

Internet of Things

Lecture 4 - 6LoWPAN & RPL

6LoWPAN

Network Protocols

IPv4	IPv6	6LoWPAN
 Exhausted in 2011 32-bit address 	 128-bit addresses Fit for large IoT networks Not enough resources on low power devices 	 Adaptation layer Header compression Fragmentation

6LoWPAN Standard

- Internet Engineering Task Force (IETF)
 TCP, UDP, HTTP, CoAP, etc.
- RFC 4944 first 6LoWPAN standard
- RFC 6282 header compression
- RFC 6775 neighbor discovery
- Over IEEE 802.15.4
- Adapted to work with other low-power technologies
 - Bluetooth Smart
 - \circ Wi-Fi low-power

Network Architecture

- 6LoWPAN mesh network
- Edge router (6LBR)
 - Generates & manages 6LoWPAN network
 - Transfers between 6LoWPAN nodes and the Internet
 - Transfers between 6LowPAN nodes
 - Network level
- Routers (6LR)
 - Routes traffic from one node to another
- Hosts (6LN)
 - Do not route traffic
 - Low power nodes

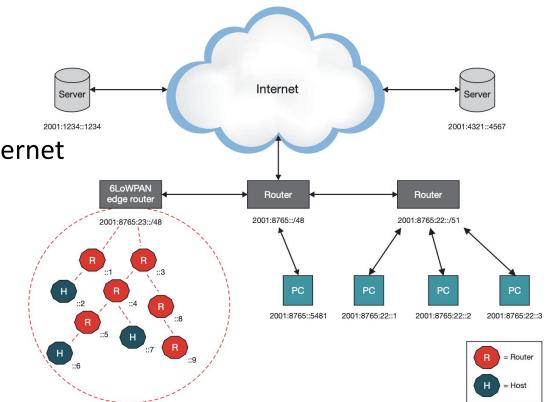


Figure 1. An example of an IPv6 network with a 6LoWPAN mesh network

Source: Olsson, Jonas. "6LoWPAN demystified." Texas Instruments 13 (2014).

Networking Stack

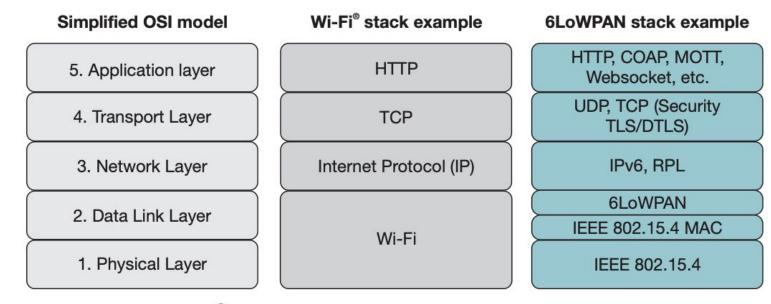


Figure 2. The OSI model, a Wi-Fi[®] stack example and the 6LoWPAN stack

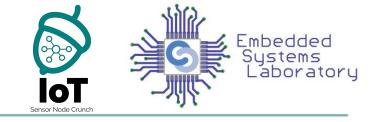
Image source: Olsson, Jonas. "6LoWPAN demystified." Texas Instruments 13 (2014).

• IPv6

- MTU is 1280 bytes
- Reflects technology advancement

• 802.15.4

- \circ $\,$ Low power, low cost devices
- \circ $\,$ Frame size is 127 bytes $\,$
- Maximum bandwidth 250 Kbps
- \circ $\,$ MAC addresses on 64 bits or 16 bits
- Minimize header overhead & memory consumption



- Main challenges for using IPv6 over 802.15.4
- IPv6 has minimum MTU 10 times larger
 - IPv6 40 bytes headers, TCP 20 bytes, UDP 8 bytes
 - Solution: Fragmentation & header compression
- Low power and lossy networks
 - Interferences, unstable links, packet loss
 - Solution: Adaptive and responsive network layer

9

- **IETF RFC 6282**
 - 6LoWPAN Working Group from IETF => RFC 6282
 - Encapsulation of IPv6 packet into 802.15.4 frame Ο
 - Header compression
 - Stateless or context-based compression Ο
 - The elimination of header fields that can be derived from other headers Ο
 - Same network prefix Ο
 - Determine IPv6 addresses and field sizes Ο

