
 1

Abstract—Environmental monitoring is key for multiple

applications and requires that devices used in acquiring
environment data to be scattered over a wide area, but at the
same time maintain accessibility of information from all sensor
nodes. Although many Wireless Sensor Networks are based on
the IEEE 802.15.4 standard for low-power, Wi-Fi networks offer
the most accessibility and interoperability with other devices. We
envision a system which integrates the two networks' main
capabilities by monitoring data in a heterogeneous Wireless
Sensor Network. Nodes can transmit sensor data over the
Internet to other devices, server applications or cloud based
solutions, making the whole process of environmental monitoring
universally accessible.

I. INTRODUCTION
Today, smart homes, smart cities, smart grids, intelligent

transportation are infrastructure systems that connect our
world more than we ever thought possible. For this vision,
most representative is the concept of Internet of Thighs (IoT),
in which the use of sensors to gather environment
measurements is closely coupled with information and
communication technologies. By using embedded devices,
intelligent monitoring and management can be achieved,
interconnecting them to transmit useful measurement
information and control instructions through a distributed
sensor network.

For environment monitoring, a Wireless Sensor Network
(WSN) is used to detect physical phenomena such as light,
heat, pressure, etc. A WSN consists of a large number of
sensor nodes, each of them equipped with one or multiple
sensors. WSNs are viewed as a revolutionary information
gathering method, which is best suited to create complex
communication systems.

In comparison with wired solutions, WSNs are easier to
deploy and have better flexibility. With technological advance
and the need to integrate more and more sensors and expand
the monitored area, WSNs are becoming the key technology
for IoT.

II. RELATED WORK
Environment monitoring has been around for a while and

many hardware providers for Wireless Sensor Network focus
on using 802.15.4 networks, mainly for their low-power.
However, the offered solutions tend to lack accessibility and
integration with common devices, such as smartphones, tablets
or do not include easy cloud connectivity. Also, the high price
of such implementations makes them even less attractive.
Therefore, the concern is with finding cheaper and more
community-oriented alternatives for monitoring the
environment.

 One of the most popular solutions for Wireless Sensor
Networks is ZigBee [1], a protocol for wireless mesh networks
based on the IEEE 802.15.4 standard. It was especially
conceived for ultra low-power applications. ZigBee protocols
are used in embedded applications that have low power
consumption and do not require a large bandwidth.

The ZigBee protocol offers support for star, tree, and mesh
network topologies, handling message routing between the
nodes. Although a ZigBee node does not have a long
transmission range, messages can travel to greater distances by
adding other nodes to create a network and expand the
coverage area.

ZigBee certified products tend to have a high price and do
not include embedded sensors. Furthermore, for the
applications to extract data from the ZigBee nodes, a hardware
link with a node must exist. A solution to that problem is
offered by a ZigBee IP Router [3], a gateway to Wi-Fi
networks. However, this solution adds to the price of a system
and it does not include integration with common devices.

Thread [4] is communication protocol designed for wireless
networks, based on the IPv6 stack. It is designed to be user-
friendly, always secure and cost-efficient. It runs on the IEEE
802.15.4 stack and it was conceived for a large range of
applications for home automation. It is a proprietary protocol,
and devices using it must have a certificate. The whole
network can connect to the Internet through a Wi-Fi “Border
router”.

Environmental Monitoring Using
Heterogeneous Wi-Fi and IEEE 802.15.4

Networks
Cristian Cocioabă, Dan Tudose
Computer Science Department

University POLITEHNICA of Bucharest
Bucharest, Romania

cristiancocioaba@gmail.com, dan.tudose@cs.pub.ro

 2

III. GENERAL OVERVIEW
A WSN generally consists of a varying number of sensor

nodes and a gateway for the connection to the internet. The
gateway can also have its own sensors. The general
deployment stages in using a WSN are (see Fig. 1): first, after
power-on, the sensor nodes broadcast their status, and the
neighboring nodes respond with their own status to detect each
other. Second, based on a configured topology (linear, star,
tree, mesh, etc.) the nodes make a logical connection between
themselves to create a fully organized network. Finally, the
links are used to transmit the sensing data and commands.

