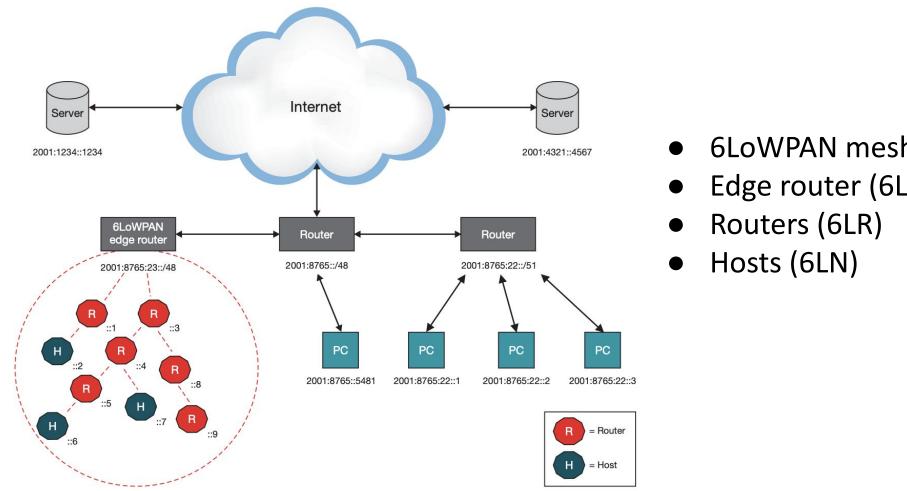

Internet of Things

Lecture 4 - 6LoWPAN & RPL

Network Protocols

IPv4	IPv6	6LoWPAN
Exhausted in 2011 32-bit address	128-bit addresses	Limited processing capability Shows compression mechanism with IPv6 over 802.15.4

6LoWPAN


6LoWPAN Standard

- Internet Engineering Task Force (IETF)
 TCP, UDP, HTTP, CoAP, etc.
- RFC 4944 first 6LoWPAN standard
- RFC 6282 header compression
- RFC 6775 neighbor discovery
- Over IEEE 802.15.4
- Adapted to work with other low-power technologies
 - Bluetooth Smart
 - Wi-Fi low-power

Network Architecture

6LoWPAN mesh network

• Edge router (6LBR)

Figure 1. An example of an IPv6 network with a 6LoWPAN mesh network

Image source: Olsson, Jonas. "6LoWPAN demystified." Texas Instruments 13 (2014).

Networking Stack

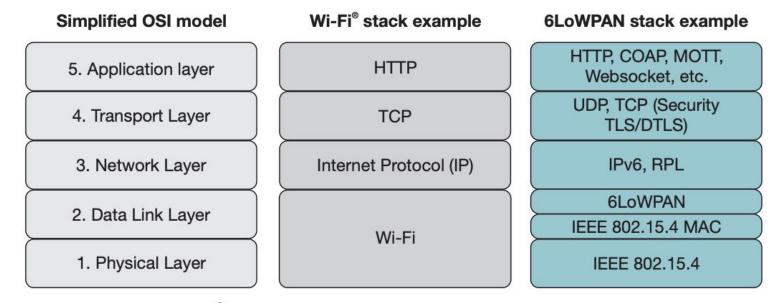


Figure 2. The OSI model, a Wi-Fi[®] stack example and the 6LoWPAN stack

Image source: Olsson, Jonas. "6LoWPAN demystified." Texas Instruments 13 (2014).

