

Internet of Things

Lecture 7 - Security Attacks in IoT

Attacks against IoT

Attacks against IoT

Log4j zero-day flaw: What you need to know and how to protect yourself

The Log4j vulnerability affects everything from the cloud to developer tools and security devices. Here's what to look for, according to the latest information.

IoT Botnet – DDoS attack

Attacks classification

5

- Tampering
 - Physical modification
- Malicious Code Injection
 - Modify node behavior
- RF Interference/Jamming
 - Prevent the device from communicating
- Fake Node Injection
 - Capture traffic
 - $\circ \quad \text{Launch attacks} \\$

- Sleep Denial Attack
 - Prevent nodes from sleeping
 - Deplete battery
- Side Channel Attack
 - Attack the physical effects of an implementation
 - Power analysis attack
 - Electromagnetic analysis attack
 - Electromagnetic fault injection
 - Temperature variation
- Permanent Denial of Service (PDoS)
 - Phlashing
 - Destroy/disable device

Physical attacks, effects and countermeasures.

Attack Name	Effects	Countermeasures Proposed	Countermeasure References
Tampering and	Access to	PUF based	Aman et al.
Malicious Code	sensitive	Authentication	(2017)
Injection	information and		
	Gain access; DoS		
RF Interfer-	DoS;	CUTE Mote	Gomes et al.
ence/Jamming	Hinder/Jam		(2017)
	Communication		
Fake Node	Control data	PAuthKey	Porambage et al.
Injection	flow; Man in the		(2014)
	Middle		
Sleep Denial	Node shutdown	CUTE Mote; Support	Gomes et al.
		Vector Machine	(2017) and Hei
		(SVM)	et al. (2010)
Side Channel	Collect	Masking technique;	Aman et al.,
Attack	Encryption Keys	Authentication using	2017 and Choi
		PUF	and Kim (2016)
Permanent	Resource	NOS Middleware	Sicari et al.
Denial of Service (PDoS)	Destruction		(2018)

Countermeasures against Physical Attacks

Source: Sengupta et al. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT.

Network Attacks

- Traffic Analysis Attack
 - intercept packets
- RFID Spoofing
 - steal RFID tag information
 - spoof RFID packets
- RFID Unauthorized Access
 - read/modify/delete data
 - lack of authentication
- Routing Information Attacks
 - falsify/modify routing information
- Selective Forwarding
 - route only some packets, drop others

Network Attacks

- Sinkhole Attack
 - pose itself as gateway/sink
- Wormhole Attack
 - low latency link for tunneling packets
- Sybil Attack
 - Asume multiple identities and locations
- Man in the Middle (MitM) Attack
 - \circ $\;$ Intercept and modify traffic

11

• Replay Attack

Network Attacks

- retransmit some intercepted packets 0
- overload network 0
- Denial of Service (DoS) Attack
 - disrupt normal functionality 0
 - target network, devices, application Ο
- Distributed Denial of Service (DDoS) Attack \bullet
 - a type of DoS Ο
 - carried by multiple nodes Ο

Countermeasures against Network Attacks

Network attacks, effects and countermeasures.

Attack Name	Effects	Countermeasures Proposed	Countermeasure References	- -
Traffic Analysis Attack	Data Leakage (Network Information)	Privacy preserving traffic obfuscation framework	Liu et al. (2018)	-
RFID Spoofing and Unauthorized Access	Data Manipulation and Modification	SRAM based PUF	Guin et al. (2018)	
	(Read, Write, Delete)			
Routing Information Attacks	Routing Loops	Hash Chain Authentication;	Glissa et al. (2016)	Source: Sengupta et al. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT.
Selective Forwarding	Message Destruction	Hash Chain Authentication; Monitor based approach	Glissa et al. (2016) and Pu and Hajjar (2018)	

Countermeasures against Network Attacks

Network attacks,	effects and counter	measures.		
Attack Name	Effects	Countermeasures Proposed	Countermeasure References	
Sinkhole Attack	Data alteration or leakage	Hash Chain Authentication; Intrusion Detection	Glissa et al. (2016) and Cervantes et al. (2015)	
Wormhole Attack	Packet tunneling	Clustering based Intrusion Detection System	Shukla (2017)	
Sybil Attack	Unfair resource allocation; Redundancy	Trust aware Protocol	Airehrour et al. (2019)	
Man in the Middle Attack	Data Privacy violation	Secure MQTT; Inter-device Authentication	Singh et al. (2015) and Park and Kang (2015)	Source: Sengupta et al. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT.
Replay Attack	Network congestion; DoS	Signcryption	Ashibani and Mahmoud (2017)	
DoS/DDoS Attack	Network Flooding; Network Crash	EDoS Server; SDN based IoT framework	Adat and Gupta (2017) and Yin et al. (2018)	

curity issues and or IoT and IIoT.

- Exploits
- Viruses
- Worms
- Trojans
- Spyware
- Adware
- Backdoors
- Rootkits

Countermeasures against Software Attacks

Software attacks, effects and countermeasures.

Attack Name	Effects	Countermeasures Proposed	Countermeasure References
Virus, Worms, Trojan Horses, Spyware and Adware	Resource Destruction	Lightweight framework; High Level Synthesis (HLS)	Liu et al., 2016 and Konigsmark et al. (2016)
Malware	Infected Data	Malware Image Classification; Lightweight Neural Network Framework	Naeem et al. (2018) and Su et al. (2018)

Source: Sengupta et al. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT.

