
Introduction to Computer
Security Lecture Slides

© 2024 by Mihai Chiroiu & Florin Stancu
is licensed under Attribution-NonCommercial-ShareAlike 4.0

International

https://ocw.cs.pub.ro/courses/isc
https://ocw.cs.pub.ro/courses/isc
https://www.linkedin.com/in/mihaichiroiu/
https://www.linkedin.com/in/niflostancu/
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

Public Key Infrastructure

Contents

3

● Public-key distribution problem

● Certificates

● Validation Types

● Case studies

○ TLS, SSH, PGP/GPG

○ OTR instant messaging services

○ Email security, DNS-based PKI etc.

Problem

• Digital signatures (also see: public key encryption):

signature = Sign(message, priv
A

)

valid = Verify(signature, pub
A
)

• Public key must be given to all interested parties…
• How? MitM may alter public keys => need integrity guarantees!

• Transfer it over a secure channel?

• Use one (or many) common trusted party?

• Public announcement / YOLO TOFU

© Mihai Chiroiu 4

Solutions

● Public Key Infrastructure
○ a central authority that manages trust

○ trust is built-in (installed together with the OS)

○ requires a mechanism for verifying trust by the central authority

● Web of Trust (PGP)
○ relies on peer-to-peer (decentralized) trust transfer

○ requires a mechanism for “manual” key transfer

○ based on the transitive relationship of trust

5

Public Key Infrastructure

• Idea: store public keys in public trusted repositories
• Operated by trusted authorities!

• Must do: PK owner verification, costs / inconvenience?

• Trusted channel with authority, database integrity?
• Digital signature of each “public key entry” with authority’s key!

• Multi-level hierarchies?
• Don’t put all eggs in the same basket!

• Intermediate authorities signed by higher-level authorities

• Turtles all way down => trust anchor

© Mihai Chiroiu 6

Certificates

• Proof you have/did something of relevance 🤔
• Attributes:

• Your identity
• What does it prove
• The issuing authority
• Entitlements
• Expiration date
• ID / Registration number
• custom metadata etc.

• Standard for certificates: X.509

© Mihai Chiroiu 7

X.500 standards

• X.500 – ITU specifications for Directory Services (e.g., LDAP)
• Identifying an entity:

• DN (Distinguished Name)

• DN fields:
• C: Country
• O: Organisation
• OU: Organisational Unit
• DC: Domain Component
• etc!

© Mihai Chiroiu 8

dn: cn=John Doe,dc=example,dc=com
cn: John Doe
givenName: John
sn: Doe
telephoneNumber: +1 123 456 789
mail: john@example.com

• Standard for information fields:
• Version (v3) / serial number

• Validity period

• Subject / Alt. Names

• Issuer

• Key usages

• Signature Algorithm

• Key Fingerprints + Digital Signatures

• Extensions…

Certificate Structure: X.509

© Mihai Chiroiu 9

Certificate: encodings vs standards

• X.509 standard, but many possible encodings!
• ASN.1 – abstract data type notation (X.690)
• Basic/Canonical/Distinguished Encoding Rules
• DER – “there is one and only one way to encode a

message”
• File formats (most ASN.1-based):

• PEM (GPG, SSH), p10/p8/p7 (PKCS #) etc.
• Other certificate standards:

• SPKI
• RFC 2440 (OpenPGP Message Format)
• Card Verifiable Certificates - embedded devices

© Mihai Chiroiu 10

Obtaining Certificates

• Applicant generates PK + certificate signing request (CSR)
• Public key + identification (CN, OU etc.), purpose & other fields
• PKCS #10 standard 🙃

• Submits CSR to Certification Authority
• E.g., governmental office / mail / web / automated protocols
• Must be done via trusted channel!

• CA verifies the identity, signs & emits certificate
• Gives digital file back to the applicant (via untrusted channels)

• Start using the certificate!
• e.g., configure TLS server

© Mihai Chiroiu 11

Certificate Authorities

© Mihai Chiroiu

• Commercial / Non-Profit organisations
implementing rigorous validation standards

• Must secure their data (signing private keys)
• Must maintain public trust
• Must NOT sign off fraudulent identities!

