
Introduction to Computer
Security Lecture Slides

© 2024 by Mihai Chiroiu & Florin Stancu
is licensed under Attribution-NonCommercial-ShareAlike 4.0

International

https://ocw.cs.pub.ro/courses/isc
https://ocw.cs.pub.ro/courses/isc
https://www.linkedin.com/in/mihaichiroiu/
https://www.linkedin.com/in/niflostancu/
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

Authorization,
Access Control,

Operating System Security

Access control

(1) Identify

3

(2) Authenticate

(3) Authorize

(4) Audit

Examples of Access Control

• Social Networks: access to personal information.

• Web Browsers: access only to a website (same origin policy).

• Operating Systems: one user cannot arbitrarily access/kill another

user’s files/processes.

• CPU Memory Protection: code in one region (e.g., Ring 3), cannot

access the data in another more privileged region (e.g. Ring 0).

• Firewalls: If a packet matches with certain conditions, it will be

dropped.

© Mihai Chiroiu 4

PEI Model [1]

© Mihai Chiroiu 5

Security and system goals

Policy models

Enforcement models

Implementation models

Trusted Computing Technology

Necessarily Informal

Formal/quasi-formal

System block diagrams, Protocol flows

Pseudo-code

Actual code

What

How

Vocabulary

• Basic abstractions:
• Subjects

• Objects

• Rights

• A subject is an entity who wishes to access a certain object, which is

a resource (e.g., a file or a network packet). The different modes of

access (e.g., reading, writing) are called permissions.

© Mihai Chiroiu 6

Vocabulary – Users and Principals

A Principal is an User authenticated in a context

© Mihai Chiroiu 7

Real World User
Principals - Unit of Access
Control and Authorization

Vocabulary – Users and Principals

Example: the user can emit principals with downgraded privileges

© Mihai Chiroiu 8

User

Principals

Mihai

Mihai.top-secret (TS)

Mihai.Confidential (C)

Mihai.Unclassified (U)

Mihai.secret (S)

Vocabulary – Principals and subjects

A subject is a program executing on behalf of a principal

© Mihai Chiroiu 9

Principal

Subjects

Mihai.TS

Chrome

Thunderbird

Winamp

PowerPoint

Vocabulary

• The relation between Users and Principals is One-To-Many
• Allows accountability of user’s actions, use least privileges required for a

task

• E.g., service accounts / API keys (authentication w/o password)

• For simplicity, a principal and subject can be treated as identical

concepts.

© Mihai Chiroiu 10

Vocabulary - Objects

• An object is anything on which a subject can perform
operations (mediated by rights)

• Usually objects are passive, for example:
• File
• Directory (or Folder)
• Memory segment

• But, subjects (e.g., processes) can also be objects, with
specific operations

• kill
• suspend
• resume

© Mihai Chiroiu 11

Access control models

© Mihai Chiroiu 12

Access control enforcement

• Discretionary access controls (DAC) – the access of objects (or
subjects) can be propagated from one subject to another.
Possession of an access right by a subject is sufficient to allow
access to the object.

• Mandatory access controls (MAC) – the access of subjects to
objects is based on a system-wide policies (based on security labels)
that can be changed only by the administrator.

• Role-Based Access Control (RBAC) – can be configured as both MAC
or DAC, access to objects is based on roles.

© Mihai Chiroiu 13

Access control enforcement

• Attribute-Based Access Control (ABAC) – properties of an object are

used when usage decision are made.

• Usage Control (UCON) – generalization of access control to include

authorization, obligations, conditions (e.g., quotas), continuity and

mutability of attributes.

© Mihai Chiroiu 14

Discretionary access controls

© Mihai Chiroiu 15

DAC

• No precise definition.

• Basically, DAC allows access rights to be propagated at subject’s

discretion
• often has the notion of owner of an object

• used in UNIX, Windows, etc.

© Mihai Chiroiu 16

Formal rule representation

• Let S be the set of all subjects, O the set of all objects, and P the set

of all permissions. The description of access control can be given by

a set A ⊆ S × O × P.