• Fragmentation

- \circ $\,$ Fragment data to fit in 802.15.4 frames
- Stateless auto-configuration
 - 6LoWPAN nodes generate their own addresses
 - Duplicate address detection (DAD)

IETF - RFC 6282

Header Compression

IPv6 header

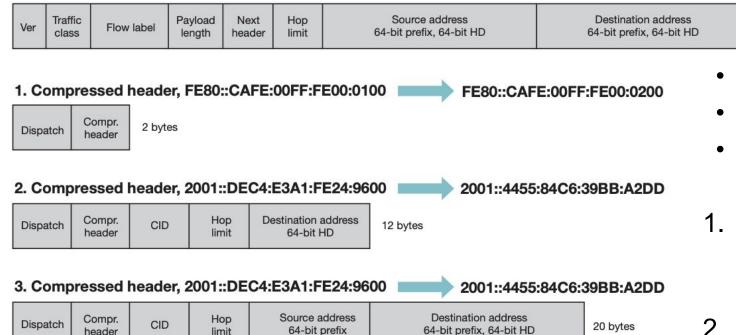


Figure 3. 6LoWPAN IPv6 header compression examples

Image source: Olsson, Jonas. "6LoWPAN demystified." Texas Instruments 13 (2014).

Stateless & shared-context compression

40 bytes

- IPv6 addr = network prefix + interface ID
- Interface ID derived from MAC address
- 1. between nodes from the local network
 - exclude both link-local addresses
 - useful for routing protocols
- 2. destination is external but prefix is known
 - exclude src addr & dest prefix
- 3. destination is external and prefix is not known
 - exclude interface ID

- Packets are divided into smaller segments
- Additional information in the headers for the reassembly
- **mesh-under** routing:
 - \circ $\;$ packets are reassembled at the destination
 - quick routing of fragments, reduced delay
 - if a single fragment is lost the whole packet must be retransmitted
- **route-over** routing:
 - packet is reconstructed at each hop
 - hops are devices with more resources
- Avoid fragmentation reduced payload + header compression

IPv6 payload

IPv6 header

compression

13

Figure 4. 6LoWPAN stacked headers

IEEE 802.15.4 header

IEEE 802.15.4 header

IEEE 802.15.4 header

Stacked headers

IPv6 header

compression

Fragment header

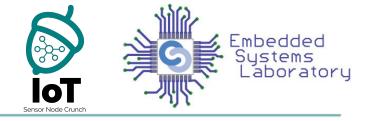
Mesh addressing

header

Image source: Olsson, Jonas. "6LoWPAN demystified." Texas Instruments 13 (2014).

IPv6 payload

IPv6 header


compression

Fragment header

3 types of sub-headers:

- mesh addressing
 - multi-hop topology
 - forward packets ____
- fragmentation
 - identify fragments ____
- header compression

IPv6 payload

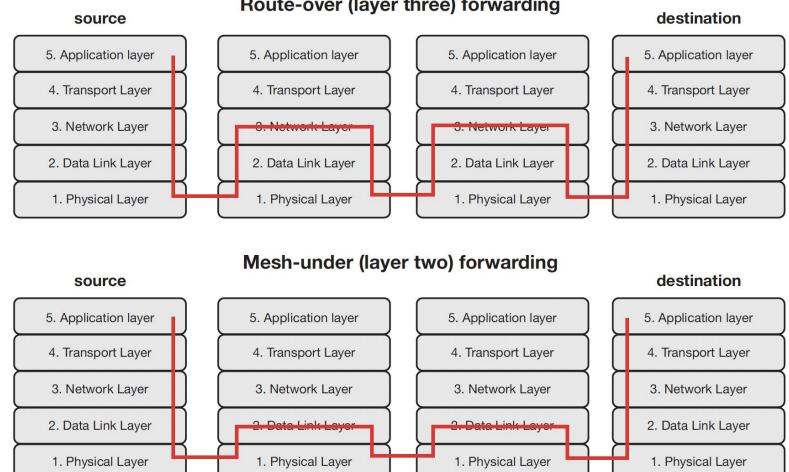
Stacked headers

- Fragment header
 - IPv6 packet is bigger than 802.15.4 frame
 - Fragmentation is needed
 - 3 fields:
 - datagram size
 - whole payload size
 - datagram tag
 - identify a set of fragments of the same payload
 - datagram offset
 - location of fragment in payload

