Introduction to Computer Security Lecture Slides

© 2023 by Mihai Chiroiu

is licensed under <u>Attribution-NonCommercial-ShareAlike 4.0</u> <u>International</u>

Network Security

Associate Prof. Mihai Chiroiu

Network 7 Layers [1]

Sleepy	Physical	The group new that physical connections are boring, and figured it might as well assign the physical layer to dwarf ``Sleepy''.		
Sneezy	Link	If you monitor a network and watch the pattern of packets emitted by a computer, you'll immediately understand the relationship between link-layer protocols and ``Sneezy''.		
Нарру	Network	Everyone's happy with the network layer. Well to be honest, the only network layer protocol that makes everyone's happy is the Internet Protocol.		
Doc	Transport	This one's obvious it definitely takes a Ph.D. to understand the subtleties of a transport layer protocol.		
Dopey	Session	Yep, even the designers realized that having a separate session layer is a dopey idea. They decided to follow Disney's approach of adding comic relief, so they stuck in a completely unnecessary layer and laughed about it.		
Bashful	Presentation	The designers realized that sooner or later someone would create a presentation layer protocol. However, the group decided to classify such protocols as too ``bashful'' to appear in public. So, even if a presentation protocol is produced, no one gets to see it.		
Grumpy	Application	Programmers who design network applications are incredibly grumpy they complain about the efficiency of other layers []. And users add to the grumpiness, [], they only complain about applications.		

Intercepting at physical

- You can buy one of these for ~350\$
- You can detect an attack like this by loss of light (must be lower than 2% in an acceptably quality implementation)

802.1x

• Several devices enforcing different security policies.

L2 Security

- MITM attacks from insiders (ARP Spoofing)
- STP can be broken
- VLAN hopping

L2 Security

- DHCP bindings
- Sticky MAC
- BPDU Guard

Firewall

- Access control over traffic (at different OSI levels)
- Must be fast
- Whitelisting vs. Blacklisting
- Stateful vs. Stateless
- Next level firewalls: Deep Packet Inspection

Intrusion Detection/Prevention Systems

- Intrusion detection is a classification problem
- Based on signatures (how to be fast? data structures? GPU?)

	Detection Result			
		True	False	
Reality	True	True Positive	False Negative	
	False	False Positive	True Negative	

Attacks directed to the equipment (routers)

- How do you figure out if a router is compromised?
- "There are 6043 CVE Records that match your search." (on keyword "cisco" as of 1st January 2023)
 - "[...] could allow an authenticated, remote attacker to execute arbitrary code on an affected device"

Routing protocols (attacks)

• OSPF

- TTL Security Check (value should be 255)
- Add authentication for messages (preferably different for each router-link)
 - HMAC from secret and message
- <u>https://datatracker.ietf.org/doc/html/draft-ietf-rpsec-ospf-vuln-02</u>

Routing protocols (attacks)

- BGP
 - (Sub)Prefix Hijacking (I'm Youtube now 😳)

Routing anonymity

- Mixes routers (1981) [6]
 - nodes may reorder, delay, and pad traffic to complicate traffic analysis
- Onion router (1996) [7]
 - produce virtual circuits within link encrypted connections
 - TOR project (2004) [8]
- Crowds (1998) [9]
 - Relay message to random router: with probability p to another router; with probability 1-p, to its intended destination

TCP/IP Attacks [4]

- Port scanning
- TCP Sequence Numbers guessing
- Source Routing

Port knocking

A) The client cannot connect to the application. The client cannot establish a connection to any port.

B) The client attempts connection to a number of ports in a predefined sequence. Client receives no ACKs.

Port knocking

C) The PK daemon interprets the attempts and carries out a task. For example, it opens a specific port (n).

D) The client can now connect to port n.

(Distributed) Denial of Service

- Each network MUST have a benchmark of:
 - Total bandwidth utilization
 - Protocols active in the network
 - Hardware load (For hosts/network devices)
- All the above measured for different times of the day
- These statistics can be used to detect anomalies
- Anomalies can represent attacks
- TCP SYN Flood

VPN topologies

- Remote-access VPNs
 - Remote users must have a broadband Internet connection
 - The VPN parameters are dynamically negotiated
 - The tunnel is established only when required
- Site-to-site VPNs
 - Configured between two VPN-aware devices on both ends
 - Always-on
 - Provides interconnectivity between multiple networks on both sites.
 - Each end of the tunnel acts as a gateway for its networks.

