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• “My software never has bugs. It just develops random features.”
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Contents

• Computer Vulnerabilities
• Cause & classification

• Memory safety

• Common mitigations

• State of the Art

• Eternal War in Memory (paper presentation)
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Software – the final frontier

• Access control and crypto are the bricks for building blocks

• Protocols/algorithms used to design usefull blocks

• Software implements all of the above



Software vulnerabilities

● Memory safety: buffer overflow, dangling pointer, race condition, 
memory leak, free after use etc.

● Input validation: code injection, format string attacks, path traversal…

● Side channel attacks

● UI confusion

● Privilege escalation

● And many more!
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Software vulnerabilities (2)

● Chrome: 70% of all security 
bugs are memory safety issues

https://www.zdnet.com/article/chrome-70-of-all-
security-bugs-are-memory-safety-issues/
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Intro: address space

● Userspace processes have virtual 
memory

● Compiler (linker) + OS decide where 
each segment goes.

● Address space layout has impact on 
application’s security
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Intro: stack frame

● Stack grows downward (x86)

● Contains function arguments, saved 
CPU state (registers, instruction / 
frame pointers) and local variables.
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Stack buffer overflow

● Happens when a buffer’s is written after 
its allocated size.
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char buf[10];
char *input = “This text is larger than 
expected”;

strcpy(buf, input);
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Buffer overflow (2)
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Buffer overflow (3)

● ret instruction will pop the return address 
from the stack, then jump to it.

● CPU will execute the injected code 
(shellcode).

● NOP sled when the address is not fixed:
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What about heap?

● C++ (and other OOP languages) use 
virtual method tables for implementing 
polymorphism

● Attacker replaces VTable pointers to 
controlled memory

● When an object method is called, the 
function pointer is loaded from the 
attacker’s VTable
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What about .data?

#include ...

struct app_state_t {

int buf [20];

void *next_item;

} ;

struct app_state_t app_state;

...

main() {

// ... buffer overflow on app_state.buf ...

*app_state.next_item = new_item;

}
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Microsoft: BlueHatIL - Trends, challenge, and shifts in software vulnerability 
mitigation
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Real World Examples
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● EternalBlue - SMB Protocol Vulnerability (CVE-2017-0144)
https://research.checkpoint.com/2017/eternalblue-everything-know

● Microsoft Exchange RCE Vulnerability (CVE-2021-26857)
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/

● Flash Player (CVE-2018-15982)
https://securityaffairs.co/wordpress/78712/hacking/cve-2018-15982-flash-zero-day.html
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Buffer overflow mitigation

● DEP (data execution prevention) / No-execute (NX) bit

● defeated by ROP (return oriented programming)

● Address space layout randomization

● Stack Canaries

● defeated by memory leakage, side channels etc.

● Control flow integrity
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Return oriented programming
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Control Flow Integrity
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