- Data Inconsistency
 - \circ $\;$ Attack on data integrity
 - Data in tranzit or stored data
- Unauthorized Access
 - Data access, data ownership without authorization
- Data Breach
 - o disclosure of sensitive, confidential data

Countermeasures against Data Attacks

Data attacks, effects and countermeasures.

Attacks	Effects	Countermeasures Proposed	Countermeasure References
Data	Data Incon-	Chaos based scheme;	Song et al. (2017)
Inconsistency	sistency	Blockchain architceture	and Machado and Fröhlich (2018)
Unauthorized	Violation of	Blockchain-based	Rahulamathavan et
Access	Data	ABE; Privacy	al. (2017) and Zheng
Data Breach	Privacy Data	Preserving ABE Two Factor	et al. (2018) Gope and Sikdar
	Leakage	Authentication; DPP;	(2018), Gai et al.
		ISDD	(2018) and Sengupta et al. (2019)

Source: Sengupta et al. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT.

Real-life Attacks

- Edimax IP Cameras (Ling et al., 2017)
 - device scanning, brute force, device spoofing
 - $\circ \quad \text{obtain passwords} \quad$
 - take control over cameras
- Smart Home/Smart Metering Systems (Wurm et al., 2016)
 - brute force attacks to obtain passwords
 - smart meters launch attacks
- Virtual Private Assistants VPA (Zhang et al., 2018)
 - Amazon Echo and Google Home
 - third-parties may publish new skills (function)
 - malicious skills
 - voice squatting
 - voice masquerading

19

- **Real-life Attacks**
 - Attack on DNS Service provider called Dyn (more info)
 - IoT Botnet
 - o affected services of Twitter, Etsy, Github, Soundcloud, Spotify, Shopify, and Intercom
 - disrupted access to PayPal, BBC, Wall Street Journal, Xbox, CNN, HBO Now, Starbucks, New York Times, The Verge, and Financial Times
 - Mirai IoT Botnet (<u>more info</u>)
 - Mirai infected devices searched for other vulnerable devices
 - \circ $\:$ used default passwords and infected other devices
 - shut down huge portions of the Internet
 - Jeep Hack (more info)
 - take total control of a Jeep SUV using the vehicle's CAN bus
 - exploiting a firmware update vulnerability
 - speed up, slow down, veer off the road

Tampering Attack Case Study

- Itron Centron CL200 smart meter
- Analyzed EEPROM & extracted Device ID
- Malicious meter impersonates legitimate meter
- EEPROM is vulnerable to illegitimate reading and writing
- Solution: PUFs
- Challenge-response scheme

	PreambleLength: 3024 PacketSymbols: 96 PacketLength: 13824	
BEEBE	a Same Meter ID 10101 Different Power Re	adings
and a serie	97 SCM:(1):27502044 Type: 7 Consumption: 5 SCM:(ID) 7502044 Type: 7 Consumption:	1009 CRC:0x5
	7 SCM:{ID:27502044 Type: 7 Consumption: 0 SCM:{ID:27502044 Type: 7 Consumption:	1009 CRC:0x5 15 CRC:0x6
(a)	(b)	

Source: T. Alladi, V. Chamola, B. Sikdar and K. -K. R. Choo, "Consumer IoT: Security Vulnerability Case Studies and Solutions," in *IEEE Consumer Electronics Magazine*, vol. 9, no. 2, pp. 17-25, 2020.

Figure 2. (a) Itron Smart Meter (credit: Itron). (b) Compromised meter readings.

no. 2, pp. 17-25, 2020.

mbedded

aboratoru

- Fitbit Aria Smart Scale
- Sends data & statistics through a wireless AP to the Fitbit server
- MitM attack using Kali Linux
- Attacker obtains SSID & shared key
- Connects to user's network
- May steal private information
- Solution: encrypted

communication channel to server

 Lightweight & robust encryption

Figure 3. Attack vector on Fitbit aria.

Malicious Code Injection Case Study

- Google Nest Thermostat
- Vulnerabilities in the boot process
- Attackers gain remote access to the device
- May gain access to the home network
- Solution: chain-of-trust based secure boot
- Hardware for secure boot

Source: T. Alladi, V. Chamola, B. Sikdar and K. -K. R. Choo, "Consumer IoT: Security Vulnerability Case Studies and Solutions," in *IEEE Consumer Electronics Magazine*, vol. 9, no. 2, pp. 17-25, 2020.

Figure 4. (a) Nest thermostat front (upper image) and back (lower image) plates (credit: Nest). (b) Attack flow.

Malicious Node Insertion

- Edimax IP camera system
 - IP camera, controller, registration and command relay servers
- Infected IoT device (Mirai malware) bot
- TCP SYN message to guess MAC address
- Bot impersonates the camera and registers to the server
- Bot sends TCP requests to command relay server
- Server responds with authentication information
- Attacker gains access to the IP camera
- Botnet
- Solution: identity management, encryption

- Sengupta, Jayasree, Sushmita Ruj, and Sipra Das Bit. "A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT." Journal of Network and Computer Applications 149 (2020): 102481. (pdf)
- T. Alladi, V. Chamola, B. Sikdar and K. -K. R. Choo, "Consumer IoT: Security Vulnerability Case Studies and Solutions," in IEEE Consumer Electronics Magazine, vol. 9, no. 2, pp. 17-25, 2020. (pdf)