IPSec for site-to-site VPN

- IPSec is an IETF standard (RFC 4301-4305)
 - Is a collection of open standards that describe how to secure communication.
- Relies on existing algorithms to provide:
 - Data confidentiality
 - Authentication
 - Data integrity
 - Secure key exchange (freshness, forward secrecy)
- Can be used host2host (transport) or gateway2gateway (tunnel)
 - Zero Trust Networks

IPSec – cryptographic blocks

- Algorithms that provide confidentiality (encryption):
 - Examples: DES, 3DES, AES, SEAL
- Algorithms that ensure integrity:
 - Examples: MD5, SHA1, SHA2 along with other versions
- Algorithms that define the authentication method:
 - Examples: pre-shared keys (PSK) or digitally signed using RSA.
- The mechanism to securely communicate a shared key:
 - Several DH (Diffie-Hellman) groups, ECDH

IPsec SA

- A security association (SA) is a set of policy and key(s) used to protect information.
- Different SAs for inbound and outbound traffic.
- A security association is uniquely identified by a triple consisting of a Security Parameter Index (SPI), an IP Destination Address, and a security protocol (AH or ESP) identifier.
- Security association database.

Security policy database

- Allows for implementation of packet protecting policies
 - What traffic to protect
 - What traffic to discard
 - What traffic to ignore

IPSec AH

- RFC 4302 IP Authentication Header
- IP protocol field 51
- Provides IP Header and Data integrity and authentication.
 - Some fields are not protected because they need to be changed in traffic (e.g. TOS, flags, frag offset, TTL, header checksum)
- It uses a Message Authentication Code for integrity
- Not working with NAT/PAT

IPSec AH

http://www.tcpipguide.com/free/t_IPSecAuthenticationHeaderAH-4.htm

IPSec ESP

- RFC 4303 IP Encapsulating Security Payload
- IP protocol field 51
- Provides Data Confidentiality, Integrity, Authenticity or none.

IPSec ESP

http://www.tcpipguide.com/free/t IPSecEncapsulatingSecurityPayloadESP-4.htm

IPSec Tunnel vs Transport

- Transport mode is usually used between 2 hosts
- Tunnel mode is usually the "to go" solution between gateways
- Identified by the next header type in the IPSec Header
 - 4 = Tunnel mode
 - else Transport mode

IPSec transport mode

IPSec tunnel mode

IP Tunnel	АН	Original IP	Data			
Authentication						

- Someone needs to provide keys to IPSec Welcome IKE
- Allows chosing of crypto blocks to be used (usually first round)
- Based on ephemeral Diffie-Hellman algorithms
- 2 phases
 - Phase 1 = ISAKMP SA = control channel
 - 2 modes of operation
 - Main mode (mandatory implemented)
 - Aggressive mode (optional implementation)
 - Phase 2 = IPSec SA = data channel
 - Quick mode

ISAKMP Main mode

- Oakley conservative protocol (similar to STS protocol) example
- A -> B: OK
- B -> A : CK_B
- A -> B: CK_A, CK_B, list
- B -> A: CK_B,CK_A, algo
- A -> B: $CK_A, CK_B, DH_A, \{ID_A, ID_B, N_A\}_{K'}$
 - K' is a key know by the two parties (derived from shared secret, public key, etc)
- B -> A: $CK_B, CK_A, \{N_B, N_A, ID_B, ID_A, MAC_{\mathbf{K}}(ID_B, ID_A, DH_B, DH_A, algo)\}_{K'}$
- A -> B: $CK_A, CK_B, \{MAC_K(ID_A, ID_B, DH_A, DH_B, algo)\}_{K'}$

ISAKMP Main mode

Hi, what crypto blocks can we use?

What about this crypto blocks?

