

Internet of Things

Lecture 7 - Standardized Security Solutions for IoT

Main Challenges

- Very large attack surface and widespread deployment
- Limited device resources
- Security by design was not a top priority
- Lack of expertise
- Applying security updates

Security Requirements

- Well-known CIA security model
- Confidentiality
 - ensure that only the intended receiver can read/interpret a message
 - unauthorized access is prevented
- Integrity
 - unauthorized individuals should not be able to destroy/alter message
- Availability
 - ensure that system/network is able to perform its tasks without interruption
 - often measured in terms of percentages of up/down time

IoT Stack - Security Solutions

Simplified OSI model

- 5. Application layer
- 4. Transport Layer
- 3. Network Layer
- 2. Data Link Layer
- 1. Physical Layer

6LoWPAN stack

HTTP, COAP, MOTT, Websocket, etc.

UDP, TCP (Security TLS/DTLS)

IPv6, RPL

6LoWPAN

IEEE 802.15.4 MAC

IEEE 802.15.4

Table 1: IoT stack with standardized security solutions.

loT Layer	loT Protocol	Security Protocol	Scope
Application	CoAP, HTTP	User-defined	E2E
Transport	UDP, TCP	DTLS, TLS	E2E
Network	IP	IPsec	E2E
Routing	RPL	RPL security	Per-hop
6LoWPAN	6LoWPAN	None	None
Data-link	IEEE 802.15.4	802.15.4 security	Per-hop

IEEE 802.15.4

IEEE 802.15.4 Security

Security Level/Id	Security Suite	Confidentiality	Integrity
000	None	Х	×
001	AES-CBC-MAC-32	Х	<u> ✓</u>
010	AES-CBC-MAC-64	×	✓
011	AES-CBC-MAC-128	×	✓
100	AES-CTR	✓	×
101	AES-CCM-32	✓	√
110	AES-CCM-64	✓	✓
111	AES-CCM-128	✓	✓

Source: M Shila, Devu & Cao, Xianghui & Cheng, Yu & Yang, Zequ & Zhou, Yang & Chen, Jiming. (2014). Ghost-in-the-Wireless: Energy Depletion Attack on ZigBee.

IEEE 802.15.4 - Data integrity

- Message Authentication Code MAC (aka MIC)
- Computed based on the message and pre-shared secret key
- MAC sent with the message
- Receiver recomputes and verifies MAC
- AES-CBC-MAC and AES-CCM with 3 MAC lengths
 - o 32, 64, 128 bits

IEEE 802.15.4 - Data confidentiality

- Encryption
- Semantic security using a nonce
 - Counter or random value
 - Differentiate between similar or identical messages
 - Sent in the packet, in plaintext
- AES-CTR and AES-CCM
 - 13 bytes nonce
 - Source address (8 bytes) + frame counter (4 bytes) + security control field (1 byte)

IEEE 802.15.4 - Replay Protection

- Anti-replay protection
- Frame counter
 - Incremented at each message
 - Receiver rejects msgs with smaller sequence numbers
 - Efficiency based on counter roll over
 - 32 bits counter
 - Part of nounces

IEEE 802.15.4 - Access Control

- Access control list (ACL)
 - List of valid devices
 - Verify source address of packets
 - Only packets from valid sources are forwarded
 - Easily bypassed by spoofing attacks
 - Node pretends to be another valid node

- Several security mechanisms against routing attacks
- Secure RPL routing packets
- Security modes: unsecured, preinstalled, authenticated
- A bit specifies if the packet is secured or not
- Security section in RPL header -> security type
- Unsecured messages when lower layer provides security

- "unsecured" mode
 - clear text, no security
- "preinstalled" mode
 - keys are preinstalled on nodes
 - cryptographic algorithms
- "authenticated" mode
 - nodes receive keys from key authority after authentication
 - same security mechanisms as "preinstalled"

- Security Services
 - data authenticity
 - mandatory
 - MAC or digital signature
 - data confidentiality
 - optional
 - encryption
 - replay protection
 - optional
 - nonce

- AES-128 CCM
 - encryption & MAC
 - MAC on 32 & 64 bits
- RSA with SHA-256
 - signature on 2048 & 3072 bits
- AES-128 CCM nonce
 - incremented at each packet

	KIM=3		
LVL	Attributes	Sig Len	
0	Sign-3072	384	
1	ENC-Sign-3072	384	
2	Sign-2048	256	
3	ENC-Sign-2048	256	
	Unassigned	N/A	