• Hierarchical approach:
• Leaf CA => Intermediate CAs (split roles) =>

trusted by Root CAs
• Trust the gatekeepers?

• Mutual assurance: popular OS & browser
vendors! + Certificate Transparency

12

Self Certificate Authorities

© Mihai Chiroiu

• Create your own CA (and delete all others): government or
• Step 1: Create a private key for the CA
• Step 2: Create Certificate of the CA
• Step 3: Add the CA certificate to the trusted root certificates

• sudo cp CA.crt /usr/local/share/ca-certificates

• Step 4: Create a certificate for the webserver
• Step 5: Sign the certificate
• Step 6: Deploy the certificate
• Step 6: Done!

13

Certificate Revocation

• Server is compromised, private key stolen
• Certificate valid until expiration date?

• CAs have another role: revocation
• CAs can also be revoked 😈

• Certificate Revocation Lists (CRLs)

• Online Certificate Status Protocol (OCSP)

© Mihai Chiroiu 14

Certificate Revocation Lists (CRLs)

• CRL = An URL where revoked certificates are stored
• Can be accessed via HTTPS, LDAP, FTP

• CRLs must be also signed by CA
• Someone (browsers) need to verify the list

• What happens if the list is not available? (DoS on the browser)

• Reasons to revoke, hold, or unlist a certificate (RFC 5280)
• unspecified (0)
• keyCompromise (1)
• cACompromise (2)
• privilegeWithdrawn (9)

© Mihai Chiroiu 15

Online Certificate Status Protocol (OCSP)

● Protocol used to replace the (simple, but heavy) CRLs
● Requests are made per certificate, not the full list

CertID ::= SEQUENCE {
hashAlgorithm AlgorithmIdentifier,
issuerNameHash OCTET STRING,
issuerKeyHash OCTET STRING,
serialNumber CertificateSerialNumber

}

● Client - Server protocol
○ Server is specified in the certificate to be checked

● OCSP protocol uses ASN.1 format over HTTPS
● OCSP stapling:

○ Caching mechanism for the server to send the certificate status directly with the certificate

16

Certificate Usage & Validation

• Server vs Client/User (e.g., VPN authentication)

• Key Usage / constraints:
• digital signatures, non-repudiation, certificate

signature (for CAs), CRL signature, encryption etc.

• Validation level:
• Domain Validation

• Organisation Level

• Extended Validation

© Mihai Chiroiu 17

Certificate Authority Types

• Government CAs (e.g, EU Digital Identity)

• Commercial CAs
• GlobalSign, IdenTrust, Comodo, DigiCert, Verisign etc.

• OS/Browser Root CAs lists: > 100 trusted authorities!

• Open-Source CAs:
• Let’s Encrypt: >50% market share!

• Only Domain Validation :(fully automated!

• New players? Cross-Signing!
• Let’s Encrypt was signed by IdenTrust for backwards compatibility!

© Mihai Chiroiu 18

• Automatic Certificate Management Environment by ISRG

• Automate CSR generation & validation:
• CA challenges client with random nonce

• Cert. client installs nonce on either server (HTTP) or DNS

• CA queries server/DNS to check for that nonce

• Tools / libraries:
• certbot, https://letsencrypt.org/docs/client-options/

Lets Encrypt: ACME Protocol

© Mihai Chiroiu 19

https://letsencrypt.org/docs/client-options/

Compromised CAs

© Mihai Chiroiu

• Supply Chain Attack: attack CAs / steal priv keys & forge certificates

• or: Untrustworthy CAs in browser databases (e.g., state controlled)

• Incidents:
• Thawte (2008) – validation: register sslcertificates@live.com and obtain a

rogue SSL certificate from Thawte for Microsoft's live.com!

• DigiNotar (2011) – hacked, MitM for Iranian users, bankrupt

• TurkTrust (2011) accidentally issues two intermediate CA certificates to

subscribers

• MCS Holdings (2015, China) issued certificates for Google domains 🫠

20

Certificate Transparency

• Who watches the watchers?

