
Datasets (CD2)

Company 
Datasets (CD3)

Company 
Datasets (CD4)

Conflict of Interest Classes (CIC) Conflict of Interest Classes



Chinese Wall

• S can read O only if 
• O is in the same company dataset as some object previously read by S (i.e., 

O is within the wall) or

• O belongs to a conflict of interest class within which S has not read any 

object (i.e., O is in the open)

• S can write O only if
• S can read O by the simple security rule and

• no object can be read which is in a different company dataset to the one for 

which write access is request
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Role-Based Access Control
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Role-Based Access Control

• In the real world, security policies are dynamic. 
• E.g., a user promotes at his job, therefore his rights must change 

(deleted, added, etc.)
• RBACs are more flexible: can simulate MAC & DAC!
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Discretionary Access Control 
(DAC), 1970

Mandatory Access Control 
(MAC), 1970

Role Based Access Control 
(RBAC), 1995



Roles as policy

• A role brings together
• a collection of users

• a collection of permissions

• These collections can be modified independently

• A user can be a member of many roles

• Each role can have many users as Each role can have many users as 

members

• Roles may be hierarchical
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Role-Based Access Control
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Users Roles

Permissions
(e.g., read, 

write, 
append, 
execute)

Sessions 
(Principals)…



RBAC Shortcomings

• Role granularity may lead to role explosion

• Role design and engineering is difficult and expensive

• Assignment of users/permissions to roles is cumbersome 

• Adjustment based on local/global situational factors is difficult
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Authorization Implementations
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OAuth

• Open Authorization, not Authentication!
• Users delegate API access to third party services without giving 

password!
• e.g. give Google Calendar API access to task management app

• JSON Web Token (JWT) – may contain subject IDs + capability lists
• Authorization flow: client / server-side
• OpenID Connect: OAuth popular choice for SSO authentication!

• Obtain token with read-only access to Google API endpoint returning your 
email address => third-party service identifies you! 
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Writing Authorization Code

● Tons of conditionals?

if is_admin or (can_read(obj.parent) and can_write(obj)) ...

● Solution: use language features & authorization frameworks
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@authorize.create(Article)
def create_article(name):
    # implementation here

@authorize.read
def read_article(article):
    # implementation here



Best Practices

• Design during early requirements phase
• Model as subjects, objects and permissions

• Use an appropriate policy model (DAC, RBAC, ABAC etc.)
• Use middleware / framework if available

• If not, create your own! DO NOT copy-paste duplicate code!

• Implement resource limits / quotas
• Sanitize/normalize user input !!!

requested_file.startswith("/home/user/share/")

requested_file = "/home/user/share/../../../etc/shadow"
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The Human Factor
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Security and humans

• Security policies must be in place

…and must be followed.

• Regardless of how strong (and expensive) your secure deployment is:
•  Humans can still write their passwords on post-it notes
•  Humans can still give their passwords to anyone they trust
•  Humans can still open tempting attachments…
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Social engineering

• Non-technical intrusion

• Involves tricking people to break security policies
• Manipulation

• Relies on false confidence
• Everyone trusts someone
• Authority is usually trusted by default
• Non-technical people don’t want to admit their lack of expertise

• They ask fewer questions.

• Most people are eager to help.
• When the attacker poses as a fellow employee in need.
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Social engineering

• People are not aware of the value of the 
information they possess.

• Vanity, authority, eavesdropping – they all 
work.

• When successful, social engineering 
bypasses ANY kind of security.
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Types of phishing

• By used technology
• Smishing (SMS)
• Vishing (Voice)
• Email phishing
• Angler phishing (via social networks)

• By target
• Watering Hole Phishing (people visiting a certain website)
• Spear phishing (a specific organization)
• Whaling (C-level from a specific organization)
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Resources

[1] http://www.profsandhu.com/confrnc/asiaccs/asiaccs06-pei.pdf

[2] http://www.cs.cornell.edu/courses/cs5430/2011sp/NL.accessControl.html 

[3] http://cnitarot.github.io/courses/cs526_Spring_2015/s2014_526_ac.pdf

[4] https://people.cs.rutgers.edu/~pxk/419/notes/access.html 
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