IPv6 over IEEE 802.15.4

• IPv6

- \circ minimum MTU is 1280 bytes
- reflects technology advancement

• 802.15.4

- maximum bandwidth 250 Kpbs
- \circ $\,$ frame size is 127 bytes $\,$
- \circ $\,$ MAC addresses on 64 bits or 16 bits
- Minimize header overhead, minimize memory consumption

IPv6 over IEEE 802.15.4

- Main challenges for using IPv6 over 802.15.4
 - IPv6 has minimum MTU 10 times larger
 - IPv6 has 40 bytes headers
 - \circ $\,$ Low power and lossy networks
- Solutions:
 - Fragmentation & header compression
 - \circ $\,$ Adaptive and responsive network layer $\,$

IETF - RFC 6282

Embedded Systems Laboratory

- 6LoWPAN Working Group from IETF => RFC 6282
 - Encapsulation of IPv6 packet into 802.15.4 frame
- Header compression
 - \circ $\,$ The elimination of header fields that can be derived from other headers
 - Stateless or context-based compression
 - \circ $\,$ Same network prefix
 - Determine IPv6 addresses and field sizes
- Fragmentation
- Stateless auto-configuration
 - DAD

Header Compression

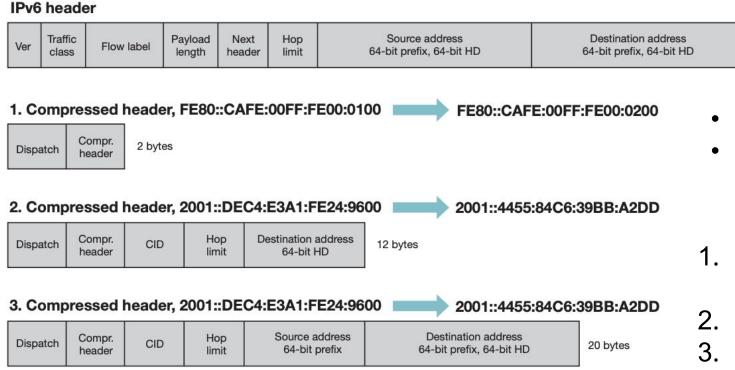


Figure 3. 6LoWPAN IPv6 header compression examples

Image source: Olsson, Jonas. "6LoWPAN demystified." Texas Instruments 13 (2014).

- Stateless & shared-context compression
- The routing protocol does not affect compression

40 bytes

- between nodes from the local 6LoWPAN network (useful for routing protocols)
- 2. destination is external but prefix is known
- destination is external and prefix is not known (50% compression)
- Interface ID derived from MAC address

- Packets are divided into smaller segments
- Additional information in the headers for the reassembly
- mesh-under routing:
 - \circ $\;$ packets are reassembled at the destination
 - quick routing of fragments
- route-over routing:
 - \circ packet is reconstructed at each hop
 - \circ $\,$ hops are devices with more resources
- Avoid fragmentation reduced payload + header compression

Stacked headers

IPv6 header

compression

Fragment header

Mesh addressing

header

IPv6 payload

IPv6 header

compression

- 3 types of sub-headers:
 - mesh addressing
 - fragmentation
- header compression

Figure 4. 6LoWPAN stacked headers

IEEE 802.15.4 header

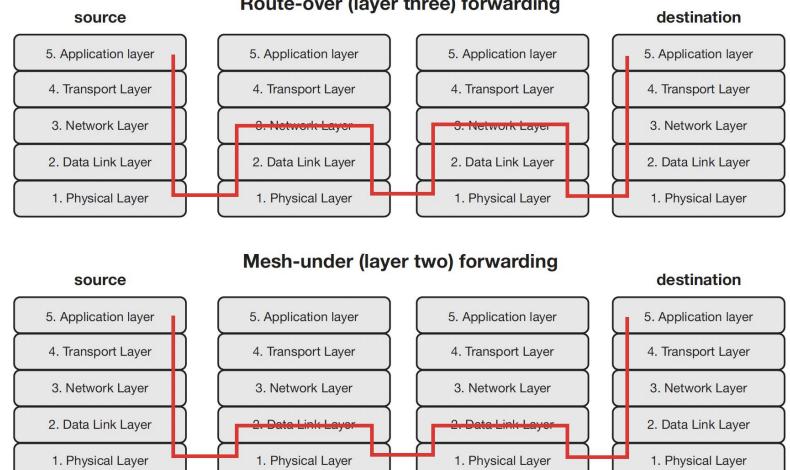
IEEE 802.15.4 header

IEEE 802.15.4 header

Image source: Olsson, Jonas. "6LoWPAN demystified." Texas Instruments 13 (2014).

