
Web Security
Today: Florin Stancu

Asst. Prof. Mihai Chiroiu

Contents

• HTTP Security
• Cookies, Sessions
• HTTPS

• Server-side Security
• Injection
• Session Hijacking

• Client-side / Browser Security

© Mihai Chiroiu

HTTP Protocol [1]

• Stateless, text-based request-response protocol

© Mihai Chiroiu

Client -> Server:

GET /index.html HTTP/1.0
Header1: value1
Header2: value2

<optional body>

Server -> Client:
HTTP/1.0 200 OK
Header1: value1
Header2: value2

<html><head>...</head>
<body>...</body></html>

HTTP Methods
 GET: fetch a resource, may have query strings:

http://domain.com/browse.php?list=users&name=john
Generates:
GET /browse.php?list=users&name=john HTTP/1.0

 PUT / POST: create or edit a resource (only POST is widely used)
• DELETE: delete resources (not used in practice)
• HEAD: like GET, but server responds with the headers only
• OPTIONS: determine options for a resource
• GET, HEAD and OPTIONS should be idempotent

© Mihai Chiroiu

HTTP Methods & HTML Forms
• Links typically use a GET request for opening pages
• HTML forms can generate GET and POST requests:

<form action="/login.php?user_type=regular" method="post">
User: <input type="text" name="username">
Password: <input type="password" name="pass">

</form>
Generates:
POST /login.php?user_type=regular HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 30 <-- the length of the body

username=<username>&pass=<user’s password>

© Mihai Chiroiu

Cookies

• Small piece of data that the browser stores and sends back to the
server on future requests

• Can be used to remember user preferences, server sessions etc.

© Mihai Chiroiu

Response header example:

HTTP/1.0 200 OK
Set-Cookie: c1=val1
Set-Cookie: c2=val2

Request example:

GET / HTTP/1.1
Cookie: cook1=val1;cook2=val2

Cookie Security

© Mihai Chiroiu

• Cookies are insecure:
• The user can freely read & modify them
• They can be intercepted unless HTTPS is used for transport

• Must add confidentiality and integrity guarantees:
• Using cryptography: encryption & HMAC [2]
• Server-side sessions

• Privacy implications:
• Cookies can be used to track users (e.g. by analytics & ad servers)

Server Sessions

© Mihai Chiroiu

• Also known as server-side cookies
• Server generates a random, unique session ID

4125a859778b1bf9b9b778a236f01e01

• Server uses database to store secrets associated with a session ID
• Persisted as cookie / passed using GET / POST parameters

Cookie: PHPSESSID=4125a85...
or
show.php?phpsessid=4125a85...

HTTPS [3]

© Mihai Chiroiu

• Based on Secure Sockets Layer / Transport Layer Security
• Creates a private channel between the client and the server
• The server authenticates itself using certificates and PKI
• Diffie-Hellman for forward secrecy
• Cipher negotiation: RC4, DES, AES CBC, AES GCM etc.
• Target of numerous attacks

TLS / HTTPS Attacks [4]

© Mihai Chiroiu

• Compression attacks (CRIME, BREACH)
• RC4 weaknesses
• Man-in-the-middle (Malicious Certificates, SSL stripping)
• Downgrade attacks (FREAK, Logjam, POODLE)
• Implementation bugs (e.g. Heartbeat, Cloudflare)

Server-side Processing

© Mihai Chiroiu

• Server generates dynamic content
• Scripting interfaces: CGI (legacy) / FastCGI / apache2 modules [5]

Sample Directory Layout

© Mihai Chiroiu

/var/www
|-- index.html
|-- login.php
|-- css/style.css
|-- images/

|-- logo.png
|-- map.png

Example requests:
> GET /index.html HTTP/1.0
> GET /images/logo.png HTTP/1.0
> POST /login.php HTTP/1.0

Server-side Processing

© Mihai Chiroiu

• Example (PHP)
<?php
$name = $_GET["name"];
$curDate = date("l");
?>
<p>Hello, <i><?=$name?></i>.
The date is <?=$curDate?>
<?php
echo $message;
?>

Server-side Injection (1)

© Mihai Chiroiu

SQL Injection [6]
$query = "SELECT * FROM users WHERE user='" .