• When new permissions are added, triplets are added to A; when

they are removed (revoked), triplets are deleted.

© Mihai Chiroiu 17

Matrix Representation

• An access control matrix is a matrix (Ms,o) whose rows are subjects

and columns are objects. Element (Ms,o) ⊆ P is the set of

permissions that subject S is authorized for object o.

© Mihai Chiroiu 18

catalog.csv cat-anonim.txt /dev/kmem /sbin/sudo PID 1001

Root rw rwx - rwx kill

mihai rw rw - rx kill

student - r - rx -

guest - - - - -

Objects (and Subjects)

Subjects

Access Control Lists (ACL)

• An access control list is a set {Ao | o ∈ O}, one element for each

object. The elements of the list are the pairs (s, p) of subjects s who

have permission p to that object.

© Mihai Chiroiu 19

catalog.csv cat-anonim.txt /sbin/sudo

root: rw root: rw root: rwx

mihai: rw mihai: rw mihai: rx

student: r student: r

Classic POSIX Model

● Objects: files; Permissions: R, W, X + specials (SUID/SGID/sticky)

● Subjects: users, groups, others

● Stored as bit masks (written in base 8 – octal) on inodes

20

➜ ls -l /usr/bin/ping
-rwxr-xr-- 1 root admin 92K Jan 18 08:05 /usr/bin/ping

Bit mask: 111|101|100 => octal 754

● Modern OSes support Full Access Control Lists
○ multiple subjects!

• Alternate access control implementation: each user stores a list of
his/hers capabilities instead of objects’ storing ACLs.

• Storing capabilities means giving to each subject tokens which give them
access to the permissions they are entitled

Capability Lists

© Mihai Chiroiu 21

catalog.csv cat-anonim.txt /dev/kmem /sbin/sudo PID 1001

Root rw rw rw rwx kill

mihai rw rw - rx kill

student - r - rx -

guest - - - - -

• Posix API descriptors:
int fd = open("/etc/passwd", O_RDWR);

Code flow: fork() -> setuidgid() -> exec()

-> new process inherits fd (the authorization “token”)

• Linux: per-process capabilities

• Windows: Security Identifier (SID) on Active Directory

Capability examples

© Mihai Chiroiu 22

ACL vs. Capabilities

• ACL require authentication of subjects

• Capabilities do not require authentication of subjects, but do

require unforgeability and control of propagation of capabilities.

Usually implemented through cryptography.

• The Confused Deputy Problem [1986]
• E.g.: Cross-Site Scripting / Forgery (XSS / CSRF), setuid privilege escalation

(e.g., sudo)

• Solution: bundle resource access together with capability

© Mihai Chiroiu 23

DAC Problems

• The underlying philosophy of DAC is that subjects can determine

who has access to their objects
• There is a difference, though, between trusting a person and trusting a

program

• The copies of a file are not controlled

• Trojan Horse attack [1970]
• Solution: use MAC ☺

© Mihai Chiroiu 24

Trojan Horse attack

© Mihai Chiroiu 25

Principal B cannot read file F

File F

File G

ACL

A:r
A:w

B:r
A:w

Good Program

Trojan
Horse

Principal A

read

write

Buggy software can become Trojan Horses

• When a subject (e.g., buggy software) is exploited, it executes the

code / intention of the attacker, while using the privileges of the

user who started it!

• This means that DAC-only systems cannot be trusted with classified

information!

© Mihai Chiroiu 26

Principle of Least Privilege

• Each subject should have only necessary privileges!
• Privilege elevation / dropping

• Unix: setuid() / setgid() family of system calls

• Example POSIX scenario:
• Only root can open ports <= 1024
• Web server (e.g., apache2) starts as root
• Opens log files, sockets etc. when root then drops all root privileges (user

changes to www-data)!
• Modern alternative: Linux capabilities (CAP_NET_BIND_SERVICE)

• Better yet: DAC + Mandatory Access Control!

