

Internet of Things

Lecture 1 - Introduction

Team:

- Lectures: Laura Ruse & invited speakers
- Labs: Cosmin Chenaru & Robert Alexă

Schedule:

- Lecture: Wednesday 8-10
- Lab: TBD

• Wiki page (SRIC sections):

https://ocw.cs.pub.ro/courses/iothings

- Lecture slides
- Labs
- Project
- Class Register
- Moodle page:

https://curs.upb.ro/2022/course/view.php?id=4867

Grading

- Labs & Project & Tests
 - 1p Lab activity
 - 4.5p Project
 - 0.5p Lecture tests

2.5p from the lab, project & tests are required to enter the exam.

- Exam
 - 4p Final exam

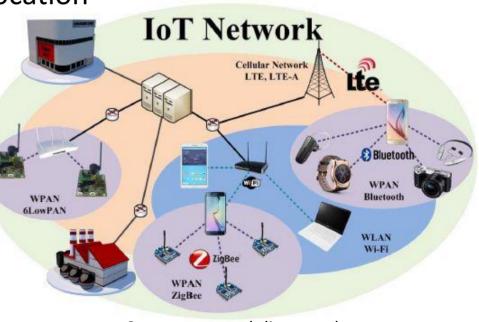
A total of 5 points are required to pass the class.

- Goal: obtain hands-on experience
- Potential topics on the wiki
- You may choose your own topic
- Milestones:
 - Initial proposal
 - Intermediary project presentation
 - Final project presentation

- Learn both fundamentals and applications of IoT networks
- Obtain hands-on experiences on developing IoT applications
- Discuss challenges and opportunities

Course Topics

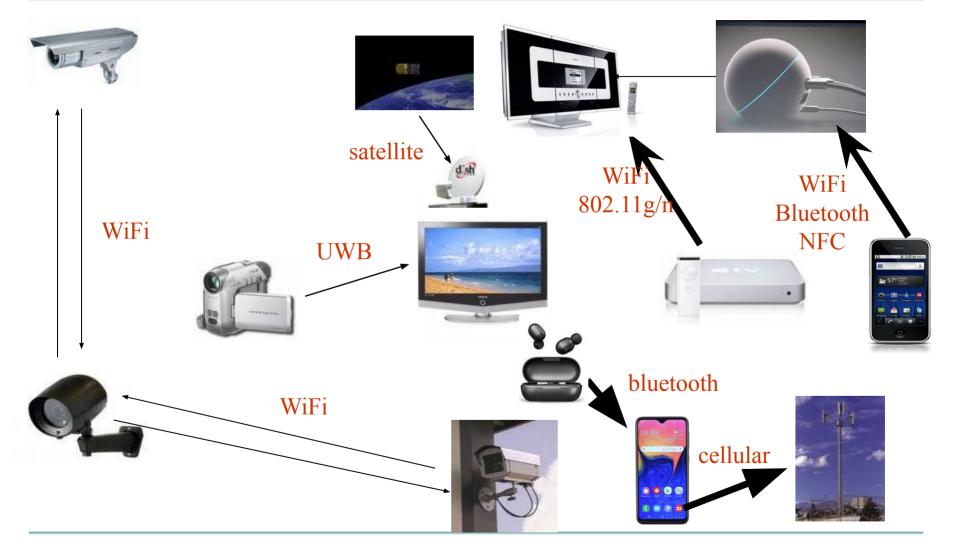
- IoT Applications
- Communication protocols
- Attacks and security solutions
- Operating Systems



- Pervasive wireless IoT applications
- Challenges facing wireless communication

ΙοΤ

- Network of things/nodes
- Collect data from the environment
- Send data to a local/remote location
- Actuate
- Unique identifier
- Connected to the Internet
- Various types of devices:
 - sensors, RFIDs, actuators
 - wearables, smartphones
 - smart appliances, tablets



