

Internet of Things

Lecture 8 - Standardized Security Solutions for IoT

- Very large attack surface and widespread deployment
- Limited device resources
- Security by design not a top priority
- Lack of expertise
- Applying security updates

- Well-known CIA security model
- Confidentiality
 - ensure that only the intended receiver can read/interpret a message
 - unauthorized access is prevented
- Integrity
 - ensure that a message cannot be modified
 - unauthorized individuals should not be able to destroy/alter message
- Availability
 - ensure that system/network is able to perform its tasks without interruption
 - often measured in terms of percentages of up/down time

Simplified OSI model	6LoWPAN stack	Table 1: IoT stack with standardized security solutions.				
5. Application layer 4. Transport Layer	HTTP, COAP, MOTT, Websocket, etc. UDP, TCP (Security	loT Laver	loT Protocol	Security Protocol	Scope	
3. Network Layer	IPv6, RPL	Application	CoAP, HTTP	User-defined	E2E	
2. Data Link Layer	6LoWPAN	Transport	UDP, TCP	DTLS, TLS	E2E	
1. Physical Laver	IEEE 802.15.4	Network	IP	IPsec	E2E	
1.1 Hysical Edyci		Routing	RPL	RPL security	Per-hop	
		6LoWPAN	6LoWPAN	None	None	
		Data-link	IEEE 802.15.4	802.15.4 security	Per-hop	

Security Level/Id	Security Suite	Confidentiality	Integrity	
000	None	×		
001	AES-CBC-MAC-32	×	1	
010	AES-CBC-MAC-64	×	1	
011	AES-CBC-MAC-128	×	1	
100	AES-CTR	1	×	
101	AES-CCM-32	1	1	
110	AES-CCM-64	1	1	
111	AES-CCM-128	1	1	

Source: M Shila, Devu & Cao, Xianghui & Cheng, Yu & Yang, Zequ & Zhou, Yang & Chen, Jiming. (2014). Ghost-in-the-Wireless: Energy Depletion Attack on ZigBee.

IEEE 802.15.4 - Data integrity & confidentiality

- Data integrity
 - MAC (aka MIC)
 - \circ $\,$ Hash function over the message and pre-shared secret key
 - Receiver recomputes and verifies MAC
 - AES-CBC-MAC and AES-CCM with 3 MAC lengths
- Data confidentiality
 - Encryption
 - Semantic security using a nonce
 - Differentiate between similar or identical messages
 - 13 bytes nonce
 - Source address (8 bytes) + frame counter (4 bytes) + security control field (1 byte)

IEEE 802.15.4 - Replay Protection & Access Control

- Replay Protection
 - Increasing frame counter
 - Receiver rejects msgs with smaller sequence numbers
 - 32 bits counter
 - Part of nounces
- Access Control
 - Access control list (ACL)
 - Verify source address of packets
 - Bypassed by spoofing attacks

- Several security mechanisms against routing attacks
- Secure RPL routing packets
- Security Section to the RPL header -> security type
- 3 security modes:
 - \circ unsecured no security
 - \circ $\;$ preinstalled keys are preinstalled on nodes
 - o authenticated nodes receive keys from key authority after authentication

RPL

+		KIM=0,1,2		
		Attributes		
0 1 2 3 4-7	 +	MAC-32 ENC-MAC-32 MAC-64 ENC-MAC-64 Unassigned	4 4 8 8 N/A	
	L	+ KIM=3		
	LVL	Attributes	Sig Len	
	0 1 2 3 4-7	Sign-3072 ENC-Sign-3072 Sign-2048 ENC-Sign-2048 Unassigned	384 384 256 256 N/A	

- Security Services
 - data confidentiality
 - data authenticity
 - replay protection
- AES-128 CCM encryption & MAC
- RSA with SHA-256 signature
- AES-128 CCM nonce
- Key Identifier Mode (KIM), Security Level (LVL)
- Consistency Check (CC)

CoAPs (CoAP + DTLS)

- DTLS transport layer security
 - data confidentiality and integrity, authentication
 - non-repudiation, anti-replay protection
- CoAP with DTLS support => CoAPs
- Provisioning phase
 - Device identifiers are collected and stored on server
 - Identifiers list => access control list (ACL)
 - Devices receive keys and ACL

CoAPs (CoAP + DTLS)

- 4 security modes: NoSec, PreSharedKey, RawPublicKey, Certificates
- PreSharedKey
 - pre-programmed with symmetric shared keys
 - \circ list of shared keys
 - TLS_PSK_WITH_AES_128_CCM_8 cipher suite
- RawPublicKey
 - pre-programmed with asymmetric key pair
 - TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher suite

CoAPs (CoAP + DTLS)

- Certificates
 - Asymmetric keys
 - X.509 certificate
 - List of trust anchors
 - \circ $\,$ Signature generated using ECDSA and SHA-256 $\,$
 - TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 cipher suite
 - Device authentication using ECDSA
 - Key agreement using ECDHE
- ECC used in 2 security modes
 - strong security, small keys, less processing power

- More and more used
- Security protocols: WEP, WPA, WPA2, WPA3
- Krack attack for WPA2
 - \circ replay attack
 - vulnerability in the 4-way handshake
 - More details: <u>link</u>
- WPA3 is recommended

