
Viability of software AES in Wireless Sensor
Networks

Ioan Deaconu, Andrei-Alexandru Musat
Automatic Control and Computers Faculty

University Politehnica of Bucharest,
{ioan.deaconu@cti.pub.ro}, {andrei.musat@cti.pub.ro}

Abstract—An experimental analysis on the viability of software
AES in Wireless Sensor Networks

Wireless sensor networks are a cheap and versatile solution
for monitoring various environments. The data gathered by
these networks is often used in research projects and scientifical
experiments. It is necessary to ensure that a certain level of
security and protection is applied on the transmitted data.
Current software security methods implemented on wireless
sensor networks do not necessarily take into consideration the
lifetime and autonomy of the nodes. This paper presents an
analysis of a software AES implementation on wireless sensor
nodes and shows a comparison between the viability of such a
method with regard to hardware AES.

Keywords: Wiereless Sensor Networks, Data Security, AES En-
cryption, Autonomy

I. INTRODUCTION

Wireless Sensors are low cost, low power devices optimized to
perform custom tasks. They usually gather information from
their surroundings and then send it to a base station server
in order to be stored and processed. This communication
is generally achieved using gateways. A gateway is usually
connected to a more powerful device that can process the
received information and take certain actions based on the
results. The information transmitted by wireless sensors often
represents sensitive data. For this reason, security protocols are
implemented to prevent attacks that can intercept, replicate or
alter the data.

Currently, security protocols in wireless sensor networks rely
mostly on key based encryption algorithms. While this method
can achieve great efficiency in terms of data security and
protection, it also requires a certain level of computational
power and is not always a task which is quickly executed.
More so, in order to use such protocols, nodes must store
all the necessary keys. Due to their design, wireless sensors
often do not possess the necessary resources. They seldom
have external memories attached to them and their processing
power is limited to microprocessors which run at frequencies
in the range of 1-20 MHz.

Another limitation of using this type of protocols to encrypt
data is related to energy consumption. Usually, these sensors
are powered by small batteries with a limited capacity. If
the microprocessor has to perform intensive computations,

these batteries will be drained in short amounts of time. Even
equipping sensors with energy harvesting peripherals does not
ensure that the battery lifespan is greatly increased.

The approach presented in this paper attempts to implement
a more simple encryption algorithms which, combined with
hardware encryption methods, can achieve an acceptable level
of data security while ensuring that power consumption is kept
to a minimum.

The proposed method relies on using available hardware AES
ECB encryption in inter node communication and AES CBC
for securing data.

This approach tries to find the balance point in the trade-
off between security and energy consumption. While the data
might not be protected as well as when key based algorithms
are used, the energy consumption will be minimized thus
increasing the life span of the sensor.

II. RELATED WORK

Security is of prime importance in Wireless Sensor Networks.
Nodes transfer important data between them and the cost of
checking the validity and integrity of the transmitted packages
is high, both from the energy consumption perspective as well
as the necessary computational power perspective.

Possible attacks that might hinder the activity and integrity of
a Wireless Sensor Network include:

• Wormhole attack: the attacker sends the received mes-
sages from one part of the network in a different part
of the network. As a result, the nodes from both areas
consider that the other nodes are neighbours and vice-
versa.

• Blackhole/Sinkhole attack: the attackers makes itself
more appealing from a routing point of view in order
to receive all the messages from the network.

• Sybil attack: the attacker assumes the identity of one or
more valid sensors[6].

• Selective forwarding attack: the attacker is able to inter-
cept messages and drop certain packets or forward them
[3].

• Hello Flood Attack: the attacker uses ”HELLO” packets
to flood its neighbors in order to force the nodes to trust
him.

No current security framework available for Wireless Sen-
sor Networks offers complete protection against all types
of attacks. However they offer protection against specific
attacks. All of the following implementations rely on software
encryption methods:

• SPINS - 2002 - The communication parties create inde-
pendent keys for encryption and decryption and MAC
keys for communication. It provides security against
Data and Information Spoofing and Message Replay
Attacks[7].