For environment monitoring, sensor nodes need to be
scattered on a large area, many times in remote locations,
requiring devices to run for long periods without any
intervention. Usually, sensor nodes are powered from
batteries, limiting transmission power and active time. The
transmission distance can be up to 800 to 1000 meters in an
open outdoor environment within line-of-sight [4], but it will
greatly decrease indoors to a few meters because of
attenuation [5]. To expand the coverage area, WSNs use
multi-hop routing to transmit a message from one node to
another through intermediate nodes that redirect the message
to its destination. The source node sends its data to the nearest
neighbor and so on until it arrives at its destination. In a WSN,
the gateway node, called Base Node, Coordinator, or Edge
Router can reformat the message received from other nodes,
retransmit it to another network, or just keep the data in
memory for future usage.

The protocols for a WSN may vary, depending on the
application it serves, but all have the same main features: self-
organizing, self-adaptation, limited node energy and unstable
transmission links.

Steps for data monitoring and aggregation:

1. Gather data from sensors
2. Serialize/Pack data
3. Send and route to coordinator
4. Coordinator sends to a sink node, an aggregation

node or a web monitoring app

IV. ARCHITECTURE

A. Overview
The most remarkable protocols for WSNs that are used in

current commercial applications are: Bluetooth 4.0, which is

oriented towards medical WSN, IEEE 802.15.4 oriented
towards industrial WSN, and WLAN IEEE 802.11, which is

currently the main networking protocol for IoT [6].
The characteristics of WSN are quite similar to those of a

low-speed WPAN, and thus most WSNs take IEEE 802.15.4
as the underlying communication standard. It is focused on
low-cost and low-speed communication of nearby devices.

Wi-Fi (IEEE 802.11) offers a larger bandwidth but requires
more power. For IoT, the main advantages of WLAN are:

- easy integration of WLAN clients and devices to the
internet

- broad acceptance as a wireless communication
technology in offices, homes, and industry

- widespread support on mobile devices
- power consumption levels acceptable for industrial

applications and sensor networks

Predominant network topologies for IEEE 802.11 WLANs
are star topologies, where mobile clients connect directly to
access points.

To benefit from the low power of IEEE 802.15.4 and the
integration of Wi-Fi, a hybrid network may be used, which is a
heterogeneous WSN composed of both types of wireless
networks and in which each node can transmit messages to
any other node, regardless of its position and network type. In
this way, all IEEE 802.15.4 nodes have access to the Internet.

In Wi-Fi network topologies, each individual node can
transmit data directly to the Internet if access is granted, but in
a WSN that is not usually the case, due to the large network
size and coverage area. Nodes can create their own wireless
mesh and route all messages to a node which has access to the
Internet, named Coordinator or Edge router. The Coordinator
can manage the whole network and can route all the data to a
Sink (an aggregation node). The Sink node can be another
node that can store and display data for all sensors or any kind
of Web Service accessible from the Internet. The Wi-Fi
Coordinator can also store sensor data, but it is constrained by
hardware specific limitations in processing power and storage
capability.

Fig. 2. Wireless Sensor Network with Wi-Fi and 802.15.4 nodes. The whole
network has access to the Internet through the edge router (a Wi-Fi
Coordinator).

Fig. 1. Organizing and transmitting process of WSNs [6]

 3

In the IEEE 802.15.4, a similar topology is recommended,
consisting of a Coordinator and Devices (normal nodes that
only collect data from sensors). Optionally, a Router node can
be used, which redirects messages from Device nodes to a
Coordinator or another Router node.

In this way, a hierarchical structure is created, a Tree
network topology, in which the Coordinator is the base node
and the Devices are the leaves.

To connect the two types of networks there must be a direct
link between the Coordinator from the Wi-Fi network and the
Coordinator from IEEE 802.15.4. This link can be
implemented by a serial interface through UART.