IPv6 payload

Fragment header

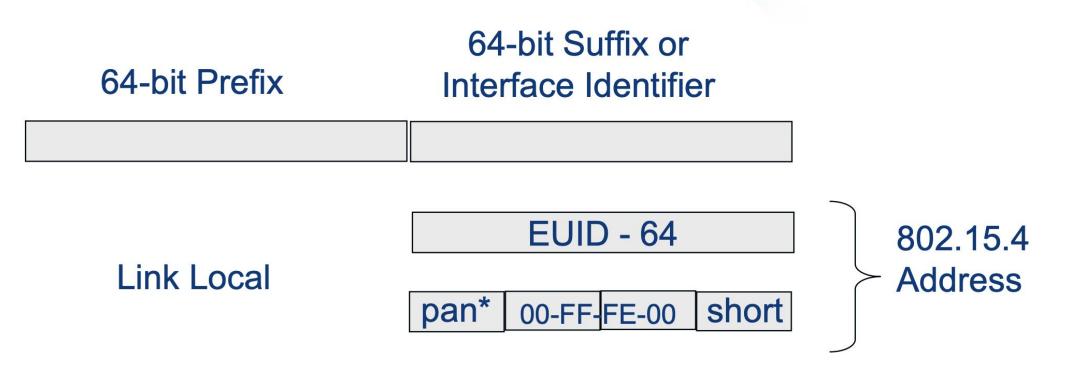

Stacked headers

- Fragment header
 - \circ $\,$ when fragmentation is needed
 - 3 fields:
 - datagram size
 - datagram tag
 - datagram offset
- Mesh addressing header
 - \circ used in multi-hop topologies
 - 3 fields:
 - hop limit
 - source address
 - destination address

Routing

Route-over (layer three) forwarding

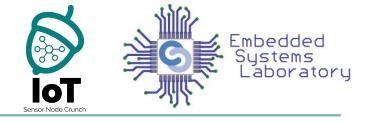
Figure 5. Mesh-under and route-over packet forwarding



- Neighbor Discovery Protocol (NDP)
 - Used for discovering neighbor devices, available devices, default routes, configuration parameters
- 4 types of messages:
 - Router solicitation (RS)
 - Router advertisement (RA)
 - Neighbor solicitation (NS)
 - Neighbor advertisement (NA)
- RS/RA find prefix
- NS/NA find duplicate addresses

- Link-local address derived from 802.15.4 address (64 or 16 bits)
- Link-local prefix is FE80::/64

Advantages of auto-configuration



- Mesh-under routing
 - local-link address is sufficient to communicate within the local 6LoWPAN network
- Router-over routing
 - local-link address for communicating with direct neighbors
 - for multi-hop communication it needs routable address
- Advantage => eliminate some fields to compress headers
- Same prefix in the network => also good for header compression

- Attacks against IoT can impact users
- 802.15.4 link layer
 - AES-128 encryption
 - \circ $\$ link authentication and encryption
- TLS
 - Works over TCP
 - \circ not used in low-power networks
- DTLS
 - Works over UDP
 - \circ $\$ more appropriate for constrained devices
- Hardware encryption engine is necessary

RPL

- Routing Protocol for Low power and lossy networks
- defined by IETF in RFC 6550
- IETF ROLL working group
- IP smart object networks / Low-power and lossy networks
- Distance-vector & source routing protocol
- "route-over" protocol
- Communication:
 - \circ multipoint-to-point
 - \circ point-to-multipoint
 - \circ point-to-point