• LEAP - 2003 - The protocol implies that the nodes
exchange more than one type of message between
them.Thus, the framework uses 4 different keys. It pro-
vides security against ”HELLO” flood attacks, Sybil
attacks and minimizes the consequences of spoofing,
altering, replay routing information and selective forward-
ing attacks [9].

• TinySec - 2004 - The key is pre-deployed on the node,
but it does not provide any solution for changing the
key. If a node is compromised, the entire network will
be compromised. It provides security against Data and
Information Spoofing and Message Replay Attacks [4].

• LEAP+ - 2006 - It uses the same idea as LEAP, but the
overhead is reduced. It provides security against Con-
fidentiality and authentication, ”HELLO” flood attacks,
Sybil attacks and minimizes the consequences of spoof-
ing, altering, replay routing information and selective
forwarding attacks [9].

• MiniSec - 2007 - Uses a counter IV mechanism. The
counter is incremented locally and only the last bits
of the counter are sent. It provides security against
Authentication, Data Secrecy and Reply Attack [5].

• pDCS - 2009 - It uses 5 different keys to achieve data
security. It provides security against Location and Query
privacy [8].

• TinyKey - 2011 - An improvement of TinySec. It adds the
key management system, in order to be able to change the
key after the node is deployed. It provides security against
Message authentication, confidentiality and integrity [1].

• ERP-DCS - 2013 - It proposes a different way of creating
and storing keys when compared with pDCS. It provides
security against Location and Query privacy [2].

III. ARCHITECTURE

A. Hardware

The processing power and wireless capability of the wireless
sensor nodes are provided by an Atmel ZigBit 900MHZ RF
module. It contains an ATmega 1281V 8-bit microcontroller
connected to an AT86RF212 RF Transceiver via a SPI inter-
face. The Atmega 1281V is an low power 8 bit microcontroller

that is connected to the onboard sensors of the node. In order
to be able to transmit or secure the data, the microcontroller
will communicate with the RF Transceiver. The Transceiver
controller is a very low power chip, capable of sending data
up to 6 km. Also, the Transceiver contains a security module
compatible with AES-128. It supports hardware encryption
and decryption for AES 128 ECB, but for the AES 128 CBC
it is available only the hardware encryption.

Figure 1: System Architecture

B. Software

From the software perspective, the architecture is composed
of three modules:

• data module, that collects information from the sensors,
• encryption module,
• communication module.

Since the transceiver module is separated from the controller,
from an efficiency perspective, it would be preferable to
implement AES ECB and CBC algorithms as software services
directly on the controller. Using this method, the transceiver
shall be kept most of the time in an idle state, and the
only component which will actively operate and drain the
battery is the controller itself. While the controller is one of
the components which a high power consumption rate, the
implementation will contain optimizations meant to keep the
number of encryption operations performed to a minimum.
Moreover, it is important to filter data before packaging and
sending it, in order to further reduce the number of encryption
and decryption operations which the microcontroller of a node
has to perform.

Overall, given the available hardware resources and architec-
ture, the proposed implementation offers a software solution
for ensuring data security and it also uses encryption methods
which can easily be replaced with AES ones if ported on an
hardware architecture in which the transceiver is incorporated
in the microcontroller.

IV. IMPLEMENTATION

As stated in the Architecture chapter, the solution focuses on
implementing the ECB and CBC algorithms in the Atmega
controller firmware along with a series of optimizations meant
to keep power consumption at a minimum.

A. ECB and CBC algorithms

Both the ECB and CBC algorithms represent block ciphers.
These algorithms operate on fixed-length groups of bits called
blocks. In order to encrypt/decrypt a block of data, a key is
necessary. The difference between the two methods lies in how
the key is applied.

For the ECB mode, each block is encrypted separately with the
respective key, as show in the figure below. The disadvantage
of this method is that identical plain text blocks shall generate
identical cipher text blocks, which allows data patterns to
emerge, thus making this encryption method relatively vul-
nerable to attacks.

Figure 2: ECB mode of operation

In contrast, CBC mode encrypts a block by using information
from either the previous block, or and initialization vector
(IV). A xor operation is performed between the plain text
and the previous cipher text or IV before applying the key.
This method ensures pseudo-randomness and prevents patterns
from emerging, thus making it more resilient to attacks.