• CA compromised… how to detect foul play?
• Publish all issued certificates on a append-only blockchain public log!

• How?
• SCR -> PreCertificate -> Send to logs -> Signed Certificate Timestamp

• SCT – promise the certificate will be appended within time window -> send

back to CA -> finally obtain valid certificate (with SCT embedded within)!

• Browsers require proof of SCT: Chrome / Safari

© Mihai Chiroiu 21

Alt. public key validation approaches

© Mihai Chiroiu

• Problem: domain validation not applicable
• Email (on same domain, e.g. gmail.com)

• Instant Messaging (user chat confidentiality)

• Self-signed certificates

• Out of band / manual fingerprint validation

• Trust on First Use (TOFU)

• Decentralized / Web of Trust!

22

TOFU

• Trust/Check on First Use / Leap of Faith

• SSH: do you accept this key?
• Key remains cached (~/.ssh/known_hosts)

• Compare fingerprints

© Mihai Chiroiu 23

Off-The-Record Messaging

• Chat applications -> untrusted server
• E.g.: Zucc / NSA / Russian gov.

• TOFU + fingerprint checking
• QR codes FTW!

• who does this?

• Example Applications:
• XMPP (Jabber)

• Signal / WhatsApp etc.

© Mihai Chiroiu 24

GPG/PGP – Web of Trust model

• Decentralized, ad-hoc management of keys

• Does not use X.509 => lightweight certificates

• Friends endorse a person
• Key signing parties / conferences etc.

• Initial anchors? Trusted key servers ;)

• Trust scoring
• Must be signed by fully-trusted or at least 3

marginally trusted keys

• Trust doesn’t propagate when path length > 5

© Mihai Chiroiu 25

Secure Email

• Client - Mail Server: STARTTLS / IMAPS / SMTPS

• P2P / End to end encryption?
• PGP/GPG, Secure/Multipurpose Internet Mail Extensions (S/MIME)

• Public key usually sent as attachment (TOFU?)

• Problems: key provisioning, webmail…

• Outlook, Gmail, and Apple Mail support S/MIME

• Thunderbird has extensions for S/MIME & GPG

• Browser-based mail: extensions (WebPG)

• Provider-based encryption: ProtonMail

© Mihai Chiroiu 26

• Prevent mail spoofing & spam

• DKIM & SPF: both use DNS records

• DomainKeys Identified Mail:
• Public-key signature of emails originating from

server

• Sender Policy Framework
• IP addresses allowed to send using SMTP server

• E.g.: allow marketing services (e.g., sendgrid /

mailgun) to send mails using company’s domains

Email Server Authentication

© Mihai Chiroiu 27

• DNS cache easily poisoned!
• Domain Name System Security Extensions:

• Domain has priv/pub key (DNSKEY record)
and signs all records

• Parent zone authenticates your pubkey (and
so on, recursively)

• Root DNS zones’ keys are trusted by resolvers
(similar to Root CAs in browsers)

• Actually, the recursive resolve process is a
bit more complicated than this (:

DNSSEC

© Mihai Chiroiu 28

References

[1] https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch8-rev1.pdf

[2] https://letsencrypt.org/how-it-works/

[3]
https://www.sectigo.com/resource-library/understanding-the-different-types-of-certif
icate-authorities

[4] https://scotthelme.co.uk/cross-signing-alternate-trust-paths-how-they-work/

[5] https://signal.org/blog/safety-number-updates/

[6] https://certificate.transparency.dev/howctworks/

© Mihai Chiroiu 29

https://people.scs.carleton.ca/~paulv/toolsjewels/TJrev1/ch8-rev1.pdf
https://letsencrypt.org/how-it-works/
https://www.sectigo.com/resource-library/understanding-the-different-types-of-certificate-authorities
https://www.sectigo.com/resource-library/understanding-the-different-types-of-certificate-authorities
https://scotthelme.co.uk/cross-signing-alternate-trust-paths-how-they-work/
https://signal.org/blog/safety-number-updates/
https://certificate.transparency.dev/howctworks/