Wi-Fi - WEP

- RC4 cipher for encryption
- Open authentication only encryption
- Shared key authentication authentication + encryption
- Device authentication four-step challenge-response handshake
- CRC32 for integrity
- Deprecated since 2004

Wi-Fi - WPA

Wi-Fi Security WPA encryption scheme

Wi-Fi - WPA2

WPA2-Enterprise

Enterprise-mode

(802.1X), using EAP

CCMP

AES (for CCMP)

WPA2-Personal

PSK-mode

TKIP and/or CCMP

RC4 (for TKIP)

and AES (for CCMP)

https://www.comparitech.com/blog/information-secur ity/wpa2-aes-tkip/

- AES with GCMP for encryption
- SAE for authentication
 - \circ $\;$ improves the security of initial key exchange
 - o better protection against offline dictionary-based attacks
 - variation of dragonfly handshake
 - replacement for PSK (WPA2)
 - \circ $\,$ considers devices as equals
 - either device can initiate a handshake
 - $\circ \quad \text{forward secrecy} \quad$

WiFi - WPA3

- WPA3 Personal
 - 128-bit encryption: AES-CCMP 128
- WPA3 Enterprise Mode
 - 128-bit mode
 - Authentication: EAP
 - Authenticated encryption: AES-CCMP 128
 - Key derivation and confirmation: HMAC-SHA256
 - Management frame protection: BIP-CMAC-128
 - 192-bit mode
 - Authentication: EAP-TLS with ECDH and ECDSA
 - Authenticated encryption: GCMP-256
 - Key derivation and confirmation: HMAC-SHA384
 - Management frame protection: BIP-GMAC-256

Bluetooth Low Energy (BLE)

- Each connection has a Security Mode and a Security Level
- Pairing
- STK
- LTK
- Bonding
- AES-CCM
- Digital signatures

			Pairing		
	لہ		-		
		r	Pairing Feature Exchange	- T - T	
es			Short Term Key (STK) (Legacy) / Long Term Generation (LTK) (LE Secure Connections)		
			Bonding		
		I	Key Distribution	ц.,,	
				Ţ	
		S	ource: <u>https://medium.com/rtone-iot-security/deep-dive-into-bluetooth-le-security-d2301d6</u>	<u>40bfc</u>	

BLE - Security Modes

- Security Mode 1
 - Level 1: No Security
 - Level 2: Unauthenticated pairing with encryption
 - Level 3: Authenticated pairing with AES-CCM encryption
 - Level 4: Authenticated LE Secure Connections pairing with encryption. ECDH and AES-CCM
- Security Mode 2
 - Level 1: Unauthenticated pairing with data signing
 - Level 2: Authenticated pairing with data signing
- Mixed Security Mode
 - support both Security Mode 1 and 2

- Pairing = authenticating the identity of 2 devices
- After that, link is encrypted and keys are distributed
- Phase 1:
 - Communicate capabilities in Pairing Request message
 - No Input No Output, Display Only, Display Yes/No, Keyboard Only and Keyboard Display
- Phase 2:
 - LE Legacy: generate Short Term Key (STK)
 - LE Secure Connections: generate Long Term Key (LTK)
- Phase 3:
 - Generate LTK if it was not generated in phase 2
 - Generate other keys (CSRK, IRK)
 - Distribute keys

- Devices negotiate the Short Term Key
- Just Works
 - o generated on both sides, based on the packets exchanged in plain text
 - no protection against MITM
- Passkey Display
 - one device displays a randomly generated 6-digit passkey
 - \circ $\,$ the other asks to enter the passkey
 - no display -> enter the same passkey on both
 - protection against MITM

BLE - Pairing Methods

- Out of Band (OOB)
 - data for generating the key is transmitted through other communication channel
 - for example NFC
 - protection against MITM
- Numeric Comparison
 - BLE 4.2
 - LE Secure Connections Pairing
 - ECDH for key generation
 - New pairing method
 - LTK generated in phase 2 and used to encrypt messages

BLE - Bluetooth 4.2

- New security model = LE Secure Connections
- ECDH for key generation
 - public/private key pairs
- Protects against passive eavesdropping
 - Numeric Comparison, Just Works, Passkey Entry, Out Of Band
- Protects against MITM attacks
 - Numeric Comparison, Passkey Entry, Out Of Band

- D. Dragomir, L. Gheorghe, S. Costea and A. Radovici, "A Survey on Secure Communication Protocols for IoT Systems," 2016 International Workshop on Secure Internet of Things (SIoT), 2016, pp. 47-62. (<u>link</u>)
- M Shila, Devu & Cao, Xianghui & Cheng, Yu & Yang, Zequ & Zhou, Yang & Chen, Jiming. (2014). Ghost-in-the-Wireless: Energy Depletion Attack on ZigBee.
- <u>https://datatracker.ietf.org/doc/html/rfc3610</u>
- https://www.krackattacks.com/
- <u>https://www.wi-fi.org/discover-wi-fi/security</u>
- <u>https://www.grandmetric.com/2018/07/06/ended-wpa3-wi-fi-security-evolution/</u>
- <u>https://spectrum.ieee.org/everything-you-need-to-know-about-wpa3</u>
- <u>https://medium.com/rtone-iot-security/deep-dive-into-bluetooth-le-security-d2301d6</u>
 <u>40bfc</u>