© Mihai Chiroiu 27

Mandatory access controls

© Mihai Chiroiu 28

• Assigning access rights based on regulations by a central authority

• Implemented using a “reference monitor”
• Small Trusted Computing Base (TCB) [John Rushby, 1981, OSP]

• Kernel < Hypervisor < Hardware

• TOCTTOU (Time Of Check To Time of Use) problem:
• authority checks access to an object

• unknowingly to him, attacker replaces object with another one

• privileged subject operates on attacker controlled object!

Mandatory Access Control

© Mihai Chiroiu 29

MAC implementations

• Type Enforcement (e.g.: SELinux)
• Subjects => grouped in domains (labels)

• Objects => grouped in types (another / same kind of labels)

• Domain-Domain + Domain-Type permissions

• If a MAC rule fails => DAC not checked, access denied!

30

TE rule: allow passwd_t shadow_t : file {read, write …}
ls -Z /etc/shadow
-r---- root root system_u:object_r:shadow_t shadow
ps -aZ
gigel:user_r:passwd_t 16532 pts/0 00:00:00 passwd

Modeling Access Control

• Multi-level security (MLS)
• Bell-LaPadula (BLP)

• Biba Model

• Chinese Wall

© Mihai Chiroiu 31

Multi-level security (MLS)

• The capability of a computer system to carry information with

different sensitivities

• Bell-LaPadula (BLP) Model [1973]

• Biba Model

© Mihai Chiroiu 32

Unclassified

Confidential

Secret

Top Secret

dominance can flow

BLP Model

• Aims to capture confidentiality (read) requirements only

• Modelled as transitions through a set of states, starting from an

initial state.
• State = Object, access matrix, current access information

• State transition rules describe how a system can go from one state

to another

• Each object has a classification level

• Each subject s has a security clearance

© Mihai Chiroiu 33

BLP Model

• A state is secure if:
• A) Simple Security Property (SS): no subject may read data at a higher level

• B) The *(Star)-Property (SP): no subject may write data at a lower level

(due to the fear of Trojan Horse / information leaks)

• A system is secure if and only if every reachable state is secure.

© Mihai Chiroiu 34

BLP Problems

• No communication (e.g., acknowledges) from High to Low

• Not all system components can be enforced by BLP, e.g., memory

management must have access to all levels
• Called “trusted subjects” (part of TCB)

• Can overwrite high and more important files
• Prevent overwrites unless same level!

© Mihai Chiroiu 35

BLP Problems

• Covert channels cannot be blocked by star-property

© Mihai Chiroiu 36

Timing / size of packets being
sent

Top
Secret

Unclassified

High Trojan Horse
Infected Subject

Low Trojan Horse
Infected Subject

Biba Model

• Integrity is also very important

• Each subject (process) has an integrity level; Each object has an

integrity level ; Integrity levels are totally ordered

• NO read down; NO write up
• BLP upside down

• The integrity of an object is the lowest level of all the objects that

contributed to its creation

© Mihai Chiroiu 37

Biba Model

• Used by Windows

• E.g., A Internet Explorer Browser can download a file (created with a

low integrity level) and read everything in the system. It cannot

write to a higher level object.

© Mihai Chiroiu 38

Chinese Wall (Brewer and Nash model)
[1989]

© Mihai Chiroiu 39

O1

O3
O8O4 O9O6

O7O2 O5

Company
Datasets (CD1)

Company
Datasets (CD2)

Company
Datasets (CD3)

Company
Datasets (CD4)

Conflict of Interest Classes (CIC) Conflict of Interest Classes

Chinese Wall

• S can read O only if
• O is in the same company dataset as some object previously read by S (i.e.,

O is within the wall) or

• O belongs to a conflict of interest class within which S has not read any

object (i.e., O is in the open)

• S can write O only if
• S can read O by the simple security rule and

• no object can be read which is in a different company dataset to the one for

which write access is request

© Mihai Chiroiu 40

Role-Based Access Control

© Mihai Chiroiu 41

Role-Based Access Control

• In the real world, security policies are dynamic.
• E.g., a user promotes at his job, therefore his rights must change

(deleted, added, etc.)
• RBACs are more flexible: can simulate MAC & DAC!