Source: opentechdiary.wordpress.com

Home Networks

11

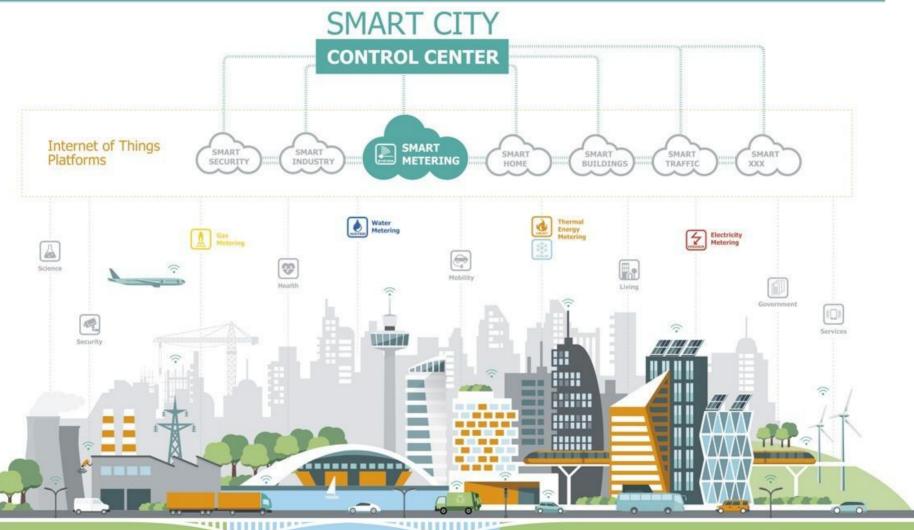
Use Case: Smart home

- Sensors
 - luminosity, temperature, humidity, pollution
- Smart meters
- Alarm system
- Smart appliances
 - Fridge, tv, AC, air filter, thermostat, light bulbs
- Everything is connected
- WiFi

Source:

https://corp.smartbrief.com/original/2019/01/5-trends -smart-home-technology

Use Case: Smart City



Source: https://internetofbusiness.com/global-smart-city-platform-market/ Smart cities: https://www.bmw.com/en/innovation/smart-cities.html

Use Case: Smart Metering

Source: https://smartwatermagazine.com/news/diehl-metering/smart-cities-and-industries-iot-solutions-diehl-metering

Lecture 1 - Introduction

Use Case: Mesh Network for Disaster Recovery/Military

Embedded Systems Laboratory

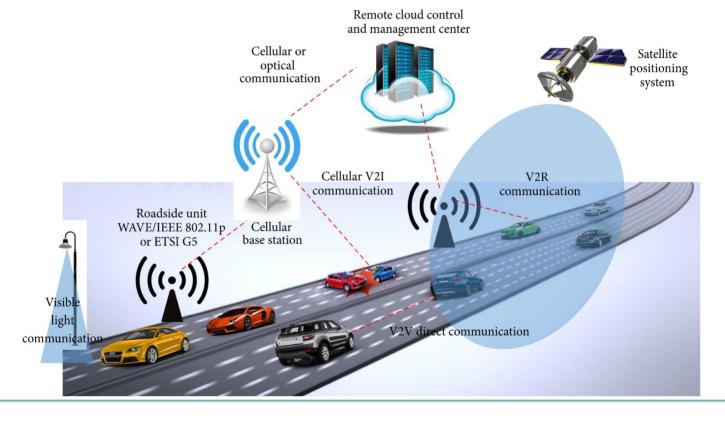
- 9/11, Tsunami, Hurricane Katrina, South Asian earthquake ...
- Wireless communication and mobile computing capability can make a difference between life and death
 - rapid deployment
 - efficient resource and energy usage
 - flexible: unicast, broadcast, multicast, anycast
 - resilient: survive in unfavorable and untrusted environments

Use Case: Traffic Signal Advisor

(i)

Source: http://www.princeton.edu

Use Case: Traffic Signal Advisor

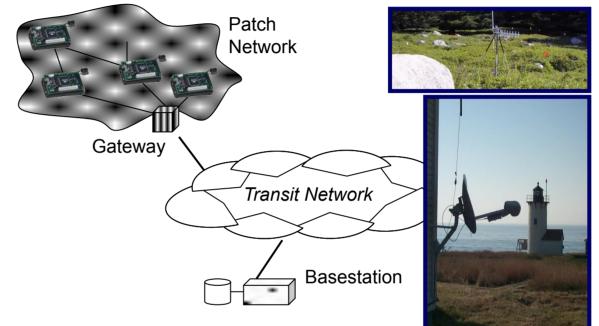


Use Case: Vehicular Networks

- vehicle-to-vehicle (V2V),
- vehicle-to-infrastructure (V2I)
- vehicle-to-hand-held-devices (V2D) communications