Stacked headers

- Mesh addressing header
 - \circ $\:$ Used in multi-hop topologies for routing
 - 3 fields:
 - hop limit
 - decremented at each hop
 - drop packet when hop limit reaches 0
 - source address
 - destination address
 - 802.15.4 MAC addresses
 - 16 or 64 bits

- Mesh-under
 - Uses 802.15.4 MAC addresses to forward packets
 - Forwarding is done at link layer
 - IP subnet
 - $\circ~$ A single broadcast domain
 - \circ Router IP = edge router
 - All messages are sent to all nodes
 - Fit for small networks



- Route-over
 - \circ Works at network layer
 - Each node is an IP router
 - Each node implements all functionality (including DAD)
 - \circ $\,$ Recommended for large networks
 - \circ RPL is a route-over protocol

Routing

Route-over (layer three) forwarding

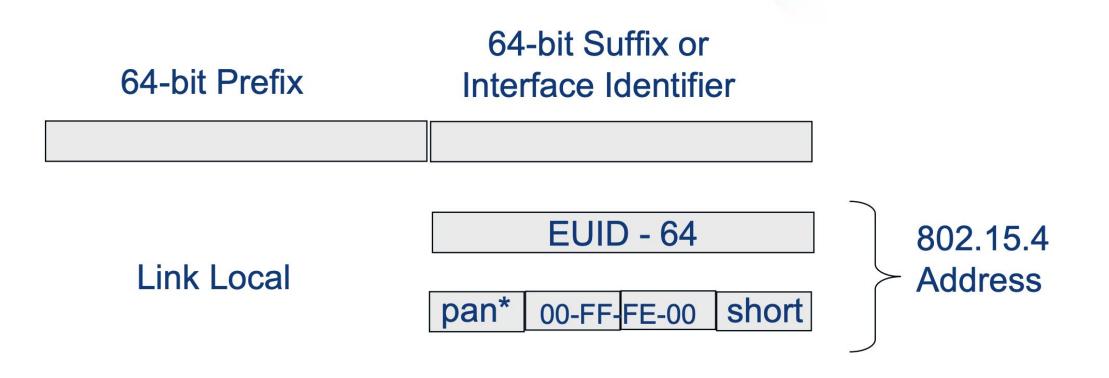
Figure 5. Mesh-under and route-over packet forwarding

Neighbor Discovery

- Neighbor Discovery Protocol (NDP)
 - \circ used for discovering neighbor devices
 - maintain information about available devices
 - configure default routes
 - propagate configuration parameters

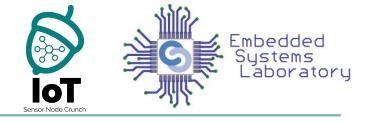
• 4 types of messages:

- Router solicitation (RS)
- Router advertisement (RA)
- Neighbor solicitation (NS)
- Neighbor advertisement (NA)

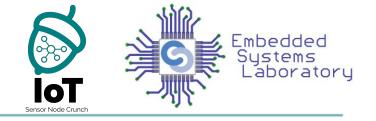


- RS/RA
 - \circ discover routers
 - find network prefix
- NS/NA
 - find duplicate addresses (DAD)
 - \circ $\,$ node generates link-local address and sends NS for verification
 - \circ if it receives NA with duplicate flag, the address is not unique
 - finding neighbours
- Using these 4 messages a node can generate a unique address

Link-local address


- Auto-generate IPv6 address, no need for DHCP
- Link-local address derived from 802.15.4 address (64 or 16 bits)
- Link-local prefix is FE80::/64

Advantages of auto-configuration



- Mesh-under routing
 - local-link address is sufficient to communicate within the local 6LoWPAN network
 - cannot be used for communicating outside the local network
- Router-over routing
 - local-link address for communicating with direct neighbors
 - for multi-hop communication it needs routable address
- Advantage of deriving the IPv6 address from 802.15.4 MAC address
 - eliminate some fields to compress headers
- Same prefix in the network
 - \circ $\,$ also good for header compression
 - \circ prefix is discovered through RS/RA messages

