
A Medium Access Control Protocol for Wireless
Sensor Networks

Alexandru Copoţ
Computer Science and Engineering Department

University POLITEHNICA of Bucharest
Email: alex.mihai.c@gmail.com

Florin Donţu
Computer Science and Engineering Department

University POLITEHNICA of Bucharest
Email: florin1288@gmail.com

Abstract—Consistent research is engaged in the area of wire-
less sensor networks. One of the main reasons is the wide range
of application potential in areas such as target detection and
tracking, environmental monitoring, industrial process monitor-
ing, and tactical systems. An important problem arises because of
the low level of sensing; the method to counteract this limitation
is to use dense sensor networks. Now, here comes the reason why
a medium-access protocol is needed: it should be distributed,
sensitive to network changes, it should avoid collisions and so on.
First, this paper outlines some sensor network properties that are
crucial for the design of MAC layer protocols and then, it shall
present and describe a MAC protocol implementation for sensor
networks, using energy saving mechanisms.

I. INTRODUCTION

Improvements in hardware technology have resulted in
low-cost sensor nodes, which are composed of a single chip
embedded with memory, a processor, and a transceiver. Low-
power capacities lead to limited coverage and communication
range for sensor nodes compared to other mobile devices.
Hence, for example, in target tracking and border surveillance
applications, sensor networks must include a large number of
nodes in order to cover the target area successfully. Unlike
other wireless networks, it is generally difficult or impractical
to charge/replace exhausted batteries. That is why the primary
objective in wireless sensor networks design is maximizing
node/network lifetime, leaving the other performance metrics
as secondary objectives. Since the communication of sensor
nodes will be more energy consuming than their compu-
tation, it is a primary concern to minimize communication
while achieving the desired network operation. However, the
medium-access decision within a dense network composed
of nodes with low duty-cycles is a challenging problem that
must be solved in an energy-efficient manner. Keeping this
in mind, we first emphasize the peculiar features of sensor
networks, including reasons for potential energy waste at
medium-access communication. Then we give brief definitions
for the key medium-access control(MAC) protocols proposed
for sensor networks, listing their advantages and disadvantages.
Moreover, protocols that propose the integration of MAC layer
with other layers are also investigated. Finally, the survey of
MAC protocols is concluded with a comparison of investigated
protocols and future directions are provided for researchers
with regard to open issues that have not been studied thor-
oughly.

II. WIRELESS SENSOR NETWORK SIMULATOR

Avrora[7] is a set of tools for programs that run on
the AVR series of microcontrollers produced by Atmel. It
contains a flexible framework for simulating, analyzing, and
optimizing assembly programs, and provides a clean Java API
and infrastructure for experimentation, profiling, and analysis.
The event-queue model for cycle-accurate simulation of device
and communication behavior allows improved interpreter per-
formance and enables an essential sleep optimization. Avrora
allows date-/time-dependent properties of large-scale networks
to be validated. A highly accurate energy model is available,
enabling power profiling and lifetime prediction of sensor
networks. Distance attenuation for multiple-hop scenarios is
also modeled. However, Avrora does not yet model node
mobility. Another phenomenon that is not modeled is clock
drift, which takes into account that nodes may run at slightly
different clock frequencies over time due to manufacturing
tolerances, temperature, and battery performance.

A. Simulation of a platform

Avrora does not contain a disassembler, so it cannot load
directly the machine code. In order to load program, you need
to compile the source code and then use the avr-objdump
tool for the binary file to obtain assembler code that can be
interpreted by Avrora. The steps to simulate a simple program:

$ avr−gcc −o s i m p l e . e l f −mmcu=atmega128 s i m p l e . c
$ avr−objdump −zhD s i m p l e . e l f > s i m p l e . od
$ a v r o r a − t h r o u g h p u t = t r u e s i m p l e . od

B. Monitoring and profiling

Avrora provides mechanisms to profile your application, to
monitor the number and types of interrupts triggered during
runtime, visualize memory accesses, routine calls, processor
state and the most important thing, you can precisely estimate
the energy consumption of your platform during runtime.

