
1

Enablement of CoAP Stack on Sparrow Wireless
Sensor Network

Dan Drăgan, Dan Tudose, Dan Dragomir, Faculty of Automatic Control and Computer Science,
University POLITEHNICA of Bucharest

Abstract—As smart embedded devices tend to become more
and more ubiquitous, interconnecting these gadgets with the
existing network infrastructure by using simple application layer
protocols is highly needed. This article presents a new approach
for a specialized web transfer protocol widely available in the
Internet of Things used in conjunction with a set of newly
designed wireless sensor nodes. The application layer protocol is
using an IPv6 over Low power Wireless Personal Area Networks
(6LoWPAN) stack in order to facilitate the interconnection of a
group of constrained devices with other networks.

Keywords—CoAP, 6LoWPAN, 802.15.4, wireless sensor network,
microcontroller, mesh network, Internet of Things.

I. INTRODUCTION

The Internet of Things have become an increasingly growing
topic of conversation in the past few years, both in the industry
and academia. The greatest contribution to this area came
from the use of low-power smart devices in conjunction with
web interfaces, in order to interconnect gadgets with existent
infrastructures and services. Constrained Application Protocol
(CoAP) is a web transfer protocol that is intended for use with
reduced-capability, low-power devices. This article describes
an existing CoAP implementation over a 6LoWPAN stack and
the effort invested in porting the existent environment on a
wireless sensor node family, Sparrow v4. The current imple-
mentation run on network topologies where each wireless node
have one of the following roles: coordinator, router, device.
Sparrow nodes use AVR microcontrollers with small amount
of flash memory. The greatest achievement of this project
was reducing the dimension of the application’s executable
file in order to fit the flash memory, by reducing some of
the capabilities and features the starting point implementation
supported, like the dynamic memory allocator and the real-time
operating system support. Another important contribution was
porting the existent implementation for the coordinator node
from an ARM device on AVR microcontroller family.
This paper is divided into six sections. The first two present
a brief introduction into the protocols and mechanisms used
by the solution and describes the current state of its imple-
mentation. The fourth section presents the new architecture of
the network topology that supports CoAP and gives details
regarding the changes and the process of porting the stack
on Sparrow. The fifth section reveals the power consumption
of these nodes, monitored while sending periodic messages
between them. The last section highlights the conclusion and
describes the future work that should be done in order to
achieve low power consumption of CoAP stack on this new
hardware architecture.

II. BACKGROUND

A. Constrained Application Protocol
The ubiquity of web services in most applications

determined the reimplementation of these services for the
embedded world. These web application programming
interfaces depend on the fundamental Representational State
Transfer (REST) architecture of the Web. CoAP represents an
effort for enabling the REST architecture in a suitable form
for the most constrained nodes. These nodes often have 8-bit
microcontrollers with small amounts of read-only memory and
random-access memory. CoAP provides a request/response
interaction model between the endpoints of an application,
it provides built-in mechanisms of services and resources
discovery, and includes key Web concepts such as Internet
media types and Uniform Resource Identifier (URI).
CoAP was designed considering some important HTTP
features such as extensible header options, resource
abstraction, RESTful interfaces, and also the uses of a
compact binary representation, thus making parsing simpler.
One major difference between CoAP and HTTP is that the
former is using UDP instead of TCP, thus allowing CoAP
to be used for one-to-many and many-to-one communication
patterns.

Fig. 1. Two layer structure of CoAP

As one may see in the figure above, CoAP contains a
message layer responsible for UDP communication and re-
liability, and a second layer responsible for request or re-
sponse interactions. CoAP also uses asynchronous message
exchange between end points and the messages are marked
as requests or responses using some embedded method codes
and response codes. CoAP messages may be sent reliably



2

or non-reliably as described in [1]. Reliable or conformable
messages are retransmitted with exponential timeouts until
the receiver acknowledges them or the maximum number of
retransmissions is reached. CoAP was also designed to provide
group communication via IP multicast.