RPL

- RPL = Routing Protocol for Low power and lossy networks
- Defined by IETF in RFC 6550
- IETF ROLL working group
- IP smart object networks / Low-power and lossy networks
- "route-over" protocol for 6LoWPAN networks
- Distance-vector & source routing protocol
- Communication:
 - \circ multipoint-to-point
 - point-to-multipoint
 - \circ point-to-point

- Directed Acyclic Graph (DAG)
 - \circ similar to a tree
 - a node can associate to multiple parents
- Destination-Oriented DAGs (DODAGs),
 - Sink node/gateway root of the DAG
- RPL instance = one or more DODAGs
 - *RPLInstanceID* identifies the instance
 - \circ $\,$ An RPL network may have multiple instances $\,$
 - A node may belong to several instances, but only to one DODAG in each instance

RPL Topology Example

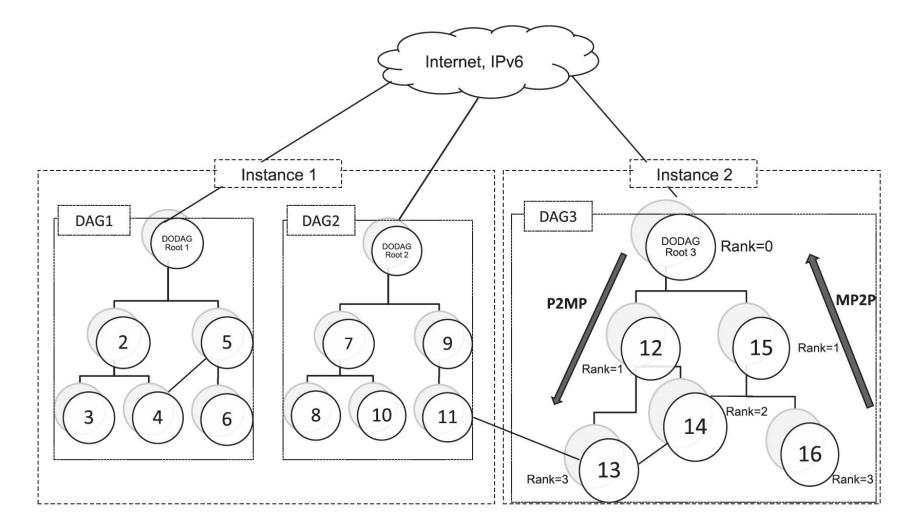


Image source: Gaddour, Olfa, and Anis Koubâa. "RPL in a nutshell: A survey." Computer Networks 56.14 (2012): 3163-3178.

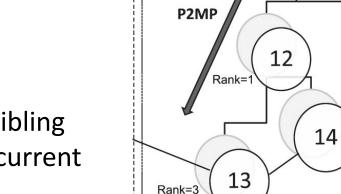
Fig. 1. A RPL network with three DODAGs in two instances.

- Combines both hierarchical and mesh topologies
- By default it's a hierarchical topology
 - \circ child-parent relationship
 - sending packets to the preferred parent
- Allows routing through siblings or children
 - \circ $\;$ when the parent is not available $\;$
- Flexibility

- Auto-configuration
 - \circ Compatible with 6LoWPAN
 - Neighbor Discovery
 - Build paths to certain destinations

• Self-healing

- Nodes may become unavailable
- Choose more than one parent for redundancy
- \circ $\,$ Network adapts to changes $\,$


- Loop avoidance & detection
 - $\circ \quad \mathsf{DAG} \text{ is acyclic}$
 - \circ $\,$ a node has a higher rank than its parents
 - \circ $\,$ detects loops and fixes the network $\,$
- Independence from link layer protocols
 - runs over multiple link-layer technologies
- Multiple edge routers
 - Multiple DODAGs
 - \circ $\,$ Each DAG root is an edge router $\,$

Network Model

- 3 types of nodes:
 - LBR (Low Power and Lossy Border Router)
 - DODAG root
 - create DAG
 - gateway / edge router
 - \circ Router
 - route packets
 - generate data packets
 - attach to existing DAG
 - \circ Host
 - generate data packets

Image source: Gaddour, Olfa, and Anis Koubâa. "RPL in a nutshell: A survey." Computer Networks 56.14 (2012): 3163-3178.