B. Connections
In a WSN, all nodes must be connected and all gathered

data must be accessible from the network. To achieve that in a
heterogeneous network, we make use of each node’s specific
capabilities.

The ESP8266 nodes have built-in support for UDP and
TCP. Because there is no need for a permanent connection
between nodes and for energy saving, the radio may be turned
off, messages can be sent as unicast or broadcast messages
through UDP. A Wi-Fi connection is needed, which can be
supplied by a Wi-Fi router or they can create their own access
points for the other nodes to connect.

The Sparrow v4 nodes can communicate through 802.15.4,
creating a wireless network mesh. Because the two networks
do not have a way to send messages to one another, a
hardware link must be made between two nodes from different
networks. This can be done with a SPI or UART interface.

V. IMPLEMENTATION

A. Node hardware
In the 802.15.4 network, we used the Sparrow v4 board. It

is an excellent platform for IoT, with ultra low-power wireless
transceiver on the 2.4 GHz frequency band, designed to work
with a range of wireless protocols, such as IEEE 802.15.4,
6LoWPAN and ZigBee. It also has multiple sensing
capabilities, including inertia, gyroscope, temperature,
humidity, luminosity, UV index, visible light index, and also a
barometric and altimeter. This range of sensors, make it
perfect for environment monitoring [7].

The ESP8266 [8] module is a very popular choice for the
IoT world. It implements the 802.11 b/g/n protocol and also
has integrated support for the TCP/IP and UDP stack
protocols. It can be used as a Wi-Fi module, by sending AT
commands, or it can be used as a standalone processing unit,
having enough memory and processing power to handle a IoT
application and gathering data from external sensors through
GPIO pins. We used two types of development boards for this
project, the NodeMCU v1[9] and WeMos D1 mini [10] for
easy programing and debugging the implemented software.

B. Routing protocols
For Sparrow, the Constrained Application Protocol (CoAP)

seems as the best choice for routing messages between nodes.
The protocol is designed for machine-to-machine (M2M)

applications such as smart energy and building automation
[11].

We tried to use an existing CoAP implementation over an
IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN) stack ported for Sparrow v4. Because there is no
support implemented yet for sensor data acquisition specific to
Sparrow v4 and any software serial communication we chose
to use the Arduino environment and libraries, which offer
better flexibility and greater support for sensor data
acquisition and built-in functions for handling software and
hardware serial connections.

For routing the messages between the 802.15.4 nodes, we
used the SparrowRadio library, which handles radio
management and data transfers specific for Sparrow nodes.
Inspired by CoAP, we kept the Coordinator and Device roles
and we implemented simpler routing rules for sending Device
nodes data to the Coordinator and then to the Wi-Fi
Coordinator. The acquisition and transfer of sensor data is
done through specific packet data structure.

WSN Protocol for ESP8266 is a lightweight protocol for
creating a WSN over Wi-Fi with ESP8266 chips. It is a similar
model to the CoAP protocol, but is based on IPv4 and UDP
stack. The Coordinator is called a “Head node”, which can
also act as a Router and the Device is called simply “Node”. It
supports network discovery and auto-arranging nodes into
star, tree and mesh networks. It extends the limitations of the
Wi-Fi range by creating new access points for other nodes to
connect and auto-redirect the messages from and into the
subnets [12].

C. Interconnection
For the two distinct networks to communicate, we made a

link between their coordinators. Because the we cannot access
the hardware serial from the Sparrow node directly, this
connection is represented by a software serial port, which
allows the use of any two pins from each node to be used in
communication.

For the Sparrow node, we used the MOSI and MISO pins
from the ISP module on the Nest as RX and TX pins. These
are connected to GPIO12 and GPIO14 on ESP8266,
representing the RX and TX, respectively (Table 1.).

Table 1.

Sparrow ESP8266
RX Pin 20 - MOSI GPIO14 TX
TX Pin 12 - MISO GPIO12 RX

Optionally, an SPI connection between the two nodes can

be used.