B. IPv6 over Low-Power Wireless Personal Area
Networks

6LoWPAN is a simple low cost communication protocol
allowing wireless connectivity for devices with limited power
running applications with relaxed throughput requirements.
It provides IPv6 networking over IEEE 802.15.4 networks
formed by devices that are compatible with this IEEE standard
which is characterized by low bit rate, low power, short range
and low cost. A reduced function device or lower processing
capability sensor node in a 6LoWPAN may send data packet
to an IP-enabled device outside the Personal Area Network
network by first sending the packets to higher processing
capability sensor nodes, also called full function device.
These devices act as routers in the PAN and will forward
data packets to the gateway as described in the image below.
The gateway connects the PAN with the IPv6 domain and
forwards the packet to the destination device by using the IP
address.

Fig. 2. IPv6 network connected with Wireless Personal Area Network

The reference model for 6LoWPAN protocol stack is very
basic as presented in [2]. The IEEE 802.15.4 standard PHY
and MAC layers are used as base layers while using IPv6 in
the network layer. The physical layer is responsible for power
optimization implementing specification for low-rate wireless
personal area network, while the MAC layers is handling error
correction that may occur in the physical layer during receiving
and transmission.
The frame structures of MAC layer defined in IEEE 802.15.4
standard are: data frame, beacon frame, MAC command frame
and acknowledgment frame. A data frame is used for data

transfers while the beacon frames are used by the PAN
coordinator to transmit periodic information. Sending proper
responses in case of successful frame reception and managing
all MAC peer entity control transfers is handled by the
acknowledgment frame and the MAC command frame. All
frames except acknowledgment frame have MAC Service Data
Unit which is prefixed by MAC Header and appended by MAC
Footer.
The maximum MAC frame size defined by IEEE 802.15.4 is
only 127 octets with 25 bytes reserved for frame overhead
and only 102 bytes left for payload, even if the minimum
allowed maximum transmission unit (MTU) for an IPv6 packet
over IEEE 802.15.4 is 1280 bytes. If the link-layer imposes
further overhead for security purposes, the situation is getting
worse by inserting an Auxiliary Security Header in the MAC
frame, thus in the worst case scenario leaving only 81 bytes
for IPv6 packets and a full IPv6 packet will not fit in an
IEEE 802.15.4 frame. In addition to this, the IPv6 header in
an IPv6 packet is 40 bytes, so there are only 41 bytes left for
higher level layers. The 8 bytes User Datagram Protocol (UDP)
header is preferred over Transmission Control Protocol (TCP)
header for transport layer, although IPv6 packets contain only
several bytes for application data. IETF 6LoWPAN working
group proposed that an adaptation layer between MAC layer
and the network layer to be added in order to achieve header
compression, fragmentation and layer-two forwarding.

III. RELATED WORK

Sparrow v4 is a relatively new wireless sensor node
architecture designed at Politehnica University of Bucharest.
It consists of an 8-bit Atmel AVR microcontroller with low
power 2.4GHz transceiver for IEEE 802.15.4 and a series of
temperature, pressure and light sensors. Because of its recent
introduction, there is no specific CoAP implementation for
Sparrow architecture.
CoAP has working implementations for a couple of platforms
like Contiki OS [3], Tiny OS [4] and it is also available in a
series of libraries for Arduino. It has various applicability like
building and home automation or real time condition based
monitoring in smart grids as presented in [5].
CoAP implementation used as starting point for our project
was using IPv6 over WPAN mesh networks. This type of
network defined three types of devices with different roles:
coordinator, routers and devices. The coordinator is the
initiator of the Personal Area Network and it will act like a
gateway to the IPv6 network, but it will also maintain routing
tables and the evidence of the rest of the devices.
The initial implementation uses as coordinator node a
development board with an Atmel ARM-based microcontroller
and the Routers and Devices were development boards with
Atmel AVR microcontrollers. The coordinator in this setup
was controlled by a Real Time Operating System (FreeRTOS)
with a scheduler designed to provide a predictable execution
pattern. The scheduler was used to plan the execution of
both initialization tasks for network, low-power IP and CoAP
events like responding to device join/leave or other CoAP
requests.