Here are my DH_A params

Cool, here are mine DH_B

Here is a proof that I am Alice $\{Alice\}_{K'}$

Here is a proof that I am Alice $\{Bob\}_{K'}$

Bob

ISAKMP Aggressive mode

- Oakley aggressive-mode protocol example
- A -> B: CK_A , DH_A , IIST, ID_A , ID_B , N_A , $\{ID_A, ID_B, N_A, DH_A, IIST\}_K$
 - CK_A = cookie A = session association (SA) equivalent = SPI + Dst IP
 - list = what I can use as cypto blocks
- B -> A: $CK_B, CK_A, DH_B, algo, ID_B, ID_A, N_B, N_A, \{ID_B, ID_A, N_B, N_A, DH_A, DH_B, algo\}_{K'}$
 - algo = what I have selected from the list as crypto blocks
- A -> B: $CK_A, CK_B, DH_A, algo, ID_A, ID_B, N_A, N_B, \{ID_A, ID_B, N_A, N_B, t_A, t_B, algo\}_{K'}$

ISAKMP Aggressive mode

Hi, what crypto blocks can we use? Here is my DH_A params

What about this crypto blocks? here are my DH_B ; Here is a proof that I am Alice {Bob}_{K'}

Here is a proof that I am Alice $\{Bob\}_{K'}$

ISAKMP Aggressive mode

 It only works when B can use the same group as initially proposed and used by A in the first message;

IKE (simplified)

IKE phase 1 (ISAKMP SA)

IKE phase 2 (IPSec SA or Quick Mode)

The NAT problem

- AH hashes the IP header and the TCP header and expects them to remain unaltered.
- NAT(PAT) overwrites the layer 3 and 4 addresses and port numbers.
- How do you solve this?
- Solution: NAT-T (NAT-Traversal or NAT-Transparency)
 - In IKE Phase 1, an unencrypted but hashed message is sent.
 - At destination, if the hashes do not match, there is a NAT router in between.
- NAT-T encapsulates everything (including ESP) in an UDP header
 - There is also a TCP variant available when connection state tracking is required.
 - If an IPS/IDS device is present, for example.

SSL

- Developed by Netscape, now an IETF RFC (TLS Jan '99)
- Protocol for using one or two public/private keys
 - to authenticate a sever to a client
 - and by requiring a client key to authenticate the client to the server
 - establish a shared symmetric key (the session key)
- Gives you authentication, message integrity and confidentiality
- Everything except authorization

- Negotiate the cipher suite
- Establish a shared session key
- Authenticate the server (optional)
- Authenticate the client (optional)
- Authenticate previously exchanged data

- SSL Attacks [10] [11]
- SSL Stripping
- TLS 1.0 wrong crypto (CBC IV's)
- Broken CA (DigiNotar 2011)

Honeypots

- Easy-to-hack environment (hopefully) controlled by administrator
- Used to learn about hackers behavior or as decoy
- Low interaction (emulated) vs. High interaction (real OS/apps)
- Virtual Machines as honeypots

DNS Security [5]

- DNS requests and responses are not authenticated
- DNS relies heavily on caching for efficiency, enabling cache pollution attacks
- DNSSec:
 - Each domain signs their "zone" with a private key
 - Public keys published via DNS
 - Zones signed by parent zones

SNMP Security

- Management Information Base = MIB
- SNMPv1 is simple, effective, and provides the majority of SNMP service in the field
- SNMPv2 adds some functionality to v1
- SNMPv3 is a security overlay for either version, not a standalone replacement

References

[1] <u>https://www.cs.purdue.edu/homes/dec/essay.network.layers.html</u>

[2] <u>http://www.faqs.org/faqs/firewalls-faq/</u>

[3] <u>http://www.sans.org/reading-room/whitepapers/protocols/ssl-tls-beginners-guide-1029</u>

[4] <u>https://www.cs.columbia.edu/~smb/papers/ipext.pdf</u>

[5] <u>http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html</u>

[6] D. Chaum. Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms, Communications of the ACM, v. 24, n. 2, Feb. 1981, pages 84-88.

References

[7] <u>http://www.onion-router.net/Publications/IH-1996.pdf</u>

[8] http://www.onion-router.net/Publications/tor-design.pdf

[9] <u>http://avirubin.com/crowds.pdf</u>

[10] <u>http://resources.infosecinstitute.com/ssl-attacks/</u>

[11] https://tools.ietf.org/html/rfc7457