- Directed Acyclic Graph (DAG)
- Destination-Oriented DAGs (DODAGs),
 - Sink nodes/gateways root of the DAG
- RPL instance = one or more DODAGs, with RPLInstanceID
 - A network may have multiple instances
 - A node may belong to several instances, but only to one DODAG in each instance
- Combines both hierarchical and mesh topologies
 - \circ sending to parent
 - routing through siblings or children

RPL Topology Example

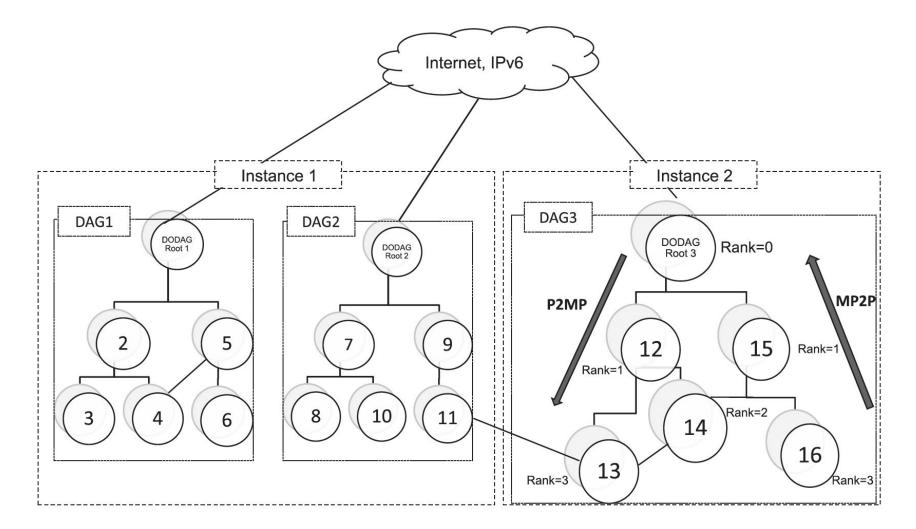


Image source: Gaddour, Olfa, and Anis Koubâa. "RPL in a nutshell: A survey." Computer Networks 56.14 (2012): 3163-3178.

Fig. 1. A RPL network with three DODAGs in two instances.

- Auto-configuration
 - Neighbor Discovery
- Self-healing
 - \circ $\,$ Choose more than one parent
- Loop avoidance & detection
- Independence from link layer protocols
- Multiple edge routers
 - \circ $\,$ Each DAG root is an edge router $\,$

Network Model

• 3 types of nodes:

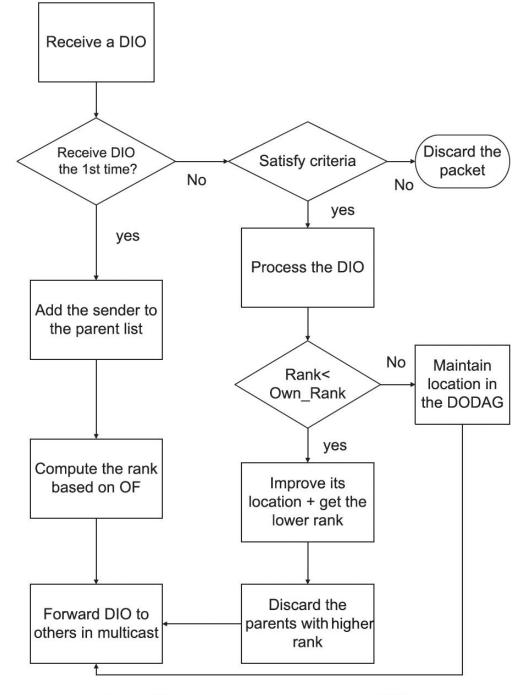
\circ LBR

- create DAG
- gateway / edge router
- \circ Router
 - route packets
 - generate data packets
 - attach to DAG
- \circ Host
 - generate data packets