3

Fig. 3. WPAN mesh network with ARM-based coordinator and RTOS

The RTOS objects like tasks, queues, semaphores, software
timers, mutexes and event groups can be created using either
dynamically or statically allocated random-access memory. Its
scheduler can be preemptive, cooperative or it may support
hybrid configuration options, with optional time slicing.
The routers were used in order to send information from
an end node to other end node or to the coordinator. These
type of nodes maintain a table with all the nodes that joined
the network and are attached to it. The routing process is
transparent to CoAP devices, thus an end node might send a
message to a specific node in the network and the message
will be routed hop by hop.
The initial project provided demo applications for all the
entities involved in a 6LoWPAN mesh network in order to
prove the real utility of the APIs. A sketch that was of interest
for our purpose was a client-server application between the
coordinator of the Personal Area Network and the devices
and routers. The purpose of this example is to transmit some
periodic echo messages from the end nodes to the coordinator.
These periodic transmissions could be activated using a GET
message with a specific payload.

Fig. 4. FreeRTOS software layers

The initialization methods called by the coordinator provide
the device with some static information, like MAC and IPv6

addresses, Personal Area Network identification, child and
coordinator ports. The coordinator is also in charge with the
assignment of static addresses for the rest of the participants
in the PAN and is listening on a predefined port for CoAP
messages and acts as a gateway.
All basic operations supported by the coordinator are in
correspondence with a callback. The most important of them
is the CoAP user defined data callback, which is called when
a CoAP message was received. Another important function is
the CoAP user defined error callback, called when a CoAP
message cannot be delivered after timeout or exceeding the
maximum number of retransmissions.
The instruction flow for devices and routers is simpler.
They are all the channels or just the default channel if
provided, looking over a list with discovered devices and
trying to find a coordinator. If the coordinator is found,
then the nodes request joining the network. If any issue
occurred during the coordinator discovery or join process,
the nodes are sent into reset mode, and the operation is retried.

IV. IMPLEMENTATION

The new approach required using Sparrow v4 for all three
types of nodes. Porting the Device and Router applications
was not very difficult because the previous setup used the same
microcontroller, so the only changes were for enabling sensors,
LEDs and build configuration files.
On the Coordinator side the effort was more consistent. The
figure below shows the new model with a redesigned network.
First of all, the build configuration files needed to be rewritten,
because of the switch from ARM to AVR, not only for the
CoAP application, but also for other dependencies, like ROM,
6LoWPAN subroutines and CoAP subsystem. A series of static
libraries containing CoAP and network handles specific for the
coordinator were created for AVR arhitecture. The build files
for generating these static libraries were rewritten for Sparrow
architecture using the same source files that generated the static
libraries for ARM. The build files for CoAP examples were
adapted from the existent ones and they contain instructions
for linking with the newly generated libraries.
Since the flash size was now, reduced to a quarter, the
Real Time OS had to be removed. The execution pattern
was predictable, containing mainly tasks for initialization and
request/response events, so the RTOS scheduler was easily
replaced with bare metal support for the initialization tasks
and callbacks.
A major improvement added to the initial implementation
was enabling the debugging capabilities on the coordinator by
sending messages to the serial interface. This proved to be
of great help in problem identification and testing purposes.
It required changes in a series of build files, because the
implementation uses different debugging functions each being
associated with a specific layer.
Another essential change was reducing the .data and .bss
sections from sizes that required 280% of microcontroller’s
flash memory capacity to 53%. The significant reduction of
the executable file’s dimension was fixed by discarding the



4

dynamic memory allocator, since we plan to use CoAP on
wireless networks with relative small number of nodes, thus
the overhead for this capability is not justified.

Fig. 5. WPAN mesh network with AVR-based coordinator and bare-metal
support

6LoWPAN defines two categories of routing: mesh-under
and route-over. Our study is using the mesh-under routing
method and layer-two addresses, like IEEE 802.15.4 MAC
and short address to forward data packets. In a mesh-under
system, routing of data happens transparently, hence mesh-
under networks are considered to be one IP subnet. The
only IP router in such a system is the gateway router, also
known as coordinator. A broadcast domain is established to
ensure compatibility with higher layer IPv6 protocols such as
duplicate address detection. These messages have to be sent
to all devices in the network, resulting in high network load.