Figure 3: CBC mode of operation

B. Disadvantages of key based algorithms

There are two main reasons why the chosen encryption method
is ECB/CBC. The first reason is that when ported to a different
architecture which incorporates the transceiver on the same
chip as the controller, the encryption and decryption can be
safely handed over to the AES with minimal modifications
and almost no degradation in power consumption.

The second reason is that an alternative solution would rep-
resent using key based encryption methods (both symmetric

and asymmetric). Amongst the downsides of this particular
method, we are mainly concerned with the following:

• Increased power consumption. Due to the nature and
complexity of these algorithms as well as the number
of operations which must be performed, the cost of such
a solution is not optimal for low power sensors. By cost
we refer to the necessary processing power and the total
power consumption of the wireless sensor node.

• Memory limitations. The wireless sensor nodes were not
designed to support external flash memory modules. The
only available memory is the Atmega controller’s flash
memory. Since this memory is limited, writing additional
data in it such as the node’s private key and the public
keys of other nodes would not be practical. A possible
solution would be to add a special type of node which
handles all data decryption and verification on the path
towards the base station, but this would increase the size
and complexity of the network.

• Key vulnerability. There are situations in which nodes
will have to transmit public keys between themselves.
Unless the respective keys are also encrypted prior to
sending, should a man-in-the-middle type of attack occur,
the keys can be intercepted and thus compromise the
security of future transmissions.

C. Optimizations

Despite being a more efficient technique from the power
consumption point of view, the software implementation can
be improved even further by reducing the number of operations
that must be performed on the microcontroller.

In the wireless sensor network, each node is identified by a
MAC. In order to optimize the operations performed by a node
when it receives a packet and also prevent attacks which try
to introduce corrupt packets in the network, it shall first check
if the source MAC is valid. This additional layer of security
is cheap to implement and versatile.

First, each node shall contain a table of valid MACs stored
in its local flash. The size of this table is proportional to the
number of sensors in the network. Once a node has this table,
upon receiving a packet, it shall drop it unless the source
MAC matches an entry in the table and no decryption and
verification operations shall be initiated.

Another software optimization is related to data processing
before packets are assembled and the encryption operation
can effectively begin. The data provided by the main sensor,
the accelerometer, is often of no interest, as it presents no
immediate changes in the frequency of an object’s vibrations.
Thus, in order to reduce the number of packets which a sensor
node sends and prevent the flooding of the communication
channel, this data is pre-processed.

Once the network is assembled and the nodes are powered
on, they shall take a set of readings in order to calibrate

themselves to a certain level of vibrations. Then, whenever
input is provided from the accelerometer, if that specific input
is in range of the default values obtained during calibration, the
information is dropped and no packet is formed. Furthermore,
relevant data which is not in the range of the normal values
is not sent after every reading. Instead, a series of N such
readings from the accelerometer are processed into a median
value, which is then transmitted into the network. Using this
technique, the controller processes more useful information
and the network will not flood itself.

V. EXPERIMENTAL RESULTS

In this chapter we present the experimental setup which was
used to test the transmition of encrypted data, as well as results
related to the power efficiency of the sensors, the processing
capabilities of the proposed solution and resilience towards
flooding and DDoS attacks.

A. Experimental setup

The above mentioned tests were performed using a small
network composed of 3 SparrowE wireless sensor nodes. In
this setup, one of the SparrowE nodes was designated as the
network coordinator while the other two nodes were plain
sensors, as it can be seen in the figure below:

Figure 4: The SparrowE WSN experimental setup

The network coordinator is directly connected to the base
station and its functions include analyzing incoming packets,
decrypting the valid ones and passing the information on to the
base station. The rest of the nodes are simply sensors which
encapsulate and encrypt the data from their accelerometers and
then broadcast it on the network.

B. Software ECB and CBC efficiency

The metric of interest is the number of encryption and decryp-
tion operations on a 16 bytes block which can be performed
in a unit of time by the software implementation of the ECB
and CBC algorithms and if it scales linearly like the AES
implementation does.

