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HTTP Protocol [1]

• Stateless, text-based request-response protocol
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Client -> Server:

GET /index.html HTTP/1.0
Header1: value1
Header2: value2

<optional body>

Server -> Client:
HTTP/1.0 200 OK
Header1: value1
Header2: value2

<html><head>...</head>
<body>...</body></html>



HTTP Methods
 GET: fetch a resource, may have query strings:

http://domain.com/browse.php?list=users&name=john
Generates:
GET /browse.php?list=users&name=john HTTP/1.0

 PUT / POST: create or edit a resource (only POST is widely used)
• DELETE: delete resources (not used in practice)
• HEAD: like GET, but server responds with the headers only
• OPTIONS: determine options for a resource
• GET, HEAD and OPTIONS should be idempotent
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HTTP Methods & HTML Forms
• Links typically use a GET request for opening pages
• HTML forms can generate GET and POST requests:

<form action="/login.php?user_type=regular" method="post">
User: <input type="text" name="username">
Password: <input type="password" name="pass">

</form>
Generates:
POST /login.php?user_type=regular HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 30 <-- the length of the body

username=<username>&pass=<user’s password>
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Cookies

• Small piece of data that the browser stores and sends back to the 
server on future requests

• Can be used to remember user preferences, server sessions etc.
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Response header example:

HTTP/1.0 200 OK
Set-Cookie: c1=val1
Set-Cookie: c2=val2

Request example:

GET / HTTP/1.1
Cookie: cook1=val1;cook2=val2



Cookie Security
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• Cookies are insecure:
• The user can freely read & modify them
• They can be intercepted unless HTTPS is used for transport

• Must add confidentiality and integrity guarantees:
• Using cryptography: encryption & HMAC [2]
• Server-side sessions

• Privacy implications:
• Cookies can be used to track users (e.g. by analytics & ad servers)



Server Sessions
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• Also known as server-side cookies
• Server generates a random, unique session ID

4125a859778b1bf9b9b778a236f01e01

• Server uses database to store secrets associated with a session ID
• Persisted as cookie / passed using GET / POST parameters

Cookie: PHPSESSID=4125a85...
or
show.php?phpsessid=4125a85...



HTTPS [3]
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• Based on Secure Sockets Layer / Transport Layer Security
• Creates a private channel between the client and the server
• The server authenticates itself using certificates and PKI
• Diffie-Hellman for forward secrecy
• Cipher negotiation: RC4, DES, AES CBC, AES GCM etc.
• Target of numerous attacks



TLS / HTTPS Attacks [4]
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• Compression attacks (CRIME, BREACH)
• RC4 weaknesses
• Man-in-the-middle (Malicious Certificates, SSL stripping)
• Downgrade attacks (FREAK, Logjam, POODLE)
• Implementation bugs (e.g. Heartbeat, Cloudflare)



Server-side Processing
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• Server generates dynamic content
• Scripting interfaces: CGI (legacy) / FastCGI / apache2 modules [5]



Sample Directory Layout
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/var/www
|-- index.html
|-- login.php
|-- css/style.css
|-- images/

|-- logo.png
|-- map.png

Example requests:
> GET /index.html HTTP/1.0
> GET /images/logo.png HTTP/1.0
> POST /login.php HTTP/1.0



Server-side Processing
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• Example (PHP)
<?php
$name = $_GET["name"];
$curDate = date("l");
?>
<p>Hello, <i><?=$name?></i>.
The date is <b><?=$curDate?></b>
<?php
echo $message;
?>



Server-side Injection (1)
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SQL Injection [6]
$query = "SELECT * FROM users WHERE user='" .

$_POST["user"] . "' AND password='" .
hash($_POST["password"]) . "'";

$result = mysql_query($conn, $query);

POST: email=admin’--

• => SELECT * FROM users WHERE
 user='admin'-- AND password=''`



Server-side Injection (2)
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• File upload attack
• Example:
 A site allows image submissions with minimal verification
 The user uploads image.gif.php with malicious code
 User finds out the path to the image and requests it:
 GET /uploads/image_9876.gif.php

 Server executes our script (if badly configured ;) ) 



Server-side Injection (3)
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• Preventing injection:
 Do not trust tutorials [7]
 Always sanitize user input!
 Try not to use shell execution / script evaluation
 For SQL, use prepared statements:

$stmt = $mysqli->prepare("INSERT INTO table
(name) VALUES (?)");

$stmt->bind_param("s", $id); // "s" for string
$stmt->execute();



Application-Specific Vectors
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• Broken Authentication System [8]
 Predictable / insecure session IDs
 Unencrypted passwords [9]

• Authorization Vulnerabilities
 Improper access verification
 Example: /delete_user.php?id=5368

 Direct object reference: /admin/list_users.php

• Vulnerable Frameworks / Plugins (e.g. many Wordpress plugins)



Server Misconfiguration [9]
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• Again: do not trust tutorials
 Nginx & PHP FastCGI configuration vulnerability [10]

• Exposed files (e.g. password files, backups) / directory listings
• Bad permissions
• Debugging enabled in production
• System software vulnerabilities:
 E.g. ShellShock (BASH vulnerability) [11]



Pwned Websites
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• Haveibeenpwned.com – check it home!
• Yahoo! (2012 – SQL Injection, 2013, 2014 –

forged cookies)
 1 bilion accounts exposed!