V. RESULTS

After enabling the support for Sparrow v4 architecture on
all types of nodes, we were able to set up a wireless network
containing a coordinator and a couple of routers and devices
in order to carry out some basic tests for CoAP.
The most important criteria for us was the power consumption
of end devices, because of their power cycles, not being able
to sleep even if no data are transmitted, thus this factor might
be improved.
The Sparrow wireless nodes contain sensors like temperature
and humidity sensor, light sensor, barometer. First of all we
wanted to see how will the architecture behave when all the
sensors are active.
The testing setup consisted of a coordinator device and an
end node whom was attached a battery support. The end
node was sending periodic messages to the coordinator, which
replied with an acknowledgement. In order to perform current
measurements we used a Keysight 34461A digital multimeter
and connected it in series with our end node. In the below
figure one may see that during the monitoring, the current
measured was around 20.8 milliampere (mA).

Fig. 6. Current measurement with all sensors on

After that, we considered that it will be relevant to see
how much power will our end node consume without any
sensor enabled in order to estimate and analyze their power
consumption. The below figure shows as that the current
measured was on average 17.8 milliampere with very small
variation.

Fig. 7. Current measurement with all sensors off

As a next step we plan to enable periodic sleep modes
and retry another series of current measurements. A massive
improvement is expected on the average power consumed
by the end host. The routers are responsible for transmitting
messages from their child nodes to other entities in the WPAN,
thus their sleep modes will have to be infrequent. However, it
may be possible that the router devices consumption to be
optimized if the number of children in their routing table is
not very large.

VI. CONCLUSION AND FUTURE WORK

The most important achievement this project brought is the
enablement of a highly popular web transfer protocol stack on
a new power efficient wireless device with reduced memory
and computational capabilities.
We were able to erase much of the computational intensive
features like the Real Time Operating System and reduce
the flash memory usage, preserving the legacy capabilities.
This was achieved by replacing the custom dynamic memory
allocator.
The proposed solution is behaving in the same manner as
the old one, but using four times less flash memory for the
coordinator node and consuming fewer power.
The next objective will be implementing an efficient sleep
mechanisms for all the members of the network except the



5

coordinator, which is required to be awake in order to route
data sent between end nodes.
The main issue that we are concerned about is the clock
drift, a phenomena where a clock does not run at exactly the
same rate as a reference clock and after some time the clock
gradually desynchronizes from the other clock. The lack of
synchronization is related to the quality of the quartz oscillator
and it will be cause great problems in handling the sleep times
of each device in the network.
First of all, we will start with the end nodes and try to
determine the optimal synchronization between their sleep
times using various mechanisms. As a starting point, we will
choose a method based on time guards, so when a node will
came out of its sleep mode, it will wait for a while in order to
give a change to the other neighbors to wake up. The next step
will consist in more sophisticated mechanisms, feedback loops,
like in the case of PID controllers or temperature compensation
in order to reimburse the clock drift between various nodes.

REFERENCES

[1] Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol
(CoAP), Request for Comments: 7252, 2014

[2] Jonas Olsson, 6LoWPAN demystified, Texas Instruments Incorporated,
2014

[3] Matthias Kovatsch, Simon Duquennoy, Adam Dunkels, A Low-Power
CoAP for Contiki, 2011

[4] Alessandro Ludovici, Pol Moreno and Anna Calveras, TinyCoAP: A
Novel Constrained Application Protocol (CoAP) Implementation for
Embedding RESTful Web Services in Wireless Sensor Networks Based
on TinyOS, 2013

[5] Manveer Joshi, Bikram Pal Kaur, CoAP Protocol for Constrained Net-
works, 2015

[6] Gee Keng Ee, Chee Kyun Ng, Nor Kamariah Noordin and Borhanuddin
Mohd. Ali, A Review of 6LoWPAN Routing Protocols, 2010