© Mihai Chiroiu 42

Discretionary Access Control
(DAC), 1970

Mandatory Access Control
(MAC), 1970

Role Based Access Control
(RBAC), 1995

Roles as policy

• A role brings together
• a collection of users

• a collection of permissions

• These collections can be modified independently

• A user can be a member of many roles

• Each role can have many users as Each role can have many users as

members

• Roles may be hierarchical

© Mihai Chiroiu 43

Role-Based Access Control

© Mihai Chiroiu 44

Users Roles

Permissions
(e.g., read,

write,
append,
execute)

Sessions
(Principals)…

RBAC Shortcomings

• Role granularity may lead to role explosion

• Role design and engineering is difficult and expensive

• Assignment of users/permissions to roles is cumbersome

• Adjustment based on local/global situational factors is difficult

© Mihai Chiroiu 45

Authorization Implementations

© Mihai Chiroiu 46

OAuth

• Open Authorization, not Authentication!
• Users delegate API access to third party services without giving

password!
• e.g. give Google Calendar API access to task management app

• JSON Web Token (JWT) – may contain subject IDs + capability lists
• Authorization flow: client / server-side
• OpenID Connect: OAuth popular choice for SSO authentication!

• Obtain token with read-only access to Google API endpoint returning your
email address => third-party service identifies you!

© Mihai Chiroiu 47

Writing Authorization Code

● Tons of conditionals?

if is_admin or (can_read(obj.parent) and can_write(obj)) ...

● Solution: use language features & authorization frameworks

48

@authorize.create(Article)
def create_article(name):
 # implementation here

@authorize.read
def read_article(article):
 # implementation here

Best Practices

• Design during early requirements phase
• Model as subjects, objects and permissions

• Use an appropriate policy model (DAC, RBAC, ABAC etc.)
• Use middleware / framework if available

• If not, create your own! DO NOT copy-paste duplicate code!

• Implement resource limits / quotas
• Sanitize/normalize user input !!!

requested_file.startswith("/home/user/share/")

requested_file = "/home/user/share/../../../etc/shadow"

49

The Human Factor

© Mihai Chiroiu 50

Security and humans

• Security policies must be in place

…and must be followed.

• Regardless of how strong (and expensive) your secure deployment is:
• Humans can still write their passwords on post-it notes
• Humans can still give their passwords to anyone they trust
• Humans can still open tempting attachments…

© Mihai Chiroiu 51

Social engineering

• Non-technical intrusion

• Involves tricking people to break security policies
• Manipulation

• Relies on false confidence
• Everyone trusts someone
• Authority is usually trusted by default
• Non-technical people don’t want to admit their lack of expertise

• They ask fewer questions.

• Most people are eager to help.
• When the attacker poses as a fellow employee in need.

© Mihai Chiroiu 52

Social engineering

• People are not aware of the value of the
information they possess.

• Vanity, authority, eavesdropping – they all
work.

• When successful, social engineering
bypasses ANY kind of security.

© Mihai Chiroiu 53

Types of phishing

• By used technology
• Smishing (SMS)
• Vishing (Voice)
• Email phishing
• Angler phishing (via social networks)

• By target
• Watering Hole Phishing (people visiting a certain website)
• Spear phishing (a specific organization)
• Whaling (C-level from a specific organization)

54

Resources

[1] http://www.profsandhu.com/confrnc/asiaccs/asiaccs06-pei.pdf

[2] http://www.cs.cornell.edu/courses/cs5430/2011sp/NL.accessControl.html

[3] http://cnitarot.github.io/courses/cs526_Spring_2015/s2014_526_ac.pdf

[4] https://people.cs.rutgers.edu/~pxk/419/notes/access.html

© Mihai Chiroiu 55

http://www.profsandhu.com/confrnc/asiaccs/asiaccs06-pei.pdf
http://www.cs.cornell.edu/courses/cs5430/2011sp/NL.accessControl.html
http://cnitarot.github.io/courses/cs526_Spring_2015/s2014_526_ac.pdf
https://people.cs.rutgers.edu/~pxk/419/notes/access.html