Collision Avoidance : V2V Networks

Stalled vehicle warning

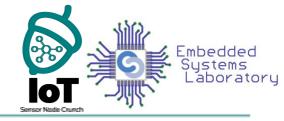

Blind spots

Use Case: Habitat Monitoring

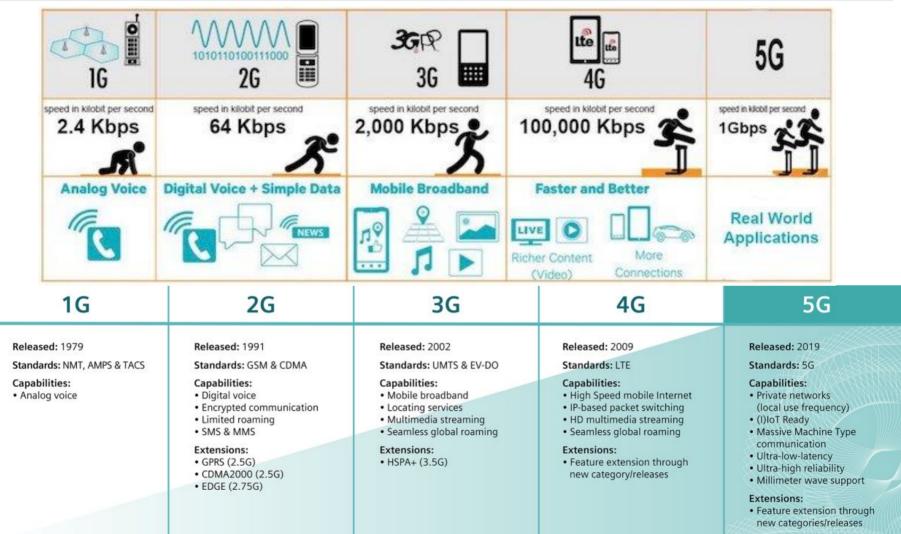
A 15-minute human visit leads to 20% petrel offspring mortality

Source: Wireless Sensor Networks for Habitat Monitoring, Mainwaring et al. Lecture 1 - Introduction Embedded Systems Laboratoru

Sensing Capabilities *Regular Smartphone



- Development and deployment of wireless infrastructures
 WiFi, Bluetooth, NFC, LoRaWAN, UWB, ZigBee, etc.
- Development and deployment of localization infrastructures
 - Outdoor: GPS
 - Indoor: sensors+fingerprinting (Wireless, BLE, Magnetic)
- Development and deployment of sensor networks



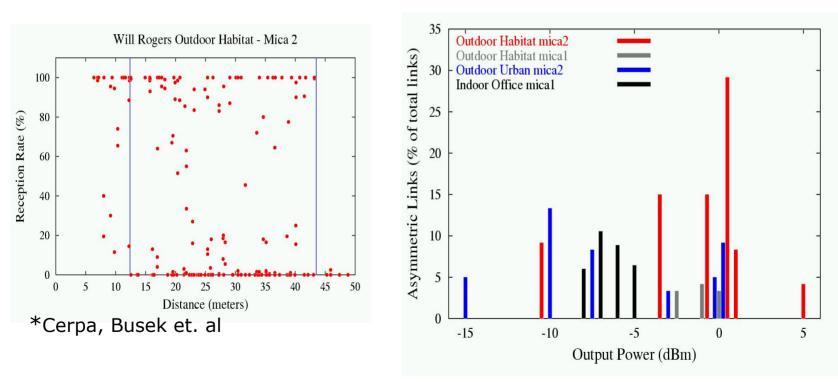
Wi-Fi generations				
Generation/IEEE Standard	Maximum Linkrate	Adopted	Frequency	
Wi-Fi 6 (802.11ax)	600–9608 Mbit/s	2019	2.4/5 GHz	
			1–6 GHz ISM	
Wi-Fi 5 (802.11ac)	433–6933 Mbit/s	2014	5 GHz	
Wi-Fi 4 (802.11n)	72–600 Mbit/s	2009	2.4/5 GHz	
Wi-Fi 3 (802.11g)	3–54 Mbit/s	2003	2.4 GHz	
Wi-Fi 2 (802.11a)	1.5 to 54 Mbit/s	1999	5 GHz	
Wi-Fi 1 (802.11b)	1 to 11 Mbit/s	1999	2.4 GHz	
Source: https://evapmccapp.pot/blog/wifi_101/fag				

Source: https://evanmccann.net/blog/wifi-101/faq

Cellular networks

Sources: http://ioarp.org/ioarp-admin-panel/upload/articles/1460357886_IDL-ICCN15-011.pdf https://www.symmetryelectronics.com/blog/the-advancement-of-cellular-network-standards/

Improving Infrastructure: Power Efficiency



	α_u (mW/Mbps)	α_d (mW/Mbps)
LTE	438.39	51.97
3G	868.98	122.12
WiFi	283.17	137.01

Source: A Close Examination of Performance and Power Characteristics of 4G LTE; Mobisys'12