In order to gather the required data, both EBC and CBC have
been performed on data from the node’s sensors for periods
of time lasting 1, 2, 3, 4 and 5 seconds respectively. Then, the

same was done using the AES implementations. The results
can be observed in the tables shown below:
Table I: Number of operations performed by software/hard-
ware ECB

Time ECB Soft-
ware En-
cryption

ECB
Hardware
Encryp-
tion

ECB Soft-
ware De-
cryption

ECB
Hardware
Decryp-
tion

1 901 3552 520 3550
2 1805 7105 1044 7101
3 2707 10661 1562 10653
4 3604 14221 2084 14205
5 4508 17761 2603 17752

Table II: Number of operations performed by software/hard-
ware CBC

Time CBC Soft-
ware En-
cryption

CBC
Hardware
Encryp-
tion

CBC Soft-
ware De-
cryption

CBC
Hardware
Decryp-
tion

1 873 3550 509 3380
2 1747 7103 1023 6760
3 2623 10651 1530 10143
4 3495 14203 2038 13525
5 4367 17754 2546 16901

As it is seen in both tables, the results show that the software
implementation also scales linearly, just like the hardware
AES. Unfortunately, the software AES proves to be almost
7 times slower than the hardware AES. This is especially
problematic in the case of data decryption, where the software
AES will be much slower will take longer periods of time
to detect possible corrupt packets. Furthermore, this will also
cause the data from the sensors to be gathered less often and
there is the danger that an interruption which occurs when
sensor data is ready could suspend the decryption process.
One more issue encountered during the tests shows that due
to the limited amount of RAM memory available on the
controller, only 4Kb, a node cannot perform both software
encryption and decryption at the same time.

C. Power consumption

Under normal circumstances, the Atmega controller on the
SparrowE nodes functions at a supply voltage of 3.6V and
a frequency of 8MHz. If the nodes run the encryption by
using only the software method, then the transceiver shall
mostly be turned off while the sensor is running and its power
consumption is negligible.
While performing encryption operations, it has been measured
that the controller has a medium power consumption of 36mW,
which can reach peaks of 50.4mW, meaning it normally uses
a current of 10mA which spikes at 14mA. If the hardware
approach is used and the transceiver is turned on for large
periods of time, it adds a power consumption of 1.63mW-
3.48mW, meaning an average current of 490uA.
Because software AES operations are performed slower than
their hardware AES counterparts, it would seem that the total

power consumption of the sensor nodes would be 7 times
greater. However, when calculated together with the power
consumption of all the other components, results show that
using software AES decreases the sensor’s autonomy by a
factor of only 2 or 3.

D. Flooding and DDoS protection

Inside the wireless network running at 900MHz, the nodes
communicate by broadcasting packets. The network coordina-
tor node shall receive and analyze any packet which arrives on
this channel. This opens up the risk of exposing the network
to a DDoS attack. In order to determine how resilient the
network is to such an attack and how much useful information
the coordinator loses because it spends time analyzing and
decrypting corrupt packets, such an attack has been simulated
inside the experimental network.
The simulation is done by expanding the network to 5 nodes
and having some of them transmit corrupt packets which are
only meant to flood the network. The total size of these packets
is 112 bytes. The size must be a multiple of 16 in order to
be processed by the block encryption algorithms. Then, these
packets will be sent at time intervals starting at the network’s
default 250ms and scaling down until the coordinator no longer
receives any packets. The total number of packets sent during
each iteration is 1500. The packet header is described below:

d e f i n e MAX PACKET DATA 17

t y p e d e f s t r u c t a t t r i b u t e ((packed)) {
i n t 1 6 t x ;
i n t 1 6 t y ;
i n t 1 6 t z ;

} d a t a t ;

t y p e d e f s t r u c t a t t r i b u t e ((packed)) {
u i n t 1 6 t node id ;
u i n t 3 2 t t imes t amp ;
u i n t 1 6 t f r a m e i n d e x ;
u i n t 1 6 t n r ;
d a t a t d a t a [MAX PACKET DATA] ;

} f r a m e t ;

The results can be seen in the figure below:
We can see that packet loss does not drastically increase in
the interval of 250ms - 40ms. However, once we start sending
packets once every 32ms or faster, the network becomes more
and more flooded. When the transmission interval is below
27ms, the attacker’s packets no longer reach the coordinator
node (the attacker cannot send packets that fast and stops
working), thus all the correct packets are processed and the
loss is 0 percent. The overall packet loss for the 5 sensor
network transmitting at intervals of 250 milliseconds is 2
percent.

