
Operating Systems Security
Asst. Prof. Mihai Chiroiu

OS principles

• hardware abstraction
• resource management: accounting, scheduling, and synchronisation
• storage and communication services: file systems, network, inter-

process communication (IPC)
• libraries of common functions: libc
• management of user interaction and interface

• More here: http://ocw.cs.pub.ro/courses/so

© Mihai Chiroiu 2

Stats (2014)

© Mihai Chiroiu 3

http://www.gfi.com/blog/most-vulnerable-operating-systems-and-applications-in-2014/

http://www.gfi.com/blog/most-vulnerable-operating-systems-and-applications-in-2014/

What should the OS protect?

• Itself (from users)

• Processes (both services and user’s application)

• Files access

• Communication (both IPC and network)

© Mihai Chiroiu 4

First, authentication

• Most common technique are passwords (i.e., something you know)
• Stored as hashes typically using a random salt

• Tokens (i.e., something you have)
• Using HSM
• Often combined with a PIN

• Biometrics (i.e., something you are)
• Fingerprints, iris scans, etc.

• We will assume that authentication is validated!

© Mihai Chiroiu 5

Windows 10

© Mihai Chiroiu 6

Virtualization-based security (VBS)

© Mihai Chiroiu 7

User space

Kernel space

Normal World Secure World

NTOS

App1 App2

Secure Kernel (Shim
layer)

Second Level Address Translation
(1-1 without access)

Second Level Address Translation
(1-1 with access)

Trusted Hyper-V

Trusted services
(e.g., encryption

RPC
Shared memory

Code Integrity

• Kernel Mode Code Integrity (KMCI)
• Validate drivers’ signature

• User Mode Code Integrity (UMCI)
• Validate apps signature

• AppLocker
• Policy for what applications can be executed

© Mihai Chiroiu 8

Protected Processes

• Windows 10 prevents untrusted processes from interacting or
tampering with those that have been specially signed.

• Protected Processes defines levels of trust for processes.

• Less trusted processes are prevented from interacting with and
therefore attacking more trusted processes.

© Mihai Chiroiu 9

Address Space Layout Randomization (ASLR)

© Mihai Chiroiu 10

• Present in most OSes
• Not a real solution
(part of a complex one) [1]

ASLR implementation

• On Windows, ASLR does not affect runtime performance, but it can
slow down the initial loading of modules.

• ASLR also randomizes heap and stack memory
• On Linux, ASLR imposes 26% [9]
• On Android, ASLR bases for all others and the bases remain constant

across executions [10]
• On iOS, dyld_shared_cache (libraries) load address is randomized (at

boot time) [11]
• ASLR cannot be force-enabled for applications on Linux (they must be

compiled with PIE), as EMET can do on Windows.

© Mihai Chiroiu 11

Data Execution Prevention (DEP)

• DEP uses the No eXecute bit on modern CPUs

• Available on all major Oses

• Not real use if you can access mprotect/VirtualProtect/etc.

© Mihai Chiroiu 12

TrueCrypt - Full-disk encryption (3rd party)

• Password used to encrypt/decrypt when mounting the partition.
• Supports plausible deniability

• can be configured to hide even the existence of encrypted data.
• Unused space on an encrypted partition is initialized with random data,

encrypted volume is indistinguishable from such random data.

© Mihai Chiroiu 13

BitLocker – Full-disk encryption

• Encrypting entire hard drives
• Support for Self-Encrypting Drives (SED) for offloading encryption
• Uses Trusted Platform Module (TPM) v1.2 to validate pre-OS

components

© Mihai Chiroiu 14

Where’s the Encryption Key?
1. SRK (Storage Root Key)

contained in TPM
2. SRK encrypts FVEK (Full Volume

Encryption Key) protected by
TPM/PIN/USB Storage Device

3. FVEK stored (encrypted by SRK) on
hard drive in the OS Volume

System

OS Volume
3

2 FVEK 1 SRK

File permissions

• Stored as an ACE in a discretionary access control list (DACL) that is
part of the object’s security descriptor.

• Permissions can also be explicitly denied.

• Inherited permissions are those that are propagated to a child object
from a parent object.

© Mihai Chiroiu 15

Network access

• Per application firewall

© Mihai Chiroiu 16

Microsoft Bounty Programs

• Online Services Bug Bounty (Microsoft Azure services additions: 22nd
April 2015)

• $500 USD up to $15,000 USD.