- Key Identifier Mode (KIM)
 - key type symmetric (0,1,2) & asymmetric (3)
- Security Level (LVL)
 - cryptographic algorithms
- Consistency Check (CC)
 - anti-replay protection
 - nodes verify & synchronize counters

	KIM=3		
LVL	Attributes	Sig Len	
0	Sign-3072	384	
1	ENC-Sign-3072	384	
2	Sign-2048	256	
3	ENC-Sign-2048	256	
4-7	Unassigned	N/A	

- DTLS transport layer security
 - end-to-end security
 - data confidentiality and integrity, authentication
 - o non-repudiation, anti-replay protection
 - over UDP
- CoAP with DTLS support

- Provisioning phase
 - Device identifiers are collected
 - Identifiers list => ACL
 - Devices receive keys and ACL

- 4 security modes: NoSec, PreSharedKey, RawPublicKey, Certificates
- NoSec no DTLS, just UDP
- PreSharedKey
 - pre-programmed with symmetric shared keys
 - each device has a list of shared keys
 - keys used to communicate with other nodes/groups of nodes
 - DTLS in PSK mode
 - TLS_PSK_WITH_AES_128_CCM_8 cipher suite

RawPublicKey

- o pre-programmed with asymmetric key pair
- o node identity public key
- keys compatible with ECDSA
- SHA-256 for hashing
- TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher suite

Certificates

- asymmetric keys
- X.509 certificate signed by trust root
- devices have a list of trust anchors to validate certificates
- device authentication signature (ECDSA and SHA-256)
- key agreement using ECDHE
- TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher suite

- ECC used in 2 security modes
 - strong security
 - small keys
 - less processing power
 - ECC with 160 bit keys ~ RSA with 1024 bit keys (ECC is 15x faster)
 - suitable for IoT

Wi-Fi

Wi-Fi

- More and more used in IoT
- Security protocols: WEP, WPA, WPA2, WPA3
- Krack attack for WPA2
 - replay attack
 - vulnerability in the 4-way handshake
 - continuously retransmit the 3rd message
 - key is exposed
- WPA3 is recommended

Wi-Fi - WEP

- RC4 stream cipher for encryption
- Open authentication no credentials, only encryption
- Shared key authentication authentication(user/pass) + encryption (64/128b keys)
- Device authentication four-step challenge-response handshake
- CRC32 for integrity
 - Easy to compromise
- Deprecated since 2004

Wi-Fi - WPA

- RC4 stream cipher
- TKIP obtain keys
 - Dynamically generated keys for each packet

Transmitter Address (TA)

Temporal Key (TK)

- 256 bit keys
- MIC for integrity Michael

Wi-Fi - WPA2

- AES-CCMP for encryption
 - 128 bit keys
- TKIP only for compatibility with WPA
- 4 phases to create secure communication
 - 1. C&AP agree on security policy
 - 2. generate master key
 - 3. generate temporal keys
 - 4. use CCMP & temporal keys for data integrity & confidentiality

Wi-Fi - WPA2

- WPA2-Personal
 - PSK for authentication
 - shared key introduced by user on the client
- WPA2-Enterprise
 - 802.1X username/password or certificate
 - Server AAA (RADIUS) centralized authentication
 - EAP to send authentication messages
- Personal supports TKIP, Enterprise does not
- Personal for homes, Enterprise for companies

Source:

https://www.comparitech.com/blog/information-security/wpa2-aes-tkip/

WiFi - WPA3

SAE for authentication

- improves the security of initial key exchange
- better protection against offline dictionary-based attacks
- variation of dragonfly handshake
- replacement for PSK (WPA2 KRACK attack)
- considers devices as equals
- either device can initiate the handshake
- each device sends authentication info independently
- forward secrecy password is changed for every connection

WiFi - WPA3

- WPA3 Personal
 - 128-bit encryption
 - Authenticated encryption AES-CCMP 128
- WPA3 Enterprise
 - 128-bit mode
 - Device authentication: EAP
 - Authenticated encryption: AES-CCMP 128
 - Key derivation: HMAC-SHA256
 - Management frame protection: BIP-CMAC-128

WiFi - WPA3

- WPA3 Enterprise Mode
 - 192-bit mode
 - Device authentication: EAP-TLS with ECDH and ECDSA
 - Authenticated encryption: GCMP-256
 - Key derivation: HMAC-SHA384
 - Management frame protection: BIP-GMAC-256
 - Stronger security
 - Cannot be used on resource constrained devices