• LinkedIn (hacked 2012, exposed in 2016)
• Adobe (2013): broken encryption =))
• Dropbox (2012): 
 SHA1 and salted passwords ;) 



Client-side Security
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 Client-side Scripting (JavaScript)
 Isolated execution, resource policies
 AJAX

 Websites affecting client-side security:
 Cross-site scripting (XSS)
 Cross-site request forgery (CSRF)
 Tracking & Advertisements

 Browser vulnerabilities
 Legacy plugins: ActiveX, Java, Flash



JavaScript
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 The most popular ECMAScript implementation [12]
 Used for webpage scripting (dynamic content, animations)
 Document Object Model

 It can also be used for server scripting (NodeJS)
 Sandboxed execution (e.g. cannot: read user’s files, run external 

programs)
 Modern web applications rendered entirely in JavaScript
 Angular, React, Polymer etc.



AJAX [13]
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 Asynchronous JavaScript and XML
 XMLHttpRequest - API for issuing background HTTP requests
 Used to build modern, responsive applications
 XHR re-sends cookies for the requested domain!

var xhr = new XMLHttpRequest();
xhr.open('get', 'ajax.php');
xhr.onreadystatechange = function() {/*...*/};
xhr.send(null);



Same / Cross Origin Policies [14]
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 Same Origin = Same protocol + domain + port
 Example: http://domain.com vs https://www.domain.com

 Used to prevent cross-domain data stealing
 For example, a user enters malicious.com
 Malicious.com makes a request for facebook.com
 The request is made, but the response is discarded

 Does not prevent information leakage!
 CORS – Cross-Origin Resource Sharing



CORS 
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 CORS – Cross-Origin Resource Sharing
 The target server sends special response headers:
 Access-Control-Allow-Origin: http://domain.com (for HTTPS)
 Origin: http://domain.com (for HTTP)

 If the requester’s domain matches this ACL, the browser accepts it
 Otherwise, the XHR will receive an error and the response text will be 

discarded



XSS [15] 
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 Cross-Site Scripting / client-side code injection
 E.g.: a messaging board website that allows HTML rich text:
 Someone posts:

I just wanted to say hello!
<script>pwnThisSucker();</script>

 If the target website doesn’t filter this, the code will execute on any 
visitor’s browser

 Code can steal data, infect the victims using a browser exploit etc.



XSS Prevention 
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 Escape HTML before rendering
 Convert "<" to "&lt;", ">" to "&gt;", quotes to "&quot;" etc.
 Use a template engine that does this

 If rich text is required, use a whitelist-based HTML processor to 
sanitize
 Example: strip out dangerous tags like script, embed, iframe etc.
 WARNING: Dont do this unless you know what you’re doing!
 Use a library designed to do this (e.g. htmlpurifier.org)



CSRF [16] 
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 Cross-Site Request Forgery
 A malicious website tricks the browser / user into accessing a cross-

origin URL
 Example (on malicious.com):
 <img src="https://www.facebook.com/post/?msg=PWNED!"/>

 Defenses:
 Don’t execute critical actions on GET requests!
 Use CSRF tokens
 Check headers (Referer, X-Requested-With etc.)



Browser Privacy [17]
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 Websites can track the user across multiple domains!
 Cookies
 Invisible objects or scripts that do remote requests
 e.g.: Google Adsense, Google Analytics, Facebook etc.

 Browser Fingerprinting [19]
 Test yourselves using EFF’s Panopticlick [18]

 Tracking servers can become attack vectors!
 Extensions that block such requests [20]



Browser Vulnerabilities
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 Browsers are a complex piece of software
 May have vulnerabilities that allow attackers to escape sandboxing
 Attack vectors:
 Malicious websites
 Code injection on trusted websites (e.g. XSS)
 Browser plugins: Flash, Java, ActiveX etc.



Browser Vulnerabilities (2)
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 2015: Adobe Flash had 96 
vulnerabilities [21]!

 2016:
 Flash most featured in exploit kits!
 Internet Explorer second place [22]

 Exploit kits:
 Angler, RIG, Nuclear etc.



Browser Vulnerabilities (3)
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 Pwn2Own: security competition for hacking browsers
 2016 results [23]:
 5 bugs in the Windows operating system
 4 bugs in Internet Explorer 11
 3 bugs in Mozilla Firefox
 3 bugs in Adobe Reader
 3 bugs in Adobe Flash
 2 bugs in Apple Safari
 1 bug in Google Chrome



Secure Browsers
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 If you want a secure browser:
 Don’t use Microsoft’s Internet Explorer!
 Block all plugins by default
 Always use the latest version of a browser

 Modern browsers employ multi-process sandboxing
 One process per tab with no access to the user’s system
 Coordinate with a main browser process
 Chromium even uses LXC namespaces on Linux! [24]



OWASP [25]
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1.Code Injection
2.Broken Authentication and Session 

Management
3.Cross-Site Scripting (XSS)
4.Broken Access Control
5.Security Misconfiguration

6.Sensitive Data Exposure
7.Insufficient Attack Protection
8.Cross-site Request Forgery
9.Using components with known 

vulnerabilities
10.Underprotected APIs

 The Open Web Application Security Project
 OWASP Top 10 for 2017 (preview [26]):
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