
Introduction to Computer
Security Lecture Slides

© 2023 by Mihai Chiroiu
is licensed under Attribution-NonCommercial-ShareAlike 4.0

International

1© Mihai Chiroiu

https://ocw.cs.pub.ro/courses/isc
https://ocw.cs.pub.ro/courses/isc
https://www.linkedin.com/in/mihaichiroiu/
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

Application Security
Asst. Prof. Mihai Chiroiu

2© Mihai Chiroiu

● “My software never has bugs. It just develops random features.”

● “I have one more bug left”

● “You’re holding it wrong!”

3© Mihai Chiroiu

Contents

•Computer Vulnerabilities
• Cause & classification

• Memory safety

• Common mitigations

•State of the Art

• Eternal War in Memory (paper presentation)

© Mihai Chiroiu 4

Software – the final frontier

•Access control and crypto are the bricks for building blocks

•Protocols/algorithms used to design useful blocks

• Software implements all of the above

Properties of a vulnerability

© Mihai Chiroiu

● Target application / system component

● Cause

● Severity

● Effect: Remote vs Local:

○ Remote Code Execution (RCE): enter system via network;

○ Local Privilege Escalation: become root!

● Disclosure timeline (previously discovered vs 0-day)

6

Vulnerability causes

● Access control / business logic bugs

● Code injection

● Input validation (format string attacks, path traversal…)

● Memory safety: buffer overflow, dangling pointer, race condition,
information leak, use after free etc.

● Side channel attacks

● UI confusion

● And many more!

© Mihai Chiroiu 7

Memory safety

● Chrome: 70% of all security
bugs are memory safety issues

https://www.zdnet.com/article/chrome-70-of-all-s
ecurity-bugs-are-memory-safety-issues/

© Mihai Chiroiu 8

Intro: address space

● Userspace processes have virtual
memory

● Compiler (linker) + OS decide where
each segment goes.

● Address space layout has impact on
application’s security

© Mihai Chiroiu 9

Intro: stack frame

● Stack: function arguments, saves CPU state
(saved program counter, prev. frame, registers)
and local variables:

int f(int x) {

 int n;

 int buf[10];

 // ...

}

int main() {

 f(); // asm call f() <-- saves PC
}

© Mihai Chiroiu 10

Stack buffer overflow

● Happens when a buffer’s is written after
its allocated size.

© Mihai Chiroiu

char buf[10];
char *input = “This text is larger than
expected”;

strcpy(buf, input);

11

Stack overflow (2)

© Mihai Chiroiu 12

Stack overflow (3)

● ret instruction will pop the return address
from the stack, then jump to it.

● CPU will execute the injected code
(shellcode).

● NOP sled when the address is not fixed:

© Mihai Chiroiu 13

Format string attacks

printf("x=%d, y=%d, z=%d", x, y, z)

● What if the user controls format string?
■ %s: read from custom memory address

● Read-only vulnerability? Nope…

"%n": consume next argument as address

(pointer) and store the number of bytes

written so far into it.

z

y

x

“fmt string”

printf: RIP

printf: RBP

What about heap?

● C++ (and other OOP languages) use
virtual method tables for implementing
polymorphism

● Attacker replaces VTable pointers to
controlled memory

● When an object method is called, the
function pointer is loaded from the
attacker’s VTable

© Mihai Chiroiu 15

What about .data?
struct module {

 char private_data[1024];

 (void)(*callback)();

};

struct module enabled_modules;

...

main() {

 struct module *mod = ...;

 // meanwhile: buffer overflow on module->private_data

 mod->callback();

}

© Mihai Chiroiu 16

Use after free

● Free the memory of an object (not
needed anymore)

● Next, application allocates new
object with attacker-controlled data

● Another section of the application
uses the released object (still has
an old pointer stored in a variable)

● Are scripting languages safe?

➢ nope

© Mihai Chiroiu 17

// Adobe Flash exploit (ActionScript)

ps = PSDK.pSDK;
ps.release();
ms = new MediaResource("jack",
 0x54336677, null);
try{
 ps.createDefaultContentFactory();
} catch (e:Error) { }

Just in Time + scripting => bytecode!

● Defeats R⊕X
● JIT Spraying:
VAL = (VAL + 0xA8909090)|0;

VAL = (VAL + 0xA8909090)|0;

=> just in time compiles it into:
00: 05909090A8 ADD EAX, 0xA8909090

05: 05909090A8 ADD EAX, 0xA8909090

offset pointer with +1 byte:
03: 90 NOP

04: A805 TEST AL, 05

© Mihai Chiroiu 18

Size checks vs integer overflows

#define HEADER_SIZE 128

uint16_t len = read_input_size();

uint8_t *buffer = malloc(len + HEADER_SIZE);

// user gives a valid len = 65535

// malloc allocates just 127 bytes...

…
read_input_into_buffer(buffer, len);

Microsoft: BlueHatIL - Trends, challenge, and shifts in software vulnerability
mitigation

© Mihai Chiroiu 20

Real World Examples

© Mihai Chiroiu

● EternalBlue - SMB Protocol Vulnerability (CVE-2017-0144)
https://research.checkpoint.com/2017/eternalblue-everything-know

● Microsoft Exchange RCE Vulnerability (CVE-2021-26857)
https://www.microsoft.com/security/blog/2021/03/02/hafnium-targeting-exchange-servers

● Flash Player (CVE-2018-15982)
https://securityaffairs.co/wordpress/78712/hacking/cve-2018-15982-flash-zero-day.html

● Log4J (CVE-2021-44228):
https://blog.checkpoint.com/2021/12/11/protecting-against-cve-2021-44228-apache-log4j2-ver
sions-2-14-1/

21

https://securityaffairs.co/wordpress/78712/hacking/cve-2018-15982-flash-zero-day.html
https://blog.checkpoint.com/2021/12/11/protecting-against-cve-2021-44228-apache-log4j2-versions-2-14-1/
https://blog.checkpoint.com/2021/12/11/protecting-against-cve-2021-44228-apache-log4j2-versions-2-14-1/

Memory bugs mitigation

● DEP (data execution prevention) / No-execute (NX) bit
● defeated by ROP (return oriented programming)

● Address space layout randomization

● defeated by memory leaks

● Stack Canaries

● defeated by memory leakage, side channels etc.

● Control flow integrity

© Mihai Chiroiu 22

SoK: Eternal War in Memory
https://www.ieee-security.org/TC/SP2013/papers/4977a048.pdf

https://www.ieee-security.org/TC/SP2013/papers/4977a048.pdf

Return oriented programming

© Mihai Chiroiu 24

Control Flow Integrity

© Mihai Chiroiu 25