D. Packing and transmitting sensor data
In this paper, we analyzed data gathering from all the nodes

in a WSN, not the auto-arrangement and extra messages that
each protocol sends between its own nodes to create a wireless
network. For the purpose of monitoring environment
parameters, it is only needed that each node to send data from
its own sensors to the Internet or a Sink node (data

 4

aggregation node). In this way sensor data travels in only one
direction. For future configuration, or sending a specific
message to the whole network or only one node, there should
be very little to modify in implementation, the process just
reversing the transmission direction and implement the handle
action to that message.

In the heterogeneous network that we implemented,
ESP8266 and Sparrow nodes both send their sensor data to
their respective Coordinator, and since only the Wi-Fi
Coordinator is the edge router, it receives all the data from the
Sparrow node and passes it directly to the Sink. It also has the
capability to store values from all sensors and display them in
an HTML page, but the hardware limitation of the Coordinator
node forces it to keep and display only a small number of
values. This HTML page is useful for viewing a minimal
status of the nodes and their sensors in the absence of an
Internet connection or if a server or a Sink node is not
accessible.

Data packets sent from all nodes to the Coordinator must
include relevant information about the sensor type and value,
but also an identification for the sender node. In the same
time, the packet must have a minimum length, due to low
power concerns.

The data structure we chose to use as a data container for
sensor data is shown in Listing 1. It includes a unique
identification number for the source node that generates the
data, which represents a 32-bits integer of the MAC address. It
also contains the sensor type, an enumeration of types, showed
in Listing 3., and the sensor value. Because a single sensor can
supply information for multiple environment variables, we
used a structure to hold the data for a single type of sensor and
combine all different sensor values type in a union. In this
way, a single message can be sent for one sensor read.

 The size of the whole data structure depends on the
particular sensor values. It has 4 bytes for node_id, 1 byte for
sensor_type_t if “-fshort-enums” flag is specified for gcc, and
the maximum length of the all sensor value structures. For the
sensors we used, the biggest sensor value structure has a size
of 8 bytes, giving a total packet size of 13 bytes. Also, for the
compiler to not add extra padding on the packet, it must be
specified to pack the structure. Otherwise, the size of the
packet may be larger, depending on each node architecture,
and messages will not be decoded properly.

For packet integrity, a CRC of 4 bytes can be added on the
end of the message for control and a start sequence, or a
header, at the beginning. In our case this is only needed for the
serial communication, because packet integrity for Wi-Fi and

802.15.4 networks are supplied by the protocols we used. The
header for the serial transfer is a one-byte value chosen
randomly, similar to the “magic” byte in other network
protocols, but the same on all nodes. With these fields, the
total length of the packet transferred through software serial is
18 bytes long.

Listing 1. Sensor data
struct sensor_data_t {

uint32_t node_id;
 sensor_type_t sensor_type;

sensor_value_t sensor_value;
};

 Listing 2. Sensor value struct

union {
 sensor_temperature_t temperature;
 sensor_light_t light;
 sensor_battery_t battery;

} sensor_value_t;

Listing 3. Sensor types
enum sensor_type_t {
 SENSOR_TEMPERATURE = 0x0,
 SENSOR_LIGHT,
 SENSOR_BATTERY
};

For efficient data collection, all nodes should transfer their

sensor data to the Coordinator and the Coordinator should pass
that data further to the Sink or save and display it. The routing
protocols can handle variable payload size and can pass the
whole packet in a single message, containing data from one
type of sensor. In the same manner, for a serial data transfer, a
packet is transmitted within a single message.

When the 802.15.4 Coordinator receives a message from a
child node, Device or Router, it passes the payload directly to
the serial to the Wi-Fi Coordinator. And when the Wi-Fi
Coordinator receives a message, either from the Wi-Fi
network or the software serial, it stores it in a list of sensor
data for displaying it in the HTML page and also encodes it as
a JSON string for server upload. It can send data through UDP
or TCP, as a broadcast or as a unicast message. Sending the
message as a JSON string gives the possibility to integrate the
whole WSN with any server API and can be easily decoded
and managed. Optionally, it can encode data on a custom way,
for the server to handle.