• Energy monitoring

• Interrupts monitoring

• Serial Interface monitoring

Another feature of Avrora that we used for testing and
debugging our application is the possibility to redirect the
serial ports of the nodes to the terminal.

III. SENSORS SYSTEM ON NODE SPARROW V3

The Sparrow sensor node contains 3 types of sensors:
temperature, humidity and ambient luminosity. The light sen-
sor is analogical and provides a voltage directly proportional
with the level of ambient light. This voltage can be read by
ATMega128RFA1 microcontroller from PF2(Port F, Pin 2).
Also, on PF0 you can read power supply voltage of the sensor
node.

The transceiver from the ATMega128RFA1 microcontroller
allows different transmission bands in 2.4GHz. It allows trans-
mission speeds of 250 Kbps, 1Mbps and 2Mbps. It has 2
operating modes: Basic and Extended; the Extended mode
includes the functionalities usually provided at medium access
control level.

A. Interface with ATMega128RFA1

The interface is needed to command the transceiver from
the application and to obtain/send data to it. In RFA1 case,
having both the transceiver and microcontroller on the same
chip is a big advantage, since you can do very fast transfers.
RFA1 provides the following interface:

• Command registers: are treated as any other I/O reg-
ister and are used to send commands to transceiver
or obtain punctual information about its state. E.g.
TRX STATE, TRX STATUS, PHY RSSI

• Frame buffer: 128 bytes memory area where packets
are sent/received. Accessible from microcontroller as
128 bytes I/O register area, beginning with TRXFBST
and ending with TRXFBEND.

• TRXPR register: has 2 flags that can affect the
transceiver even if is in sleep mode. The flags are
TRXRST - resets transceiver anytime and SLPTR
- controls the sleep state and the start of packet
transmission.

• Interrupts: The transceiver can generate multiple inter-
rupts to the microcontroller. E.g. TRX24 RX START
- begin receipt of packet; ready to read the frame
buffer. TRX24 TX END - end of transmission.

B. State machine

The transceiver from RFA1 uses a state machine to know
the current operating mode. The states could be:

SLEEP - Hibernation state, no energy consumption
RESET - Just restarted
TRX OFF - Standby state, no packet listening
RX ON - Listening for packets
BUSY RX - Packet receiving
PLL ON - Transmission active and ready
BUSY TX - Packet transmitting

The diagram in Figure 1 shows the entire state machine
and all the possible transitions.

States transition procedure: (a) Set your state in
TRX STATE. (b) Wait until TRX STATUS does not con-
tain TRANSITION IN PROGRESS in TRX STATUS 4..0 bit
field. Packet transmission procedure: (a) Enter PLL ON state.

Figure 1. Basic State Machine for the RFA1 transceiver

This guarantees that a package reception does not begin over
the frame buffer, between the moment of writing into the buffer
and the moment when transmission begins. (b) Copy data into
buffer: first byte represents the packet size and then the 127
bytes of data. (c) Start transmission - setting SLPTR bit or
through TX START command. Packet reception procedure:
(a) Enter RX ON state. (b) Receive RX START or RX END
interrupt. (c) Begin reading the frame buffer: packet contains
only data, from the first byte to the last byte. The packet size
can be read from TST RX LENGTH.

IV. IMPLEMENTATION OF A MAC PROTOCOL FOR WSN

A. Overview

When designing a good MAC protocol for wireless sen-
sor networks, we must take into consideration the following
problems:

Energy efficiency Most sensor nodes are battery-equipped, so
reducing the energy consumption to prolong the service
lifetime of the nodes becomes a critical issue. To solve
the energy problem, we identified the sources of energy
waste: - idle listening. This is a dominant factor of energy
waste, especially when the traffic load on the network
is light. - collision or corruption. Normally, collision
may occur when neighboring nodes contend for free
medium. When this happens, corrupted packets should
be re-transmitted, which increases energy consumption.
- overhearing. This happens when a node receives some
packets that are destined to other nodes. - control packet
overhead. Exchanging control packets between sender and
receiver also consumes some energy.