• Mitigation Bypass Bounty (Windows 10)
• up to $100,000 USD

• Bounty for Defense (Windows 10)
• up to $100,000 USD

• https://technet.microsoft.com/en-US/security/dn425036

© Mihai Chiroiu 17

https://technet.microsoft.com/en-US/security/dn425036

Linux

© Mihai Chiroiu 18

Linux - setuid

• Sometimes we want to specify that a file can only be modified by a
certain program.

• Thus, we want to control access on a per-program, rather than a per-
user basis.

• We can achieve this by creating a new user, representing the role of a
modifier for these files.

• Mark the program, as setuid to this user.
• This means, no matter who started the program, it will run under the

user id of this new user.

© Mihai Chiroiu 19

LUKS – Full-disk encryption [3]

• A master key is generated by the system (used to encrypt/decrypt
data on disk)

• Protected using the user’s password

• Several master keys are stored, one for each user

© Mihai Chiroiu 20

Linux Security Modules (2002) [6]

• IPC Hooks
• Filesystem Hooks
• Network Hooks

© Mihai Chiroiu 21

SELinux

• Mandatory Access Control system for Linux
• Implement Flask architecture [7]

• A process (a daemon or a running program) is called a subject.
• A role defines which users can access that process.
• An object in SELinux is anything that can be acted upon
• A file's context is called its type in SELinux lingo

© Mihai Chiroiu 22

SELinux

• An SELinux policy defines user access to roles, role access to domains, and
domain access to types.

• Possible modes are Enforcing, Permissive, or Disabled

• -rw-r--r--. root root
unconfined_u:object_r:httpd_sys_content_t:s0
/var/www/html/index.html

• system_u:system_r:httpd_t:s0 7126 ?
00:00:00 httpd

• sesearch --allow --source httpd_t --target
httpd_sys_content_t --class file

• allow httpd_t httpd_sys_content_t : file { ioctl read
getattr lock open } ;

© Mihai Chiroiu 23

Android

© Mihai Chiroiu 24

Android Architecture

© Mihai Chiroiu 25

Package (APK) integrity

• Components of applications
• Activity: User interface
• Service: Background service
• Content Provider: SQL-like database
• Broadcast receiver: Mailbox for broadcasted messages

• META-INF contains the application certificate and package manifest
• Certified by developer
• Used for: application upgrade; application modularity (two apps from

same developer can collude);

© Mihai Chiroiu 26

Android Security Basics

• Applications, by default, have no permissions
• Applications statically declare the permissions they require

• Android system prompts the user for consent at the time the application is
installed

• No mechanism for granting permissions dynamically (at run-time)
• In AndroidManifest.xml, add one or more <uses-permission> tags
• e.g., <uses-permission android:name= "android.permission.RECEIVE_SMS" />

© Mihai Chiroiu 27

http://developer.android.com/reference/android/R.styleable.html#AndroidManifestUsesPermission

Android Sandbox

• Each application is isolated in its own sandbox
• Applications can access only its own resources
• Access to sensitive resources depends on the application’s rights

• Enforced by underlying Linux Kernel (SELinux) and middleware
• Each App is assigned a unique UserID during installation and runs in

separate process

© Mihai Chiroiu 28

Android Sandbox

© Mihai Chiroiu 29

Android Sandbox

• App UID must be member of a Linux group to have access to sockets,
etc.

• UID of an app with corresponding permission is added to group
during install

• Kernel access errors translated into Java security exceptions by core
libraries

© Mihai Chiroiu 30

Isolated Processes

• Security-aware application developer can declare in application
manifest that a Service component should be executed as an isolated
process

• Component executed on separate process with UID nobody
• Nobody is a UID with no privileges

• All permission checks will return deny
• No file system access

• only communication with it is through the Service API

• Allows compartmentalization of the app

© Mihai Chiroiu 31

iOS

© Mihai Chiroiu 32

iOS Architecture

© Mihai Chiroiu 33

Application Layer

System apps Third party apps

Browser SMS Facebook Skype

Objective-C Framework Layer

Core OS Layer
(iOS kernel)

Drivers File
System

TrustedBSD MAC
Framework

Objective-C
Runtime

Objective-C Public Frameworks

SMS Phone Calendar …

Objective-C Private Frameworks

Contacts Location …Images

Network

Available to
Developers

iOS Protection Mechanisms

• Encrypted file system
• Applications signing
• Vetting processs (app reviewing)