 5

All sensor data packets are routed from a Device or a
Coordinator to the main Coordinator, or Edge router. After a
sensor data packet is created, it is not altered during the
routing stage, also ensuring data integrity on the way. If a
packet has a wrong format it is rejected.

VI. GATHERING AND AGGREGATING SENSOR DATA

A. Temperature and humidity
Sparrow has an integrated temperature and air humidity

sensor produced by SiliconLabs, Si7021 [13]. It has a small
print (3mm x 3mm) and can communicate with the
microcontroller with a standard I2C protocol and thus
transferring data fast. Measurement data consists of the first
8/12 bytes of the humidity value and on the last 12/14 bytes
the temperature value.

To make use of the ESP8266 nodes, we used two types of
digital temperature sensor: TMP102 [14] and DHT 11 [15],
both transferring data through the same I2C standard. Also,
DHT 11 has the capability to measure air humidity.

Sensor data packing is described in Listing 3.

Listing 4. Temperature and humidity
struct sensor_temperature_t {
 float temperature;
 float humidity;
};

 In Fig. 4. we can observe the evolution of indoor

temperature for one day for tree sensors. The first two (blue
and orange) are Sparrow nodes, and the last one (green) is a
ESP node. In this plot the difference in sensor measurement is
evident, due to nodes placement in different room and to
temperature sensors being of different types.

B. Light
For gathering light parameters, we used the Si1145[16]

sensor. It is a low-power, reflectance-based, infrared
proximity, ultraviolet(UV) index, and ambient light sensor
with I2C digital interface. This sensor is included in Sparrow
v4 board and we also used the digital light intensity sensor
module GY-30 [17], which also has an I2C interface.

Listing 5. Light data structure
struct sensor_light_t {
 uint16_t UV;
 uint16_t visible;
 uint16_t IR;

uint16_t proximity;
};

In Fig. 5 we can observe visible light variation on three
different locations: Node 1(blue) in a darker place, node
2(orange) with an average visible light, and node 3(green)
near a window in daylight.

C. Battery level
Battery level is crucial for a node in a WSN. For monitoring

the battery level from both Sparrow v4 and ESP8266, we read
the A0 value. It gives an integer value ranging from 0 to 1024
and then converts it in voltage value. For the Sparrow V4, the
maximum value represents 1.8V and for ESP8266 it handles a
maximum voltage of 1V.

Fig. 3. Routing sensor data packets

Fig. 4. Temperature[C] evolution on January 27,2007 from three nodes

Fig. 5. Light visible index[lux] on January 27,2007 from three nodes

 6

Listing 6. Battery data structure
typedef float sensor_battery_t;

For monitoring battery voltage over a day, we used a
Sparrow node powered by two AA batteries, at
approximatively 3V. We can see in Fig. 6. that the battery
level obtained by reading the A0 value fluctuates and it is not
a reliable source for battery monitoring.

D. Data aggregation
All data from sensors arrive at the Wi-Fi Coordinator, each

node being configured to read sensor value and send it at an
interval of ten minutes, for tenting purposes, but in an actual
environment monitoring situation, this interval should be
changed based on the requirements and battery saving.

The Coordinator displays the last ten values from all sensors
and the source node ID (MAC address). The format in which
the data is shown can be either HTML or JSON. We
implemented both, accessible at http://[ESP_IP]/sensors for
the HTML page and at http://[ESP_IP]/sensors/json for the
JSON output.

For data aggregation, the cloud platform is a popular choice,
being always online and accessible from anywhere, perfect for
gathering data from sensors scattered around the environment.
We use services from devicehub.net [18], sending sensor data
from the Edge Router to the cloud directly through a HTTP
request for each sensor type.

VII. CONCLUSION
In this paper, we presented an architecture and a software

solution for environment monitoring using sensor nodes which
can communicate both in Wi-Fi and 802.15.4 networks. Thus,
we can use the specific capabilities of both networks: the low-
power of the 802.15.4 network and the accessibility of the Wi-
Fi network.

