
Introduction to Computer
Security Lecture Slides

© 2024 by Mihai Chiroiu & Florin Stancu
is licensed under Attribution-NonCommercial-ShareAlike 4.0

International

https://ocw.cs.pub.ro/courses/isc
https://ocw.cs.pub.ro/courses/isc
https://www.linkedin.com/in/mihaichiroiu/
https://www.linkedin.com/in/niflostancu/
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

Web Security

Contents

● HTTP Security
○ Cookies, Sessions
○ HTTPS

● Server-side Security
○ Injection
○ Session Hijacking

● Client-side / Browser Security

© Mihai Chiroiu

HTTP Protocol [1]

● Stateless, text-based request-response protocol

© Mihai Chiroiu

Client -> Server:

GET /index.html HTTP/1.0
Header1: value1
Header2: value2

<optional body>

Server -> Client:
HTTP/1.0 200 OK
Header1: value1
Header2: value2

<html><head>...</head>
<body>...</body></html>

HTTP Methods

● GET: fetch a resource, may have query strings:
http://domain.com/browse.php?list=users&name=john
generates
GET /browse.php?list=users&name=john HTTP/1.0

● PUT / POST: create or edit a resource (only POST is widely used)
● DELETE: delete resources (not used in practice)
● HEAD: like GET, but server responds with the headers only
● OPTIONS: determine options for a resource
● GET, HEAD and OPTIONS should be idempotent

© Mihai Chiroiu

HTTP Methods & HTML Forms

● Links typically use a GET request for opening pages
● HTML forms can generate GET and POST requests:

<form action="/login.php?user_type=regular" method="post">
 User: <input type="text" name="username">
 Password: <input type="password" name="pass">
</form>

=>
POST /login.php?user_type=regular HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 30 <-- the length of the body

username=<username>&pass=<user’s password>

© Mihai Chiroiu

Cookies

● Small piece of data that the browser stores and sends back to the
server on future requests

● Can be used to remember user preferences, server sessions etc.

© Mihai Chiroiu

Response header example:

HTTP/1.0 200 OK
Set-Cookie: c1=val1
Set-Cookie: c2=val2

Request example:

GET / HTTP/1.1
Cookie: cook1=val1;cook2=val2

Cookie Security

© Mihai Chiroiu

● Cookies are insecure:
○ The user can freely read & modify them
○ They can be intercepted unless HTTPS is used for transport

● Must add confidentiality and integrity guarantees:
○ Using cryptography: encryption & HMAC [2]
○ Server-side sessions

● Privacy implications:
○ Cookies can be used to track users (e.g. by analytics & ad servers)

Server Sessions

© Mihai Chiroiu

● Also known as server-side cookies
● Server generates a random, unique session ID:

4125a859778b1bf9b9b778a236f01e01
● Server uses database to store secrets associated with a session ID
● Persisted as cookie / passed using GET / POST parameters

Cookie: PHPSESSID=4125a85...
or
show.php?phpsessid=4125a85...

HTTPS [3]

© Mihai Chiroiu

● Based on Secure Sockets Layer / Transport Layer Security

● Creates a private channel between the client and the server

● The server authenticates itself using certificates and PKI

● Diffie-Hellman for forward secrecy

● Cipher negotiation: RC4, DES, AES CBC, AES GCM etc.

● Target of numerous attacks

TLS / HTTPS Attacks [4]

© Mihai Chiroiu

● Compression attacks (CRIME, BREACH - 2013)
○ Compression Length Oracle

● Crypto weaknesses (RC4 - broken, 3DES - Sweet32, RSA - ROBOT)
○ ROBOT: Return Of Bleichenbacher's Oracle Threat (2018)
○ Lucky13: Timing padding oracle in CBC-mode

● Man-in-the-middle (Malicious Certificates, SSL stripping)
● Downgrade attacks (FREAK, Logjam, POODLE - 2014)
● Implementation bugs, e.g.:

○ Heartbleed (CVE-2014-0160)
○ Cloudflare parser bug (2017)

TLS Testing Services

© Mihai Chiroiu

Servers:

https://www.immuniweb.com/ssl/

For both clients / servers:

https://www.ssllabs.com/ssltest/

https://www.immuniweb.com/ssl/
https://www.ssllabs.com/ssltest/

Server-side Processing

© Mihai Chiroiu

•Server generates dynamic content

•Scripting interfaces: CGI (legacy) / FastCGI / integrated modules [5]

Sample Directory Layout

© Mihai Chiroiu

/var/www
 |-- index.html
 |-- login.php
 |-- css/style.css
 |-- images/
 |-- logo.png
 |-- map.png

Example requests:
> GET /index.html HTTP/1.0
> GET /images/logo.png HTTP/1.0
> POST /login.php HTTP/1.0

Server-side Processing

© Mihai Chiroiu

Example (PHP)

<?php
$name = $_GET["name"];
$curDate = date("l");
?>
<p>Hello, <i><?=$name?></i>.
The date is
<?=$curDate?>
<?php
echo $message;
?>

Example (Python / Flask)
@app.route("/")
def index():
 cur_date =
datetime.now().strftime("%d.%m.%Y")
 return f"Hello,
{request.args.get('name')}

Date is {cur_date}!"