Scalability and self-configuration For a wireless sensor net-
work, its topology and size may change over time. So
a good MAC protocol should accommodate to such
changes.

Latency, throughput, bandwidth utilization, fairness
There are common attributes for most of MAC protocols.
For most of sensor network applications, the speed of
changes on physical objects sensed by sensor nodes is
much slower than the network speed.

One general issue comes from the fact that nodes might
start to loose synchronization between each other. If the
listening periods of neighboring nodes do not overlap for the

right amount of time, the network may loose connectivity in
time. Increasing the listening periods is also not an option
because it increases power consumption. One solution that was
implemented by our protocol is to synchronize the wake-up
times of all the nodes in the network.

B. Protocol

The sensor nodes will follow the same program of wireless
activity:

1) In the initial phase, the base station(node with address
0) initiates the broadcast procedure. The other nodes
are waiting for the broadcast message sent by node
0. If the message reaches its destination, the node’s
routing table is updated, but if the message reaches
only a hop, the node will forward the broadcast
message.

2) After the broadcast phase, the node enters in sleep
mode.

3) Now, the communication phase starts. Before sending
a packet to the destination, we search for a valid
route; then we start a collision detection mechanism
to check if the channel is ready to be used. Moreover,
prior to sending the actual data, we use the RTS-
CTS mechanism in order to avoid the hidden station
problem. When receiving a packet, each node repeats
this process until the packet reaches the destination
node.

Another possible communication phase is used for time
synchronization. Special time synchronization packets are
broadcasted by each node. The neighboring nodes use the
information in the received packets in order to calculate the
next wake-up time. An average of the wake-up times of the
neighboring nodes is used to determine the next time each
node will wake-up in the next phase. This can also be applied
to synchronize the actual real time clock of each node.

The synchronization of the wake-up times may be a good
option for nodes that are processing data before sending it on
the network. Depending on the application, this processing can
take various amounts of time that can be different from node
to node. We can use this aspect to dynamically power down
nodes depending on how much work they need to do. However,
we can’t let the nodes choose an individual sleep schedule
because they will start to loose sync. We can enforce limits for
the shortest active period and shortest sleep period and then
synchronize the wake-up times between neighboring nodes.
This is one technique that we investigated and implemented in
our protocol.

The previous synchronization method works for relative
wake-up times. Each node would schedule a real time clock
interrupt to wake it up in the future. However, this is relative
to the absolute time of each node. If the clock will get
too much out of sync, it might not be possible for the
nodes to communicate. Another solution is to synchronize the
absolute values of the real time clocks of neighboring nodes.
This resembles the use of Network Time Protocol (NTP) for
synchronizing the clocks of computing devices.

Figure 2. Topology for wake-up synchronization

To calculate the next wake-up time, each node does the
following calculations:

S =
∑

n∈neighbours

(n.local time+n.wakeup−n.sync rcv time)

next sleep =
old sleep+ S

N + 1

The local time is the local time of the node when it sent
the message. We must also take into account the processing
time and transit time of each message so the receiver will
also record sync rcv time as the local time when the time
synchronization message was received.

This is how the algorithm would work for the example
topology in Figure 2. Node 2 receives time synchronization
messages from his neighbors. We will assume that the transit
time of each message is negligible, although our implemen-
tation takes it into consideration. With this assumption, the
sync rcv time from the previous equations is equal to the
local time of each node.

S = 1.5 + 5− 1.5 + 1.2 + 5.4− 1.2 = 10.4

next sleep =
4.8 + 10.4

3
' 5.07

These results show that node 2 will have to sleep more than
the last time. We have to note that without an absolute clock
synchronized between the nodes, errors will affect the resulted
wake-up times.

C. Implementation

Node addresses are implemented as 8bit unsigned numbers.
There is a special broadcast address of 0xFF used mostly
for the routing protocol and time synchronization. This leaves
255 useable addresses for the entire network. However, if an
application requires an increased number of nodes, changes to
the protocol will be very little to support it. The only drawback
of larger addresses is the decrease of available payload space
in the data packets.