Network Model

- DODAG root
 - LBR, sink, gateway, final destination in DODAG
 - \circ $\;$ ability to create a DODAG $\;$

• Rank


- integer value
- \circ $\;$ position relative to other nodes
- \circ $\,$ increases in downstream direction
- \circ $\:$ used to detect and avoid loops
- Node can be associated with parent or sibling
 - List of potential parents and siblings in case the current parent fails

DODAG Construction

- Creating a DODAG is based on 2 operations:
 - \circ broadcast DIO control messages
 - sent initially by the root
 - build routes in downward direction
 - \circ $\,$ unicast DAO control messages $\,$
 - generated by nodes
 - build routes in upward direction

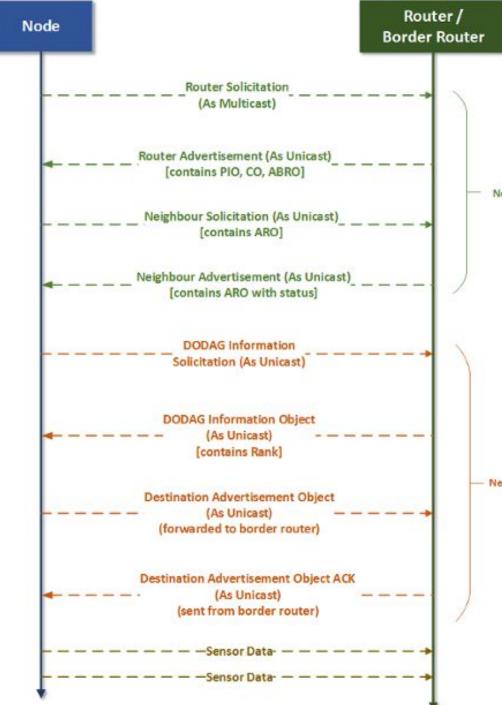

DODAG Construction

Image source: Gaddour, Olfa, and Anis Koubâa. "RPL in a nutshell: A survey." Computer Networks 56.14 (2012): 3163-3178.

Fig. 5. The operation of a router in a DODAG.

- DIO messages contain a mode of operation flag
- different than zero
 - each node sends a DAO to parent
 - $\circ~$ each parent adds its address and forwards DAO to its parent
 - until it reaches the root => full route between the root and each node
- Storing mode:
 - Parents aggregate DAO messages from all children then forwards to parent
 - Maintains a routing table
- Non-storing mode:
 - Parents add their addresses and forward DAO without storing the message
 - Only the root maintains a routing table
 - Source routing

Neighbour Registration (ND)

Complete Flow

Source:

https://ez.analog.com/wireless-sensor-networks-reference-libr ary/ad6lowpan/w/documents/15030/how-does-a-6lowpan-dev ice-register-to-network

- Network Registration (RPL)

- RFC 4944: <u>https://datatracker.ietf.org/doc/html/rfc4944</u>
- RFC 6282: <u>https://datatracker.ietf.org/doc/html/rfc6282</u>
- RFC 6775: <u>https://datatracker.ietf.org/doc/html/rfc6775</u>
- Olsson, Jonas. "6LoWPAN demystified." Texas Instruments 13 (2014).
- RFC 6550: <u>https://datatracker.ietf.org/doc/html/rfc6550</u>
- Gaddour, Olfa, and Anis Koubâa. "RPL in a nutshell: A survey." Computer Networks 56.14 (2012): 3163-3178.
- <u>https://ez.analog.com/wireless-sensor-networks-reference-library/ad6lowpan/w/d</u> <u>ocuments/15030/how-does-a-6lowpan-device-register-to-network</u>

Keywords

- IPv6
- 6LoWPAN
- Header compression
- Fragmentation
- Routing
- RPL
- Neighbor discovery
- Auto-configuration
- Security