SQL Intro

© Mihai Chiroiu

Querying:

$query = "SELECT * FROM employees WHERE name LIKE 'florin%'";

$result = mysql_query($conn, $query);

Modification queries:

INSERT INTO employees (name, emp_date, status)

 VALUES ('Florin S.', '2023-10-01 08:00', 'active');

UPDATE employees SET status='terminated' WHERE id=2;

SQL Injection (1)

© Mihai Chiroiu

Code:

$query = "SELECT * FROM users WHERE user='" .
$_POST["user"] . "' AND password='" .
hash($_POST["password"]) . "'";

$result = mysql_query($conn, $query);

What if user input is: admin’ -- comment here
=> SELECT * FROM users WHERE

user='admin' -- comment here' AND password=''

 ^<- injected input ->^

SQL Injection (2)

© Mihai Chiroiu

This doesn’t work very often:
SELECT * FROM users WHERE
 user=''; DROP DATABASE app -- commented'
 ^<- user-injected input ->^

Sql servers’ standard query() functions only execute one single
statement!
There are multi_query() like functions, but seldom used!

SQL Injection (3)

© Mihai Chiroiu

Error Reporting Abuse
SELECT * FROM users WHERE
 user='asdf' OR 1/(select password from users) --' …

Boolean statements
SELECT * FROM users WHERE user='' OR user LIKE '%admin%' …

Time-based attacks
SELECT * FROM users WHERE user=''

OR IF(user LIKE ‘%adm%’), SLEEP(10), 'false')' …

Code Injection (File Upload)

© Mihai Chiroiu

● A site allows image submissions with minimal verification.

● The hacker1337 uploads image.gif.php with malicious code.

● Find out the path to the image and requests it:

GET /uploads/image_9876.gif.php

● Server executes our script (if badly configured)!

○ Remote Code Execution :(

Code Injection (2)

© Mihai Chiroiu

Multipart File Upload with path traversal bug:

----------------5191859754266

Content-Disposition: form-data; name="../../index.php"

<?php die(“PWNED”)

Code Injection (3)

© Mihai Chiroiu

Preventing Injection

© Mihai Chiroiu

•Do not trust tutorials / ChatGPT [7]

•Always sanitize user input!

•Try not to use exec() / eval()

•For SQL, use prepared statements:
$stmt = $mysqli->prepare("INSERT INTO table

(name) VALUES (?)");
$stmt->bind_param("s", $id); // "s" for string
$stmt->execute();

Application-Specific Vectors

© Mihai Chiroiu

● Broken Authentication System [8]

○ Predictable / insecure session IDs

○ Unencrypted passwords [9]

● Authorization Vulnerabilities

○ Improper access verification

○ Example: /delete_user.php?id=5368
○ Direct object reference: /admin/list_users.php

● Vulnerable Frameworks / Plugins (e.g. Wordpress)

Server Misconfiguration [9]

© Mihai Chiroiu

● Again: do not trust tutorials & ChatGPT
○ Nginx & PHP FastCGI configuration vulnerability [10]

● Exposed files (e.g. password files, backups) / directory listings

● Bad permissions

● Debugging enabled in production

● System software vulnerabilities:

○ E.g. ShellShock (BASH vulnerability) [11]

Pwned Websites

© Mihai Chiroiu

● Haveibeenpwned.com – account breach
checker

● Yahoo! (2012 – SQL Injection, 2013, 2014
– forged cookies)
○ 3 bilion accounts exposed!