BLE

Bluetooth Low Energy (BLE)

- Each connection has a Security Mode and a Security Level
- Pairing
 - initiated by a central device
 - mutual device authentication
 - encrypt traffic using short-term key (STK)
 - distribute long-term keys (LTK)
 - LTK saved for rapid reconnection (bonding)

Bluetooth Low Energy (BLE)

- Encryption AES-CCM
 - LTK + AES-CCM => secret shared key (128b)
- Authentication digital signatures
 - Connection Signature Resolving Key (CSRK)
- Generic Access Protocol (GAP)
 - 2 security modes with multiple security levels
 - each connection starts at mode 1 level 1
 - update to another level depending on the authentication method
 - the authentication method is decided during pairing

BLE - Security Modes

- Security Mode 1
 - Level 1: No Security
 - Level 2: Unauthenticated pairing with encryption
 - Level 3: Authenticated pairing with AES-CCM encryption
 - Level 4: Authenticated LE Secure Connections pairing with encryption.
 - ECDH and AES-CCM (Bluetooth 4.2)
- Security Mode 2
 - Level 1: Unauthenticated pairing with data signing
 - Level 2: Authenticated pairing with data signing
- Mixed Security Mode
 - support both Security Mode 1 and 2

BLE - Pairing modes

- Pairing = authenticating the identity of 2 devices
- After that, link is encrypted and keys are distributed
- Keys are saved => Bonded devices, fast reconnect
- Pairing 3 phases
- Phase 1:
 - communicate capabilities in Pairing Request message
 - No Input No Output, Display Only, Display Yes/No, Keyboard Only and Keyboard Display
 - determine the pairing method (phase 2)

BLE - Pairing modes

• Phase 2:

- LE Legacy: generate Short Term Key (STK)
 - using a Temporary Key + random numbers
- LE Secure Connections: generate Long Term Key (LTK)

• Phase 3:

- Generate LTK if it was not generated in phase 2 (Legacy)
- Generate other keys (CSRK, IRK)
- Distribute keys

BLE - Legacy Pairing

Source: https://www.researchgate.net/publication/311611851_Exploiting_Bluetooth_Low_Energy_Pairing_Vulnerability_in_Telemedicine

BLE - Pairing Methods

- Devices negotiate the Short Term Key
- 4 methods depending on device capabilities
- Just Works
 - generated on both sides, based on the packets exchanged in plain text
 - no protection against MITM

BLE - Pairing Methods

- Passkey Display
 - one device displays a randomly generated 6-digit passkey
 - the other asks to enter the passkey
 - no display -> enter the same passkey on both
 - protection against MITM
- Out of Band (OOB)
 - data for generating the key is transmitted through other communication channel
 - o e.g. NFC
 - protection against MITM

BLE - Pairing Methods

- Numeric Comparison
 - **BLE 4.2**
 - LE Secure Connections Pairing
 - ECDH for key generation
 - New pairing method for key exchange
 - LTK generated in phase 2 and used to encrypt messages

BLE - Bluetooth 4.2

- New security model = LE Secure Connections
- ECDH for key generation
 - public/private key pairs
- Protects against passive eavesdropping
 - Numeric Comparison, Just Works, Passkey Entry, Out Of Band
- Protects against MITM attacks
 - Numeric Comparison, Passkey Entry, Out Of Band

Bibliography

- D. Dragomir, L. Gheorghe, S. Costea and A. Radovici, "A Survey on Secure Communication Protocols for IoT Systems," 2016 International Workshop on Secure Internet of Things (SIoT), 2016, pp. 47-62. (link)
- M Shila, Devu & Cao, Xianghui & Cheng, Yu & Yang, Zequ & Zhou, Yang & Chen, Jiming. (2014). Ghost-in-the-Wireless: Energy Depletion Attack on ZigBee.
- https://datatracker.ietf.org/doc/html/rfc3610
- https://www.krackattacks.com/
- https://www.wi-fi.org/discover-wi-fi/security
- https://www.grandmetric.com/2018/07/06/ended-wpa3-wi-fi-security-evolution/
- https://spectrum.ieee.org/everything-you-need-to-know-about-wpa3
- https://medium.com/rtone-iot-security/deep-dive-into-bluetooth-le-security-d230 1d640bfc