

Internet of Things

Lecture 6 - Security Attacks in IoT

Attacks against IoT critical apps

- Remote location, unsupervised
 modify & destroy nodes
- Resource constrained

Attacks against IoT

- easily compromised
- Connected to the Internet
- Security solutions
 - No CPU intensive solutions
 - \circ Lightweight solutions

Image source:

https://www.einfochips.com/blog/botnet-attacks-how-iot-devices-become-part-victim-of-such-attacks/

mbedded

atoru

Log4j zero-day flaw: What you need to know and how to protect yourself

The Log4j vulnerability affects everything from the cloud to developer tools and security devices. Here's what to look for, according to the latest information.

IoT Botnet – DDoS attack

Attacks classification

5

- Modify node behavior Ο
- Launch other attacks Ο

- Attacker is in the proximity of the devices
- Tampering \bullet

Physical Attacks

- Physical modification Ο
- Device, communication channel 0
- Malicious Code Injection
 - Inject malicious code 0

- RF Interference/Jamming
 - \circ $\,$ Generate noise on the wireless channel $\,$
 - Prevent the device from communicating
 - \circ DoS
- Fake Node Injection
 - Insert a malicious node
 - Capture traffic
 - Launch other attacks

- Sleep Denial Attack
 - \circ Duty cycling
 - \circ $\,$ Prevent nodes from sleeping $\,$
 - Deplete battery
 - DoS
- Permanent Denial of Service (PDoS)
 - Phlashing
 - Destroy/disable device
 - Firmare, BIOS corruption

- Side Channel Attack
 - Use external information to learn about the implementation
 - Attack the physical effects of an implementation
 - Passive:
 - Power analysis attack
 - Electromagnetic analysis attack
 - Active:
 - Electromagnetic fault injection
 - Temperature variation

Physical attacks, effects and countermeasures.

Attack Name	Effects	Countermeasures Proposed	Countermeasure References
Tampering and	Access to	PUF based	Aman et al.
Malicious Code	sensitive	Authentication	(2017)
Injection	information and		
	Gain access; DoS		
RF Interfer-	DoS;	CUTE Mote	Gomes et al.
ence/Jamming	Hinder/Jam		(2017)
	Communication		
Fake Node	Control data	PAuthKey	Porambage et al.
Injection	flow; Man in the		(2014)
	Middle		
Sleep Denial	Node shutdown	CUTE Mote; Support	Gomes et al.
		Vector Machine	(2017) and Hei
		(SVM)	et al. (2010)
Side Channel	Collect	Masking technique;	Aman et al.,
Attack	Encryption Keys	Authentication using	2017 and Choi
		PUF	and Kim (2016)
Permanent	Resource	NOS Middleware	Sicari et al.
Denial of Service	Destruction		(2018)
(PDoS)			

Countermeasures against Physical Attacks

Source: Sengupta et al. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT.

- Traffic Analysis Attack
 - intercept packets
 - \circ steal private information
- RFID Spoofing
 - steal RFID tag information
 - $\circ \quad \text{spoof RFID packets}$
- RFID Unauthorized Access
 - read/modify/delete data
 - \circ lack of authentication

- falsify/modify routing information
- $\circ \quad \text{routing loops} \quad$

- \circ fake routing messages
- compromise routing protocol
- Selective Forwarding
 - route only some packets, drop packets, modify packets
 - \circ $\,$ data that reaches the destination is incomplete
 - \circ $\,$ compromises communication $\,$

- Sinkhole Attack
 - \circ propagate fake routing info
 - pose itself as gateway/sink
 - \circ $\,$ all traffic go through that node
- Wormhole Attack
 - \circ $\;$ low latency link for tunneling packets
 - \circ $\,$ to a distant part of the network
 - compromise routing protocol

- Sybil Attack
 - \circ $\;$ asume multiple identities and locations
 - compromise network, routing protocol
 - $\circ \quad \text{unfair resource allocation} \\$
- Man in the Middle (MitM) Attack
 - \circ $\;$ intercept and modify traffic between 2 entities
 - \circ extract private information
 - modify packets

15

Replay Attack

- retransmit some intercepted packets
- overload network, DoS
- Denial of Service (DoS) Attack
 - \circ disrupt normal functionality
 - target network, devices, application
- Distributed Denial of Service (DDoS) Attack
 - carried by multiple malicious nodes
 - target server, other device, the whole network

Countermeasures against Network Attacks

Network attacks, effects and countermeasures.