● LinkedIn (hacked 2012, exposed in 2016,
2021 Dark Web DB sale)

● Adobe (2013, 2019): broken encryption :|
● Dropbox (2012):

○ SHA1 and salted passwords ;)

Pwned Websites (2)

© Mihai Chiroiu

• Equifax (2017): credit reporting agency

• Starwood / Marriott (2018, 500 million guests)

• Twitter (2018): user passwords were logged in plaintext

• MyFitnessPal (2018): user diet data, securely hashed passwords

• Facebook (2019): user data leaks (146 gigabytes)

• Twitch (2021): source code stolen ;)

• Graff (2021): jewellery, data on high-profile clients (Trump, Beckham, Oprah)

• 23andme (2023): USA DNA testing…

Client-side Security

© Mihai Chiroiu

● Client-side Scripting (JavaScript)
○ Isolated execution, resource policies

○ AJAX

● Websites affecting client-side security:
○ Cross-site scripting (XSS)

○ Cross-site request forgery (CSRF)

○ Tracking & Advertisements

● Browser vulnerabilities

● Legacy plugins: ActiveX, Java, Flash

JavaScript

© Mihai Chiroiu

● The most popular ECMAScript implementation [12]

● Used for webpage scripting (dynamic content, animations)

○ Document Object Model

● It can also be used for server scripting (NodeJS)

● Sandboxed execution (e.g. cannot: read user’s files, run external

programs)

● Modern web applications rendered entirely in JavaScript

○ Angular, React, Polymer etc.

XSS Attack [15]

© Mihai Chiroiu

● Cross-Site Scripting / client-side code injection

● E.g.: a messaging board website that allows HTML rich text:
● Someone posts:

○ I just wanted to say hello!
○ <script>pwnThisSucker();</script>

● If the target website doesn’t filter this, the code will execute on any

visitor’s browser

● Code can steal data, infect the victims using a browser exploit etc.

XSS Prevention

© Mihai Chiroiu

● Escape HTML before rendering
○ Convert "<" to "<", ">" to ">", quotes to """ etc.

○ Use a template engine that does this

● If rich text is required, use a whitelist-based HTML processor to

sanitize!
○ Example: strip out dangerous tags like script, embed, iframe etc.

○ WARNING: Don’t do this unless you know what you’re doing!

○ Use a library designed to do this (e.g. htmlpurifier.org)

AJAX [13]

© Mihai Chiroiu

● Asynchronous JavaScript and XML

● XMLHttpRequest - API for issuing background HTTP requests

● Used to build modern, responsive applications

● XHR re-sends cookies for the requested domain!

var xhr = new XMLHttpRequest();
xhr.open('get', 'ajax.php');
xhr.onreadystatechange = function() {/*...*/};
xhr.send(null);

Same / Cross Origin Policies [14]

© Mihai Chiroiu

● Same Origin = Same protocol + domain + port
○ Example: http://domain.com vs https://www.domain.com

● Used to prevent cross-domain data stealing
○ For example, a user enters malicious.com

○ Malicious.com makes a request for facebook.com

○ The request is made, but the response is discarded

● Does not prevent information leakage!

● CORS – Cross-Origin Resource Sharing

CORS

© Mihai Chiroiu

● CORS – Cross-Origin Resource Sharing

● The target server sends special response headers:
Access-Control-Allow-Origin: https://*example.com

● If the requester’s domain matches this ACL, the browser accepts it

● Otherwise, the XHR will receive an error and the response text will

be discarded

CSRF [16]

© Mihai Chiroiu

● Cross-Site Request Forgery

● A malicious website tricks the browser / user into accessing a

cross-origin URL

● Example (on malicious.com):

● Defenses:
○ Don’t execute critical actions on GET requests!

○ Use CSRF tokens

○ Check headers (Referer, X-Requested-With etc.)

Browser Privacy [17]

© Mihai Chiroiu

● Websites can track the user across multiple domains!
○ Cookies

○ Invisible objects or scripts that do remote requests

○ e.g.: Google Adsense, Google Analytics, Facebook etc.

● Browser Fingerprinting [19]
○ Test yourselves using EFF’s Panopticlick [18]

● Tracking servers can become attack vectors!

● Extensions that block such requests [20]

Browser Vulnerabilities

© Mihai Chiroiu

● Browsers are a complex piece of software

● May have vulnerabilities that allow attackers to escape sandboxing

● Attack vectors:

○ Malicious websites

○ Code injection on trusted websites (e.g. XSS)

○ Browser plugins: Flash, Java, ActiveX etc.

Browser Vulnerabilities (2)

© Mihai Chiroiu

● 2015: Adobe Flash had 96
vulnerabilities [21]!

● 2016:
○ Flash most featured in exploit kits!
○ Internet Explorer second place [22]

● Exploit kits:
○ Angler, RIG, GrandSoft etc.

