
Introduction to Computer 
Security Lecture Slides

© 2023 by Mihai Chiroiu

is licensed under Attribution-NonCommercial-ShareAlike 4.0 
International

1© Mihai Chiroiu

https://ocw.cs.pub.ro/courses/isc
https://ocw.cs.pub.ro/courses/isc
https://www.linkedin.com/in/mihaichiroiu/
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1


Application Security
Asst. Prof. Mihai Chiroiu

2© Mihai Chiroiu



• “My software never has bugs. It just develops random features.”

3© Mihai Chiroiu



Contents

• Computer Vulnerabilities
• Cause & classification

• Memory safety

• Common mitigations

• State of the Art

• Eternal War in Memory (paper presentation)

© Mihai Chiroiu 4



Software – the final frontier

• Access control and crypto are the bricks for building blocks

• Protocols/algorithms used to design usefull blocks

• Software implements all of the above



Software vulnerabilities

● Memory safety: buffer overflow, dangling pointer, race condition, 
memory leak, free after use etc.

● Input validation: code injection, format string attacks, path traversal…

● Side channel attacks

● UI confusion

● Privilege escalation

● And many more!

© Mihai Chiroiu 6



Software vulnerabilities (2)

● Chrome: 70% of all security 
bugs are memory safety issues

https://www.zdnet.com/article/chrome-70-of-all-
security-bugs-are-memory-safety-issues/

© Mihai Chiroiu 7



Intro: address space

● Userspace processes have virtual 
memory

● Compiler (linker) + OS decide where 
each segment goes.

● Address space layout has impact on 
application’s security

© Mihai Chiroiu 8



Intro: stack frame

● Stack grows downward (x86)

● Contains function arguments, saved 
CPU state (registers, instruction / 
frame pointers) and local variables.

© Mihai Chiroiu 9



Stack buffer overflow

● Happens when a buffer’s is written after 
its allocated size.

© Mihai Chiroiu

char buf[10];
char *input = “This text is larger than 
expected”;

strcpy(buf, input);

10



Buffer overflow (2)

© Mihai Chiroiu 11



Buffer overflow (3)

● ret instruction will pop the return address 
from the stack, then jump to it.

● CPU will execute the injected code 
(shellcode).

● NOP sled when the address is not fixed:

© Mihai Chiroiu 12



What about heap?

● C++ (and other OOP languages) use 
virtual method tables for implementing 
polymorphism

● Attacker replaces VTable pointers to 
controlled memory

● When an object method is called, the 
function pointer is loaded from the 
attacker’s VTable

© Mihai Chiroiu 13



What about .data?

#include ...

struct app_state_t {

int buf [20];

void *next_item;

} ;

struct app_state_t app_state;

...

main() {

// ... buffer overflow on app_state.buf ...

*app_state.next_item = new_item;

}

© Mihai Chiroiu 14



Microsoft: BlueHatIL - Trends, challenge, and shifts in software vulnerability 
mitigation

© Mihai Chiroiu 15



Real World Examples

© Mihai Chiroiu

● EternalBlue - SMB Protocol Vulnerability (CVE-2017-0144)
https://research.checkpoint.com/2017/eternalblue-everything-know

● Microsoft Exchange RCE Vulnerability (CVE-2021-26857)
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers/

● Flash Player (CVE-2018-15982)
https://securityaffairs.co/wordpress/78712/hacking/cve-2018-15982-flash-zero-day.html

16



Buffer overflow mitigation

● DEP (data execution prevention) / No-execute (NX) bit

● defeated by ROP (return oriented programming)

● Address space layout randomization

● Stack Canaries

● defeated by memory leakage, side channels etc.

● Control flow integrity

© Mihai Chiroiu 17



Return oriented programming

© Mihai Chiroiu 18



Control Flow Integrity

© Mihai Chiroiu 19


	Slide 1: Introduction to Computer Security Lecture Slides 
	Slide 2: Application Security
	Slide 3
	Slide 4
	Slide 5: Software – the final frontier
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