$_POST["user"] . "' AND password='" .
hash($_POST["password"]) . "'";

$result = mysql_query($conn, $query);

POST: email=admin’--

• => SELECT * FROM users WHERE
 user='admin'-- AND password=''`

Server-side Injection (2)

© Mihai Chiroiu

• File upload attack
• Example:
 A site allows image submissions with minimal verification
 The user uploads image.gif.php with malicious code
 User finds out the path to the image and requests it:
 GET /uploads/image_9876.gif.php

 Server executes our script (if badly configured ;))

Server-side Injection (3)

© Mihai Chiroiu

• Preventing injection:
 Do not trust tutorials [7]
 Always sanitize user input!
 Try not to use shell execution / script evaluation
 For SQL, use prepared statements:

$stmt = $mysqli->prepare("INSERT INTO table
(name) VALUES (?)");

$stmt->bind_param("s", $id); // "s" for string
$stmt->execute();

Application-Specific Vectors

© Mihai Chiroiu

• Broken Authentication System [8]
 Predictable / insecure session IDs
 Unencrypted passwords [9]

• Authorization Vulnerabilities
 Improper access verification
 Example: /delete_user.php?id=5368

 Direct object reference: /admin/list_users.php

• Vulnerable Frameworks / Plugins (e.g. many Wordpress plugins)

Server Misconfiguration [9]

© Mihai Chiroiu

• Again: do not trust tutorials
 Nginx & PHP FastCGI configuration vulnerability [10]

• Exposed files (e.g. password files, backups) / directory listings
• Bad permissions
• Debugging enabled in production
• System software vulnerabilities:
 E.g. ShellShock (BASH vulnerability) [11]

Pwned Websites

© Mihai Chiroiu

• Haveibeenpwned.com – check it home!
• Yahoo! (2012 – SQL Injection, 2013, 2014 –

forged cookies)
 1 bilion accounts exposed!

• LinkedIn (hacked 2012, exposed in 2016)
• Adobe (2013): broken encryption =))
• Dropbox (2012):
 SHA1 and salted passwords ;)

Client-side Security

© Mihai Chiroiu

 Client-side Scripting (JavaScript)
 Isolated execution, resource policies
 AJAX

 Websites affecting client-side security:
 Cross-site scripting (XSS)
 Cross-site request forgery (CSRF)
 Tracking & Advertisements

 Browser vulnerabilities
 Legacy plugins: ActiveX, Java, Flash

JavaScript

© Mihai Chiroiu

 The most popular ECMAScript implementation [12]
 Used for webpage scripting (dynamic content, animations)
 Document Object Model

 It can also be used for server scripting (NodeJS)
 Sandboxed execution (e.g. cannot: read user’s files, run external

programs)
 Modern web applications rendered entirely in JavaScript
 Angular, React, Polymer etc.

AJAX [13]

© Mihai Chiroiu

 Asynchronous JavaScript and XML
 XMLHttpRequest - API for issuing background HTTP requests
 Used to build modern, responsive applications
 XHR re-sends cookies for the requested domain!

var xhr = new XMLHttpRequest();
xhr.open('get', 'ajax.php');
xhr.onreadystatechange = function() {/*...*/};
xhr.send(null);

Same / Cross Origin Policies [14]

© Mihai Chiroiu

 Same Origin = Same protocol + domain + port
 Example: http://domain.com vs https://www.domain.com

 Used to prevent cross-domain data stealing
 For example, a user enters malicious.com
 Malicious.com makes a request for facebook.com
 The request is made, but the response is discarded

 Does not prevent information leakage!
 CORS – Cross-Origin Resource Sharing

CORS

© Mihai Chiroiu

 CORS – Cross-Origin Resource Sharing
 The target server sends special response headers:
 Access-Control-Allow-Origin: http://domain.com (for HTTPS)
 Origin: http://domain.com (for HTTP)

 If the requester’s domain matches this ACL, the browser accepts it
 Otherwise, the XHR will receive an error and the response text will be

discarded

XSS [15]

© Mihai Chiroiu

 Cross-Site Scripting / client-side code injection
 E.g.: a messaging board website that allows HTML rich text:
 Someone posts:

I just wanted to say hello!
<script>pwnThisSucker();</script>

 If the target website doesn’t filter this, the code will execute on any
visitor’s browser

 Code can steal data, infect the victims using a browser exploit etc.

XSS Prevention

© Mihai Chiroiu

 Escape HTML before rendering
 Convert "<" to "<", ">" to ">", quotes to """ etc.
 Use a template engine that does this

 If rich text is required, use a whitelist-based HTML processor to
sanitize
 Example: strip out dangerous tags like script, embed, iframe etc.
 WARNING: Dont do this unless you know what you’re doing!
 Use a library designed to do this (e.g. htmlpurifier.org)

CSRF [16]

© Mihai Chiroiu

 Cross-Site Request Forgery
 A malicious website tricks the browser / user into accessing a cross-

origin URL
 Example (on malicious.com):


 Defenses:
 Don’t execute critical actions on GET requests!
 Use CSRF tokens
 Check headers (Referer, X-Requested-With etc.)

Browser Privacy [17]

© Mihai Chiroiu

 Websites can track the user across multiple domains!
 Cookies
 Invisible objects or scripts that do remote requests
 e.g.: Google Adsense, Google Analytics, Facebook etc.