Browser Vulnerabilities (3)

© Mihai Chiroiu

● 2016 results [23]:
● 4 bugs in Internet Explorer 11

● 3 bugs in Mozilla Firefox

● 3 bugs in Adobe Reader

● 3 bugs in Adobe Flash

● 2 bugs in Apple Safari

● 1 bug in Google Chrome

2018 results [23]:
● 5 Apple Safari bugs

● 4 Microsoft Edge bugs

● 1 bug in Mozilla Firefox

● 1 bug in Google Chrome (unsuccessful
exploitation)

● Pwn2Own: security competition for hacking browsers

● 2021: Apple Safari exploit, Zoom Messenger, Chrome & MS Edge

Secure Browsers

© Mihai Chiroiu

● If you want a secure browser:
○ Don’t use Microsoft’s Internet ExploDer!

○ Block all plugins by default

○ Always use the latest version of a browser

● Modern browsers employ multi-process sandboxing
○ One process per tab with no access to the user’s system

○ Coordinate with a main browser process

○ Chromium uses namespaces + seccomp on Linux! [24]

OWASP [25]

© Mihai Chiroiu

1. Broken Access Control

2. Cryptographic Failures

3. Injection (SQL, XSS etc.)

4. Insecure Design

5. Security Misconfiguration

6. Vulnerable and Outdated Components

7. Identification and Authentication Failures

8. Software and Data Integrity Failures

9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery

● The Open Web Worldwide Application Security Project

● OWASP Top 10 for 2021 (preview [26]):

https://owasp.org/www-project-top-ten/

https://owasp.org/www-project-top-ten/

References

[1] HTTP https://tools.ietf.org/html/rfc2616

[2] Murdoch, Steven J. "Hardened stateless session cookies." International Workshop on Security
Protocols. Springer Berlin Heidelberg, 2008.

[3] TLS protocol version 1.2, https://tools.ietf.org/html/rfc5246 (2008)

[4] TLS attacks,
https://www.cloudinsidr.com/content/known-attack-vectors-against-tls-implementation-vulnerabili
ties/[5] Common Gateway Interface, https://tools.ietf.org/html/rfc3875

[6] Clarke-Salt, Justin. SQL injection attacks and defense. Elsevier, 2009.

[6] Flawed Tutorials, https://arxiv.org/pdf/1704.02786.pdf

[7] Session Fixation: http://www.acros.si/papers/session_fixation.pdf

© Mihai Bucicoiu

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc5246
https://www.cloudinsidr.com/content/known-attack-vectors-against-tls-implementation-vulnerabilities/
https://www.cloudinsidr.com/content/known-attack-vectors-against-tls-implementation-vulnerabilities/
https://tools.ietf.org/html/rfc3875
https://arxiv.org/pdf/1704.02786.pdf
http://www.acros.si/papers/session_fixation.pdf

References (2)

[8] https://fishbowl.pastiche.org/archives/docs/PasswordRecovery.pdf

[9] http://www.pcmag.com/article2/0,2817,11525,00.asp

[10] Common Nginx + PHP Misconfiguration http://bit.ly/1kAK8xu

[11] ShellShock, http://www.securityfocus.com/bid/70103

[12] ECMA-262, http://www.ecma-international.org/publications/standards/Ecma-262.htm

[13] https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest

[14] https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

[15] https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-cross-site-scripting/

© Mihai Bucicoiu

https://fishbowl.pastiche.org/archives/docs/PasswordRecovery.pdf
http://www.pcmag.com/article2/0,2817,11525,00.asp
http://bit.ly/1kAK8xu
http://www.securityfocus.com/bid/70103
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

References (3)

[16] https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/csrf_paper.pdf

[17] http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6234427

[18] https://panopticlick.eff.org/

[19] How unique is your browser? https://kabijo.de/files/13/14/5641571611600.pdf

[20] http://lifehacker.com/the-best-browser-extensions-that-protect-your-privacy-479408034

[21] https://heimdalsecurity.com/blog/adobe-flash-vulnerabilities-security-risks/

© Mihai Bucicoiu

https://panopticlick.eff.org/

References (4)

[22] https://www.recordedfuture.com/top-vulnerabilities-2016/

[23]
https://venturebeat.com/2016/03/18/pwn2own-2016-chrome-edge-and-safari-hacked-460k-award
ed-in-total/

[24] https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md

[25] https://www.owasp.org/

[26] https://owasp.org/Top10/
[27]
https://www.thezdi.com/blog/2018/3/15/pwn2own-2018-day-two-results-and-master-of-pwn

© Mihai Bucicoiu

https://owasp.org/Top10/
https://www.thezdi.com/blog/2018/3/15/pwn2own-2018-day-two-results-and-master-of-pwn