Wireless links are not reliable: they may vary over time and space

Reception v. Distance

Reception vs. Power

• Wireless interference

• Wireless interference

• Hidden terminals

• Wireless interference

• Hidden terminals

• Exposed terminal

R1 - S1 - R2

• Wireless interference

• Hidden terminals

• Exposed terminal

• Wireless security

- eavesdropping, jamming, denial of service

Challenge 3: Mobility

- Mobility causes poor-quality wireless links
- Mobility causes intermittent connection
- Mobility changes context
 - Location
 - Type of connection

31

Performance/Weight/Power Consumption

- Limited battery power
- Limited processing, display and storage ullet

Sensor node

- 802.15.4
- Wi-Fi
- Bluetooth

Challenge 4: Portability

Wearable

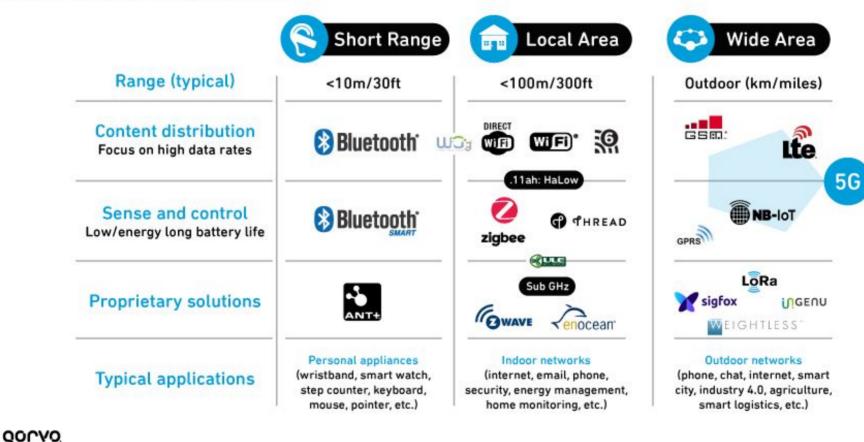
- simple graphical display
- Wi-Fi, Bluetooth, NFC

Smartphone


- small graphical display
- Wi-Fi, Bluetooth
- 3G/4G/5G, NFC

Tablet/Laptop

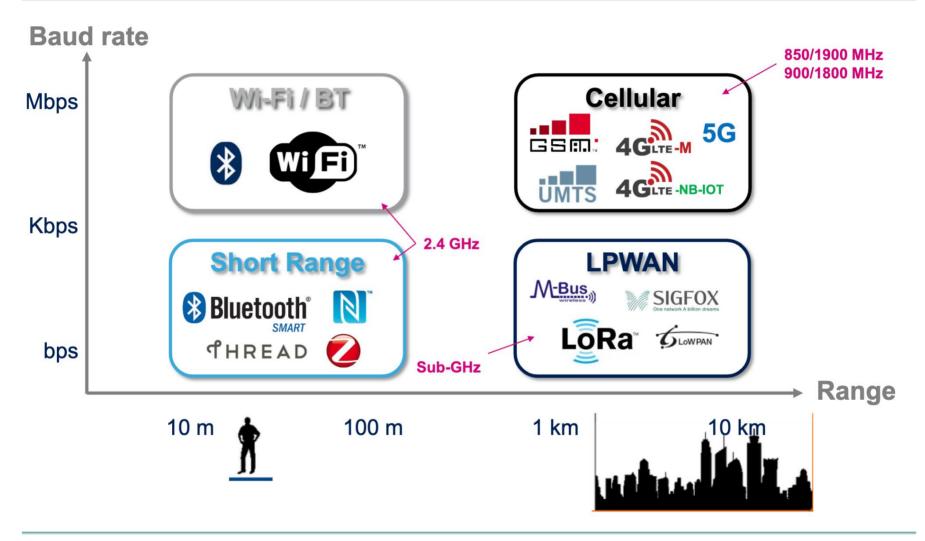
- large graphical display
- Wi-Fi, Bluetooth



- Different standards and frequencies in different areas
- Mobile devices must implement various standards and frequencies
- While roaming adapt to local requirements
- The complexity of producing standards
- IEEE, IETF, ETSI

Challenge 5: Changing Regulation and Multiple Communication Standards

IoT: A Mix of Industry Standards



© Qorvo, Inc.

Source: https://www.qorvo.com/design-hub/blog/iot-standards-the-end-game

Challenge 5: Changing Regulation and Multiple Communication Standards

Source: https://www.enib.fr/~kerhoas/lora_pres.html

- Internet of Things
- Wireless Sensor Networks
- Smart home
- Smart city
- Mobile Devices
- Wireless Communication
- Wi-Fi
- LTE
- ZigBee
- LoRa