Listing 1. Frame header
s t r u c t f rame {

u i n t 8 t l l s r c ;
u i n t 8 t l l d s t ;
u i n t 8 t s r c ;
u i n t 8 t d s t ;
u i n t 8 t f l a g s ;
u i n t 8 t t t l ;
u i n t 8 t d a t a [] ;

} ;

The format of the frame header is described by the C structure
in Listing 1. Two types of addresses are used: a link layer
address and a network layer address. The link layer address
is only valid for communication between local neighboring
nodes. At this level, a destination address of 0xFF does not
make sense because all the nodes can receive the packet any-
way without a need for a broadcast. However, when the intent
is to force all the nodes to process the packet, this address can
be used. The control packets for time synchronization are an
example that use broadcast on the link layer.

Control packets are identified by a non-zero flags field in
the frame. Possible flags include FLAG_RTS, FLAG_CTS and
FLAG_TIME. They are mutually exclusive and correspond to
a single control packet.

The network layer addresses are used to identify the end-
points of a communication. This is where routing takes places.
A node that is not addressed by a packet will try to find a next
hop towards the final destination. All the information regarding
neighboring nodes, routing and time synchronization are kept
in a single table. An entry in this table is shown in Listing 2.

Listing 2. Neighbour Entry
s t r u c t r o u t e {

u i n t 8 t d s t ;
u i n t 8 t n e x t ;
u i n t 8 t hops ;
u i n t 3 2 t t h i s t i m e ;
u i n t 3 2 t d s t t i m e ;
u i n t 1 6 t d s t s l e e p ;
u i n t 8 t used ;

} ;

We chose to use a static table whose total capacity can be
configured before compilation. This increases the the perfor-
mance of adding and removing operations by not relying on the
dynamic memory allocator. We also use less RAM this way.
If the size of the future network may became large enough, a
custom allocator or even the default malloc() allocator could
be used. Currently, each entry in the table is marked by a used
flag when in contains valid information. Allocation operations
need to go over the table and manipulate this flag.

For the purpose of timing, the ATMega128RFA1 offers
a symbol counter that can operate even in deep sleep
by using a RTC. We use this counter as local clock for
each node and this gives us millisecond resolution for all
the time calculations. The time synchronization packets
have a payload described by the structure in Listing 3.
These values are also millisecond representations of time.

Table I. CLOCK DRIFT WHEN USING ONLY WAKE-UP
SYNCHRONIZATION

Topology Initial Clock Drift (ms) Final Clock Drift (ms)
Linear 460 2440
Cross 470 6700

Table II. CLOCK DRIFT WHEN USING GLOBAL CLOCK
SYNCHRONIZATION

Topology Initial Clock Drift (ms) Final Clock Drift (ms)
Linear 483 153
Cross 511 109

Listing 3. Time Synchronization Packet Payload
s t r u c t t ime {

u i n t 1 6 t d s t s l e e p ;
u i n t 3 2 t d s t t i m e ;

} ;

The timestamp dst time is taken immediately before the
packet is sent, just like in TPSN[3], in order to decrease
the possibility of errors. There are still interrupt and packet
processing delays, but we consider these to be negligible.

V. RESULTS

Initially, we have had some issues with the simulation using
Avrora. The interrupts for receiving a packet and for waking up
from sleep were delivered to the wrong ISR. More specifically,
the interrupt executed the next ISR numerically following the
correct one in the interrupt vector table.

The wake-up time synchronization algorithm was first
tested using a Python simulation script. This allowed us to
execute many iterations while introducing random clock drifts.
The results of this simulation showed that in time, the clocks
of neighboring nodes would not drift more than the maximum
artificial errors introduced, provided that the clocks where
initially synchronized.

For more accurate results, we ran the simulation using
Avrora. We tested the communication and clock synchro-
nization using a linear and a cross-shaped topology made
of 5 nodes. The results in Table I show that when only
synchronizing relative wake-up times, initial clock drifts are
an important source of error. Eventually, nodes will start to
loose sync between active periods and messages will get lost.
Clock drift is thus amplified in this way.