DAG3

- integer value
 - \circ position relative to other nodes
 - increases in downstream direction
 - \circ $\:$ used to detect and avoid loops
- Node can be associated with parent or sibling
 - Rank is used to differentiate between parent & sibling
 - List of potential parents and siblings in case the current parent fails
 - A single parent will be the preferred one (based on a metric)

Network Model

• Every node has a **rank**

DODAG Root 3

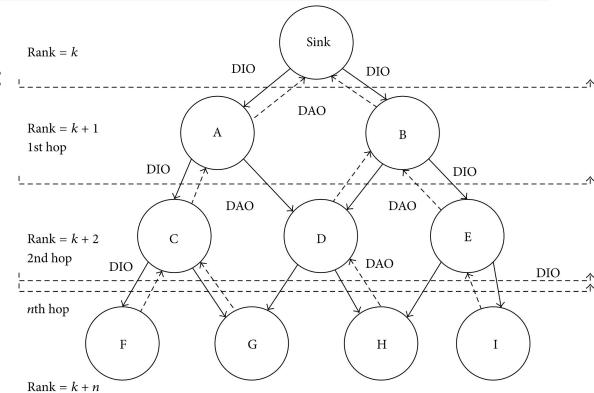
Rank=0

15

Rank=2

MP2P

Rank=1


16

DODAG Construction


• Creating a DODAG is based on 2 operations:

- broadcast **DIO** control messages
 - sent initially by the root
 - each node computes rank
 - adds parents to list
 - forwards DIO
 - upward routes
- unicast **DAO** control messages
 - generated by nodes
 - set to preferred parent
 - downward routes

 \rightarrow DIO \leftarrow -- DAO Image source: Meer M. Khan et al. "Sink-to-Sink Coordination Framework Using RPL: Routing Protocol for Low Power and Lossy Networks", Journal of Sensors, vol. 2016, Article ID 2635429, 11 pages, 2016

DODAG Construction

Receive a DIO

Fig. 5. The operation of a router in a DODAG.

- Embedded Systems Laboratory
- DIO broadcast (DODAG ID, rank, objective function)
- Node receives first DIO
 - Adds sender to parent list
 - Computes its rank based on OF
 - Forwards the message with updated rank
 - Chooses default parent (default route)
- Node receives another DIO
 - Computes rank
 - If rank is lower, update rank
 - Discard parents with higher rank

Image source: Gaddour, Olfa, and Anis Koubâa. "RPL in a nutshell: A survey." Computer Networks 56.14 (2012): 3163-3178.

- DIO messages contain a mode of operation flag
- Mode of operation is different than zero
 - downward routes must be obtained
 - each node sends a DAO to parent
 - $\circ~$ each parent adds its address and forwards DAO to its parent
 - \circ until it reaches the root
 - \circ $\,$ full route between the root and each node

- Two modes to build downward routes: storing & non-storing
- Storing mode:
 - Parents aggregate DAO messages from all children then forwards to parent
 - Maintains a routing table & a neighbour table
 - Routing table includes routes to certain destinations
 - Neighbour table includes direct neighbours
 - \circ Needs more storing space

- Non-storing mode:
 - Parents add their addresses and forward DAO without storing the message
 - Only the root maintains a routing table
 - \circ Source-routing
 - Packet includes the complete route (hops) to destination
 - A packet sent from one node to another goes through the root

- RFC 4944: <u>https://datatracker.ietf.org/doc/html/rfc4944</u>
- RFC 6282: <u>https://datatracker.ietf.org/doc/html/rfc6282</u>
- RFC 6775: <u>https://datatracker.ietf.org/doc/html/rfc6775</u>
- Olsson, Jonas. "6LoWPAN demystified." Texas Instruments 13 (2014).
- RFC 6550: <u>https://datatracker.ietf.org/doc/html/rfc6550</u>
- Gaddour, Olfa, and Anis Koubâa. "RPL in a nutshell: A survey." Computer Networks 56.14 (2012): 3163-3178.
- <u>https://ez.analog.com/wireless-sensor-networks-reference-library/ad6lowpan/w/d</u> <u>ocuments/15030/how-does-a-6lowpan-device-register-to-network</u>

Keywords

- IPv6
- 6LoWPAN
- Header compression
- Fragmentation
- Routing
- RPL
- DODAG
- Neighbor discovery
- Auto-configuration