 Browser Fingerprinting [19]
 Test yourselves using EFF’s Panopticlick [18]

 Tracking servers can become attack vectors!
 Extensions that block such requests [20]

Browser Vulnerabilities

© Mihai Chiroiu

 Browsers are a complex piece of software
 May have vulnerabilities that allow attackers to escape sandboxing
 Attack vectors:
 Malicious websites
 Code injection on trusted websites (e.g. XSS)
 Browser plugins: Flash, Java, ActiveX etc.

Browser Vulnerabilities (2)

© Mihai Chiroiu

 2015: Adobe Flash had 96
vulnerabilities [21]!

 2016:
 Flash most featured in exploit kits!
 Internet Explorer second place [22]

 Exploit kits:
 Angler, RIG, Nuclear etc.

Browser Vulnerabilities (3)

© Mihai Chiroiu

 Pwn2Own: security competition for hacking browsers
 2016 results [23]:
 5 bugs in the Windows operating system
 4 bugs in Internet Explorer 11
 3 bugs in Mozilla Firefox
 3 bugs in Adobe Reader
 3 bugs in Adobe Flash
 2 bugs in Apple Safari
 1 bug in Google Chrome

Secure Browsers

© Mihai Chiroiu

 If you want a secure browser:
 Don’t use Microsoft’s Internet Explorer!
 Block all plugins by default
 Always use the latest version of a browser

 Modern browsers employ multi-process sandboxing
 One process per tab with no access to the user’s system
 Coordinate with a main browser process
 Chromium even uses LXC namespaces on Linux! [24]

OWASP [25]

© Mihai Chiroiu

1.Code Injection
2.Broken Authentication and Session

Management
3.Cross-Site Scripting (XSS)
4.Broken Access Control
5.Security Misconfiguration

6.Sensitive Data Exposure
7.Insufficient Attack Protection
8.Cross-site Request Forgery
9.Using components with known

vulnerabilities
10.Underprotected APIs

 The Open Web Application Security Project
 OWASP Top 10 for 2017 (preview [26]):

References

[1] HTTP https://tools.ietf.org/html/rfc2616
[2] Murdoch, Steven J. "Hardened stateless session cookies." International
Workshop on Security Protocols. Springer Berlin Heidelberg, 2008.
[3] TLS protocol version 1.2, https://tools.ietf.org/html/rfc5246 (2008)
[4] TLS attacks, https://www.rfc-editor.org/rfc/pdfrfc/rfc7457.txt.pdf
[5] Common Gateway Interface, https://tools.ietf.org/html/rfc3875
[6] Clarke-Salt, Justin. SQL injection attacks and defense. Elsevier, 2009.
[6] Flawed Tutorials, https://arxiv.org/pdf/1704.02786.pdf
[7] Session Fixation: http://www.acros.si/papers/session_fixation.pdf

© Mihai Bucicoiu

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc5246
https://www.rfc-editor.org/rfc/pdfrfc/rfc7457.txt.pdf
https://tools.ietf.org/html/rfc3875
https://arxiv.org/pdf/1704.02786.pdf
http://www.acros.si/papers/session_fixation.pdf

References (2)

[8] https://fishbowl.pastiche.org/archives/docs/PasswordRecovery.pdf
[9] http://www.pcmag.com/article2/0,2817,11525,00.asp
[10] Common Nginx + PHP Misconfiguration http://bit.ly/1kAK8xu
[11] ShellShock, http://www.securityfocus.com/bid/70103
[12] ECMA-262, http://www.ecma-international.org/publications/standards/Ecma-262.htm

[13] https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
[14] https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
[15] https://blogs.msdn.microsoft.com/dross/2009/12/15/happy-10th-birthday-
cross-site-scripting/

© Mihai Bucicoiu

https://fishbowl.pastiche.org/archives/docs/PasswordRecovery.pdf
http://www.pcmag.com/article2/0,2817,11525,00.asp
http://bit.ly/1kAK8xu
http://www.securityfocus.com/bid/70103
http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

References (3)

[16] https://www.nccgroup.trust/globalassets/our-
research/us/whitepapers/csrf_paper.pdf
[17] http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6234427
[18] https://panopticlick.eff.org/
[19] How unique is your browser?
https://kabijo.de/files/13/14/5641571611600.pdf
[20] http://lifehacker.com/the-best-browser-extensions-that-protect-your-privacy-
479408034
[21] https://heimdalsecurity.com/blog/adobe-flash-vulnerabilities-security-risks/

© Mihai Bucicoiu

https://panopticlick.eff.org/

References (4)

[22] https://www.recordedfuture.com/top-vulnerabilities-2016/
[23] https://venturebeat.com/2016/03/18/pwn2own-2016-chrome-edge-and-
safari-hacked-460k-awarded-in-total/
[24]
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxi
ng.md
[25] https://www.owasp.org/
[26]
https://raw.githubusercontent.com/OWASP/Top10/master/2017/OWASP%20Top%
2010%20-%202017%20RC1-English.pdf

© Mihai Bucicoiu

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