Attack Name	Effects	Countermeasures Proposed	Countermeasure References	
Traffic Analysis Attack	Data Leakage (Network Information)	Privacy preserving traffic obfuscation framework	Liu et al. (2018)	
RFID Spoofing and Unauthorized Access	Data Manipulation and Modification (Read, Write, Delete)	SRAM based PUF	Guin et al. (2018)	
Routing Information Attacks	Routing Loops	Hash Chain Authentication;	Glissa et al. (2016)	Sourc surve block
Selective Forwarding	Message Destruction	Hash Chain Authentication; Monitor based approach	Glissa et al. (2016) and Pu and Hajjar (2018)	

Source: Sengupta et al. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT.

Countermeasures against Network Attacks

Attack Name	Effects	Countermeasures Proposed	Countermeasure References	
Sinkhole Attack	Data alteration	Hash Chain	Glissa et al.	
	or leakage	Authentication;	(2016) and	
		Intrusion Detection	Cervantes et al. (2015)	
Wormhole Attack	Packet tunneling	Clustering based Intrusion Detection System	Shukla (2017)	
Sybil Attack	Unfair resource allocation; Redundancy	Trust aware Protocol	Airehrour et al. (2019)	
Man in the	Data Privacy	Secure MQTT;	Singh et al.	Source: Sengupta et al. A comprehensive
Middle Attack	violation	Inter-device Authentication	(2015) and Park and Kang (2015)	survey on attacks, security issues and blockchain solutions for IoT and IIoT.
Replay Attack	Network congestion; DoS	Signcryption	Ashibani and Mahmoud (2017)	
DoS/DDoS	Network	EDoS Server; SDN	Adat and Gupta	
Attack	Flooding; Network Crash	based IoT framework	(2017) and Yin et al. (2018)	

- Exploit software vulnerabilities
- Malicious applications
 - viruses, worms, trojans, spyware
 - adware, backdoors, rootkits
- Actions
 - Steal sensitive information
 - Modify and destroy data
 - Disable devices, affect system functionality
 - Infect Cloud apps
- Hardware trojans modified integrated circuits

Software attacks, effects and countermeasures.

Attack Name	Effects	Countermeasures Proposed	Countermeasure References	
Virus, Worms, Trojan Horses, Spyware and Adware	Resource Destruction	Lightweight framework; High Level Synthesis (HLS)	Liu et al., 2016 and Konigsmark et al. (2016)	
Malware	Infected Data	Malware Image Classification; Lightweight Neural Network Framework	Naeem et al. (2018) and Su et al. (2018)	Source: Sengupta et al. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT.

- Data collected by IoT nodes and stored in Cloud
- Data Inconsistency
 - \circ $\;$ Attack on data integrity $\;$
 - Data in tranzit or stored data
- Unauthorized Access
 - Data access, data ownership without authorization
- Data Breach/Memory Leak
 - o disclosure of sensitive, confidential data

Data attacks, effects and countermeasures.

Attacks	Effects	Countermeasures Proposed	Countermeasure References
Data	Data Incon-	Chaos based scheme;	Song et al. (2017)
Inconsistency	sistency	Blockchain	and Machado and
Unauthorized	Violation of	Blockchain-based	Rahulamathavan et
Access	Data	ABE; Privacy	al. (2017) and Zheng
-	Privacy	Preserving ABE	et al. (2018)
Data Breach	Data	Two Factor	Gope and Sikdar
	Leakage	Authentication; DPP;	(2018), Gai et al.
		ISDD	(2018) and Sengupta et al. (2019)

Source: Sengupta et al. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT.

- Edimax IP Cameras (Ling et al., 2017)
 - device scanning, brute force, device spoofing
 - \circ take control over cameras
 - \circ $\,$ device spoofing to obtain passwords $\,$
 - device scanning to identify online cameras
- Smart Home/Smart Metering Systems (Wurm et al., 2016)
 - brute force attacks to obtain passwords
 - meters used to launch ransomware attacks

- Virtual Private Assistants VPA (Zhang et al., 2018)
 - \circ $\,$ Amazon Echo and Google Home $\,$
 - third-parties may publish new skills (function)
 - \circ $\;$ attackers publish malicious skills $\;$
 - \circ voice squatting
 - voice masquerading
- Attack on DNS Service provider called Dyn (more info)
 - DDoS IoT Botnet
 - affected services of Twitter, Etsy, Github, Soundcloud, Spotify, Shopify, and Intercom
 - disrupted access to PayPal, BBC, Wall Street Journal, CNN, HBO Now, New York Times, Financial Times, etc.