The challenge of this project was to link the two networks
in a manner that any node can supply data from its sensors,
regardless of its position, distance or access to the Internet.
We manage to successfully link the two networks, making the
main nodes, the Coordinator, to communicate easily. We used
a large range of sensors to demonstrate the usage of a
heterogeneous WSN. During our evaluation process, no

system freeze or auto restart was observed. Also, by using the
accessible ESP8266, the whole system is easier to implement
and offers a low cost. We hope that, by presenting this design
and the issues we overcome, that other researchers can design
their own solution for accessible and simple environment
monitoring.

A problem in our architecture is that if the Wi-Fi
Coordinator is not working, the whole network is inaccessible.
This can be solved by using multiple Wi-Fi Coordinators in
the same network or as child nodes to one Edge Router and
linked with 802.15.4 Coordinators. In this way, if one stops
working, the other can handle messages from the rest of the
nodes.

On the future, we plan to add support to the CoAP 6LoPAN
library for Sparrow v4 node, so that the routing can be made
more reliable and extend the network area with sub-networks.

One other functionality we plan to add is the possibility to
adjust the sleep time based on battery level and sensor values.
In this way, the radio will be used only when the sensor value
fluctuates, or the node receives a message.

REFERENCES
[1] ZigBee Protocol. http://www.zigbee.org/zigbee-for-
developers/applicationstandards/ Last accessed on 20
December 2016
[2] ZigBee IP. http://www.zigbee.org/zigbee-for-
developers/network-specifications/zigbeeip/ Last accessed on
20 December 2016
[3] All About Circuits – Thread Network Protocol -
http://www.allaboutcircuits.com/technical-articles/thread-
network-protocol/, Last accessed on 18 November 2016
[4] Wireless sensor networks: a survey - I.F. Akyildiz, W. Su,
Y. Sankarasubramaniam, E. Cayirci
[5] Fundamentals of Wireless Communication - David
Tse,Pramod Viswanath 2005
[6] Internet of Things: Wireless Sensor Networks – White
Paper – International Electrotechnical Commission
[7] Sparrow v4. https://elf.cs.pub.ro/wsn/wiki/sparrow_v4_en
Last accessed on 14 January 2017
[8] ESP8266 Family
http://www.esp8266.com/wiki/doku.php?id=esp8266-module-
family Last accessed on 14 January 2017
[9] NodeMCU. http://www.nodemcu.com/index_en.html Last
accessed on 14 January 2017
[10] WeMos D1 mini pro https://www.wemos.cc/product/d1-
mini-pro.html Last accessed on 14 January 2017
[11] https://tools.ietf.org/html/rfc7252 - CoAP RFC
[12] Wireless Sensor Network Protocol for ESP8266.
https://github.com/w01f6/esp8266-wsn-protocol Last accessed
on 06 February 2017
[13] Si7021 Temperature and Humidity sensor.
https://www.silabs.com/Support%20Documents%2FTechnical
Docs%2FSi7021-A20.pdf Last accessed on 20 January 2017
[14] TMP102 Temperature sensor
https://www.sparkfun.com/datasheets/Sensors/Temperature/tm
p102.pdf Last accessed on 20 January 2017
[15] DHT11. http://www.micropik.com/PDF/dht11.pdf Last
accessed on 20 January 2017

Fig. 6. Battery voltage[V] on January 27,2007 from a Sparrow v4 node

 7

[16] Si1145 Light sensor. https://cdn-
shop.adafruit.com/datasheets/Si1145-46-47.pdf Last accessed
on 20 January 2017
[17] GY-30 Light sensor.
http://rohmfs.rohm.com/en/products/databook/datasheet/ic/sen
sor/light/bh1750fvi-e.pdf Last accessed on 21 January 2017
[18] DeviceHub.net cloud platform.
https://www.devicehub.net Last accessed on 30 January 2017