However, if we first synchronize the absolute clock coun-
ters of neighboring nodes we could then apply wake-up time
synchronization. As Table II shows, we are able to decrease
the initial clock drift. All the values are maximum between
each pair of nodes.

VI. RELATED WORK

In [1], various medium access control protocols for wireless
sensor networks where compared. The conclusion is that there
is no universally accepted or better protocol. It all depends
on the final application that uses it. Knowing that, we have
made our protocol based on a mix of features. Like S-
MAC[4], we use CSMA/CA with RTS/CTS packets only
for unicast messages. We also provide clock synchronization
between neighbors. However, one drawback of S-MAC is that

the listening and sleeping periods are fixed[1]. We propose
a separate time synchronization algorithm that allows for
dynamic active and sleep periods. There are various other
protocols with very specific use, as we shall describe next.
The WiseMAC[1] protocol performs better under variable
traffic conditions. Thus, the main drawback of WiseMAC is
that decentralized sleep–listen scheduling results in different
sleep and wake-up times for each neighbor of a node. The
TRAMA(Traffic-Adaptive MAC)[1] protocol proposes to in-
crease the utilization of classical TDMA in an energy-efficient
manner. The drawback of TRAMA is that all nodes are defined
to be either in receive or transmit states during the random-
access period for schedule exchanges. This means that without
considering the transmissions and receptions, the duty cycle
is at least 12.5 percent, which is a considerably high value.
Sift[5] is a MAC protocol proposed for event-driven sensor
network environments. Very low latency is achieved for many
traffic sources, since the energy consumption is a traded-off
for latency. One of the main drawbacks is increased idle
listening caused by listening to all slots before sending. The
second drawback is increased overhearing. When there is an
ongoing transmission, nodes must listen until the end in order
to contend for the next transmission, which causes overhearing.
The principal aim of DMAC[6] is to achieve very low latency
for convergecast communications, but still be energy efficient.
The drawback is that Collision avoidance methods are not
utilized; hence, when a number of nodes that have the same
schedule(the same level in the tree) try to send to the same
node, collisions will occur.

VII. CONCLUSION

Wireless sensor networks continue to evolve as new tech-
nologies emerge. However, the limited resources still require
energy-efficient communication protocols. We have investi-
gated and implemented a MAC protocol with time synchro-
nization among neighboring nodes. We have shown that having
a relatively small clock drift can be further used to implement
dynamic active periods.

It is difficult, if not impossible, to say which is the best
MAC protocol. However, depending on the application, we
can choose one that is better suited to our objectives. The
implementation presented here focuses more on obtaining
energy efficient communication, but it can still be improved. A
queuing system could be integrated so that packets that don’t
reach the destination in time to be resent afterwards from the
last node that received them. Also, security is an other area
that was not taken into consideration. A malicious node could
subvert communications in large areas of the network.

REFERENCES

[1] Ilker Demirkol, Cem Ersoy, and Fatih Alagöz, Bogazici University. MAC
Protocols for Wireless Sensor Networks: A Survey. IEEE Communica-
tions Magazine. April 2006.

[2] Ana-Belén Garcı́a-Hernando, José-Fernán Martı́nez-Ortega, Juan-Manuel
López-Navarro, Aggeliki Prayati, Luis Redondo-López. Problem Solving
for Wireless Sensor Networks. Springer-Verlag London Limited 2008.

[3] Holger Karl, Andreas Willig Protocols and Architectures for wireless
sensor networks

[4] Wei Ye, John Heidemann, Deborah Estrin An Energy-Efficient MAC
Protocol for Wireless Sensor Networks

[5] Jamieson, Kyle and Balakrishnan, Hari and Tay, Y.C. Sift: A MAC
Protocol for Event-Driven Wireless Sensor Networks

[6] Lu, G.; Krishnamachari, B.; Raghavendra, C.S. An adaptive energy-
efficient and low-latency MAC for data gathering in wireless sensor
networks

[7] Avrora: The AVR Simulation and Analysis Framework,
http://compilers.cs.ucla.edu/avrora/, Jan 2014