- Mirai IoT Botnet (<u>more info</u>)
 - Mirai infected devices searched for other vulnerable devices
 - \circ $\:$ used default passwords and infected other devices
 - \circ $\,$ shut down huge portions of the Internet
 - recommendations: change default passwords, security updates
- Jeep Hack (<u>more info</u>)
 - take total control of a Jeep SUV using the vehicle's CAN bus
 - exploiting a firmware update vulnerability
 - control the vehicle remotely
 - speed up, slow down, veer off the road

Tampering Attack Case Study

- Itron Centron CL200 smart meter
- Analyzed EEPROM & extracted Device ID
- Malicious meter
 - impersonates legitimate meter uses the same ID
 - sends fake data
 - stealing from the utility company

BEEEB	PreambleLength: 3024 PacketSymbols: 96 PacketLength: 13824 Same Meter ID				
2 G 13 Andrews	397 SCM:{1 127502044 Type: 7 Consumption: 5 SCM:{ID. 7502044 Type: 7 Consumption: 7 SCM:{ID.27502044 Type: 7 Consumption: 8 SCM:{ID:27502044 Type: 7 Consumption:	1009 CRC:0x5 1009 CRC:0x5 1009 CRC:0x5 15 CRC:0x6			
(a)	(b)				

Source: T. Alladi, V. Chamola, B. Sikdar and K. -K. R. Choo, "Consumer IoT: Security Vulnerability Case Studies and Solutions," in *IEEE Consumer Electronics Magazine*, vol. 9, no. 2, pp. 17-25, 2020.

Figure 2. (a) Itron Smart Meter (credit: Itron). (b) Compromised meter readings.

Tampering Attack Case Study

- Problem: EEPROM is vulnerable to illegitimate reading and writing
- Solution: PUFs to secure EEPROM data
 - digital fingerprint
 - allow only authenticated devices to modify data
 - challenge-response scheme
 - unique response for each challenge
 - unique identification
 - protection against tampering

- Fitbit Aria Smart Scale
- Sends data through a wireless AP to the Fitbit server
- MitM attack using Kali Linux
 - DHCP server (dnsmasq tool) assign IP address to device
 - VM & iptables forward IP packets through wlan0
 - hostapd as virtual wireless AP register device to it
 - acts as wireless AP and receives all packets from device
 - Wireshark on wlan0 to intercept packets
 - extract private data

Source: T. Alladi, V. Chamola, B. Sikdar and K. -K. R. Choo, "Consumer IoT: Security Vulnerability Case Studies and Solutions," in *IEEE Consumer Electronics Magazine*, vol. 9, no. 2, pp. 17-25, 2020.

Eavesdropping Attack Case Study

- No encrypted communication channel with the server
- Attacker may steal the user's private data
 - Solution: encrypt traffic end-to-end
- Standard encryption methods may not be fit for resource-constrained devices
 - Solution: lightweight & robust encryption

Malicious Code Injection Case Study

Embedded Systems Laboratory

> Source: T. Alladi, V. Chamola, B. Sikdar and K. -K. R. Choo, "Consumer IoT: Security Vulnerability Case Studies and Solutions," in

IEEE Consumer Electronics Magazine, vol. 9,

- Google Nest Thermostat
- Exploit vulnerabilities in the boot process
 - hard reset firmware update mode
 - upload custom images from USB in ROM
 - X-loader, u-boot (modified), ramdisk (custom)
 - modifies existing file system & obtains root access
 - Dropbear SSH server to obtain remote access on the device
 - Odysseus malware to connect to server

Malicious Code Injection Case Study

- Attackers gain remote root access to the device
- Device acts as a bot
- May gain access to other household devices
 - obtain private data, control devices
- Problem: no integrity verification of images loaded in ROM
- Solution: chain-of-trust based secure boot
 - special hardware is required

Malicious Node Insertion

- Edimax IP camera system
 - IP camera, controller, registration and command relay servers
 - each camera must register to a registration server before joining the network
- Infected IoT device (Mirai malware) bot
- TCP SYN message to discover IP cameras in the network
- Bot registers to the server using the camera's MAC address
 - Bot impersonates the camera and registers to the server
- Bot sends TCP requests to server
 - Server responds with authentication information

Malicious Node Insertion

- Bot extracts password and has access to the camera
- Download a malware on the camera
- Propagate the malware in the network
 - Network of bots = Botnet
- 65000 IoT devices infected by Mirai in 20 hours
- Solution: identity management, symmetric encryption (secret key)

- Sengupta, Jayasree, Sushmita Ruj, and Sipra Das Bit. "A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT." Journal of Network and Computer Applications 149 (2020): 102481. (pdf)
- T. Alladi, V. Chamola, B. Sikdar and K. -K. R. Choo, "Consumer IoT: Security Vulnerability Case Studies and Solutions," in IEEE Consumer Electronics Magazine, vol. 9, no. 2, pp. 17-25, 2020. (pdf)