Figure 5: Graphic representation of packet loss correlated with
interval between packet sending

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusion

In conclusion, over the course of the experiment we have
observed that the software implementation of ECB and CBC
encryption algorithms can not be used in low power wireless
sensor networks as an alternative to the hardware AES because
it is by its nature a slower solution and it does not integrate
well with the concept of low power sensors.
We have seen that using this implementation, the number of
encryption and decryption operations which can be performed
in the unit of time is significantly smaller than when using
hardware AES, up to a total of 7 times slower, especially in
the case of the decryption operation.
A second drawback would be that the software implementation
requires additional memory to store the tables used by the ECB
and CBC methods to generate keys. This can take up to 21Kb
of flash memory on the controller. In comparison, when using
hardware AES, no such memory usage is required.
Going even further, the software implementation requires even
more resources in order to perform both encryption and
decryption operations on the same node. The 4Kb of RAM
memory available on the node’s controller is not sufficient
to perform these tasks, one node being able to perform only
decryption or only encryption.
The last test has shown that with the proposed headers for
security, the coordinator (or gateway) node can still perform
well even when flooded with a great number of corrupt
packages meant to perform a DDoS attack and prevent the
network from processing proper data.

B. Future Work

In addition to the AES implementation, there are a series of
other encryption algorithms and methods which have been
presented at the beginning of this paper. Future research and
analysis can be performed to verify if any of those other

methods could perform better or on the same level as the
hardware AES on the given experimental setup.
Furthermore, the overall energy efficiency of different imple-
mentations over the course of long periods of time can be
studied. The goal would be to establish which encryption
and security method is best suited for the SparroE wireless
sensor nodes in order to ensure their operational lifetime is
the maximum possible.

REFERENCES

[1] R. Doriguzzi Corin, G. Russello, and E. Salvadori. Tinykey: A light-
weight architecture for wireless sensor networks securing real-world
applications. In Wireless On-Demand Network Systems and Services
(WONS), 2011 Eighth International Conference on, pages 68–75. IEEE,
2011.

[2] J.-M. Huang, S.-B. Yang, and C.-L. Dai. An efficient key management
scheme for data-centric storage wireless sensor networks. IERI Procedia,
4:25–31, 2013.

[3] S. Kaplantzis, A. Shilton, N. Mani, and Y. A. Sekercioglu. Detecting
selective forwarding attacks in wireless sensor networks using support
vector machines. In Intelligent Sensors, Sensor Networks and Information,
2007. ISSNIP 2007. 3rd International Conference on, pages 335–340.
IEEE, 2007.

[4] C. Karlof, N. Sastry, and D. Wagner. Tinysec: a link layer security
architecture for wireless sensor networks. In Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages
162–175. ACM, 2004.

[5] M. Luk, G. Mezzour, A. Perrig, and V. Gligor. Minisec: a secure
sensor network communication architecture. In Proceedings of the 6th
international conference on Information processing in sensor networks,
pages 479–488. ACM, 2007.

[6] J. Newsome, E. Shi, D. Song, and A. Perrig. The sybil attack in sensor
networks: analysis & defenses. In Proceedings of the 3rd international
symposium on Information processing in sensor networks, pages 259–268.
ACM, 2004.

[7] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. E. Culler. Spins:
Security protocols for sensor networks. Wireless networks, 8(5):521–534,
2002.

[8] M. Shao, S. Zhu, W. Zhang, G. Cao, and Y. Yang. pdcs: Security and
privacy support for data-centric sensor networks. Mobile Computing,
IEEE Transactions on, 8(8):1023–1038, 2009.

[9] S. Zhu, S. Setia, and S. Jajodia. Leap+: Efficient security mechanisms
for large-scale distributed sensor networks. ACM Transactions on Sensor
Networks (TOSN), 2(4):500–528, 2006.