• 700 - 1000 apps are submitted each day [Apple]

• Address Space Layout Randomization (ASLR)
• Non-executable memory security model (with code signing on

memory pages)

© Mihai Chiroiu 34

Sandboxing

• Enforcement at the Objective-C runtime layer
• That could be bypassed

• Enforcement by the TrustedBSD kernel module
• Based on a generic profile that forces application containment (for IPC and

files)

• Custom rules added by users are allowed

© Mihai Chiroiu 35

Xen VMM

© Mihai Chiroiu 36

Security possibilities

• VM introspection
• Dom0 dissagregation

• Driver domains

• Xen Security Module (same as LSM)
• Restricts hypercalls to those needed by a particular guest

© Mihai Chiroiu 37

Formally verified security kernel

© Mihai Chiroiu 38

seL4 [4]

• Based on a minimal L4 kernel
(drivers are outside kernel, user-
mode processes)

• A refinement proof establishes a
correspondence between a high-
level (abstract) and a low-level
(concrete, or refined)
representation of a system.

© Mihai Chiroiu 39

Abstract Model

Binary Code

C Implementation

Proof

Proof

No buffer
overflow, stack
smashing, ROP,
code injection

No need to trust
the compiler

References

• [1] https://www.trust.informatik.tu-
darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/jit-
rop.pdf

• [2] https://technet.microsoft.com/en-
us/library/mt601297(v=vs.85).aspx

• [3] https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-
standard/on-disk-format.pdf

• [4] http://web1.cs.columbia.edu/~junfeng/09fa-
e6998/papers/sel4.pdf

© Mihai Chiroiu 40

https://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/PubsPDF/jit-rop.pdf
https://technet.microsoft.com/en-us/library/mt601297(v=vs.85).aspx
https://gitlab.com/cryptsetup/cryptsetup/wikis/LUKS-standard/on-disk-format.pdf
http://web1.cs.columbia.edu/%7Ejunfeng/09fa-e6998/papers/sel4.pdf

References

• [5] https://opensource.com/business/13/11/selinux-policy-guide
• [6]

https://www.usenix.org/legacy/event/sec02/full_papers/wright/wrig
ht.pdf

• [7] https://www.nsa.gov/research/_files/publications/flask.pdf
• [8] http://css.csail.mit.edu/6.858/2012/readings/android.pdf
• [9] http://nebelwelt.net/publications/files/12TRpie.pdf

© Mihai Chiroiu 41

https://opensource.com/business/13/11/selinux-policy-guide
https://www.usenix.org/legacy/event/sec02/full_papers/wright/wright.pdf
https://www.nsa.gov/research/_files/publications/flask.pdf
http://css.csail.mit.edu/6.858/2012/readings/android.pdf
http://nebelwelt.net/publications/files/12TRpie.pdf

References

• [10] https://copperhead.co/blog/2015/05/11/aslr-android-zygote
• [11]

http://antid0te.com/CSW2012_StefanEsser_iOS5_An_Exploitation_Ni
ghtmare_FINAL.pdf

© Mihai Chiroiu 42

https://copperhead.co/blog/2015/05/11/aslr-android-zygote
http://antid0te.com/CSW2012_StefanEsser_iOS5_An_Exploitation_Nightmare_FINAL.pdf

	Operating Systems Security
	OS principles
	Stats (2014)
	What should the OS protect?
	First, authentication
	Windows 10
	Virtualization-based security (VBS)
	Code Integrity
	Protected Processes
	Address Space Layout Randomization (ASLR)
	ASLR implementation
	Data Execution Prevention (DEP)
	TrueCrypt - Full-disk encryption (3rd party)
	BitLocker – Full-disk encryption
	File permissions
	Network access
	Microsoft Bounty Programs
	Linux
	Linux - setuid
	LUKS – Full-disk encryption [3]
	Linux Security Modules (2002) [6]
	SELinux
	SELinux
	Android
	Android Architecture
	Package (APK) integrity
	Android Security Basics
	Android Sandbox
	Android Sandbox
	Android Sandbox
	Isolated Processes
	iOS
	iOS Architecture
	iOS Protection Mechanisms
	Sandboxing
	Xen VMM
	Security possibilities
	Formally verified security kernel
	seL4 [4]
	References
	References
	References

